JPS59228611A - Polarizing prism - Google Patents
Polarizing prismInfo
- Publication number
- JPS59228611A JPS59228611A JP10403383A JP10403383A JPS59228611A JP S59228611 A JPS59228611 A JP S59228611A JP 10403383 A JP10403383 A JP 10403383A JP 10403383 A JP10403383 A JP 10403383A JP S59228611 A JPS59228611 A JP S59228611A
- Authority
- JP
- Japan
- Prior art keywords
- triangular prism
- prism
- birefringent material
- transparent material
- isotropic transparent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
- G02B27/283—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、偏光プリズムの改良に関し、更に詳しくは複
屈折材料からなる三角プリズムとガラスの如き等方性透
明材料からなる三角プリズムとを接着一体化した構造の
偏光プリズムに関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in polarizing prisms, and more specifically to a polarizing prism having a structure in which a triangular prism made of a birefringent material and a triangular prism made of an isotropic transparent material such as glass are bonded and integrated. It is related to.
例えば、光通信システムにおいては、送信側の装置(半
導体レーザ等)が受信側からの反射光による干渉を受け
ないようにするため、光アイソレータが組込まれる。こ
の光アイソレータは、一方向のみに光を伝送し、それと
は逆の方向には伝送しないような非可逆性を有する二端
子素子であり、ファラデー回転子の両端にそれぞれ偏光
プリズムを配した構成が一般的である。For example, in an optical communication system, an optical isolator is incorporated in order to prevent a transmitting side device (such as a semiconductor laser) from being interfered with by reflected light from a receiving side. This optical isolator is a two-terminal element with irreversibility that transmits light only in one direction and not in the opposite direction, and has a configuration in which polarizing prisms are placed at each end of a Faraday rotator. Common.
ここで用いられる偏光プリズムは、複屈折材料の光軸を
ある一定方向とした三角プリズム2個を光学的に接着し
、平面偏光を得るよう構成されている。光通信システム
の光アイソレータに用いられる偏光プリズムとしては、
極めて高性能のものが要求され、そのため、複屈折材料
としては、一般には加工性が非常に悪い天然の方解石結
晶(カルサイト)が用いられる。そのため、例えば1個
当り数十万円というように非常に高価なものとなり、2
個の偏光プリズムを必要とする光アイソレータは半導体
レーザーよりも逃かに高価なものとなってしまい、光通
信システムを様々な分野で広く発展させていくうえで非
常に大きな問題であった。The polarizing prism used here is configured to obtain plane polarized light by optically bonding two triangular prisms with the optical axis of a birefringent material in a certain direction. Polarizing prisms used in optical isolators for optical communication systems include:
Extremely high performance is required, and for this reason natural calcite crystals (calcite), which is generally very difficult to work with, are used as the birefringent material. Therefore, they are extremely expensive, for example several hundred thousand yen per piece, and
Optical isolators, which require individual polarizing prisms, are much more expensive than semiconductor lasers, and this has been a huge problem in the widespread development of optical communication systems in various fields.
本発明の目的は、上記のような従来技術の欠点を解消で
き、歩留りがよく、製作容易で大幅なコストダウンを図
ることができるような偏光プリズムを提供することにあ
る。SUMMARY OF THE INVENTION An object of the present invention is to provide a polarizing prism that can eliminate the drawbacks of the prior art as described above, has a high yield, is easy to manufacture, and can significantly reduce costs.
本発明は、最近の光通信技術の発展に伴い、レーザー光
の如き一定波長の光源がしばしば用いられること、また
、偏光作用は三角プリズム同士の接合面で生じることに
着目し、偏光プリズムのうち一方の三角プリズムをガラ
スのような等方性透明材料で置換えうろことを知得し、
なされたものである。即ち本発明は、基本的には複屈折
材料からなる第1の三角プリズムと、等方性透明材料か
らなる第2の三角プリズムとを接着一体化した構成をな
し、実用上、使い易いものとするためその他にも様々な
工夫が施されている。The present invention focuses on the fact that with the recent development of optical communication technology, a light source with a constant wavelength such as a laser beam is often used, and that the polarization effect occurs at the joint surfaces of triangular prisms. By replacing one of the triangular prisms with an isotropic transparent material such as glass, we learned about scales.
It has been done. That is, the present invention basically has a structure in which a first triangular prism made of a birefringent material and a second triangular prism made of an isotropic transparent material are bonded and integrated, and is easy to use in practice. Various other measures have been taken to achieve this.
以下、図面に基づき本発明について更に詳しく説明づ゛
る。第1図は、本発明に係る偏光プリズムの一実施例を
示す説明図であり、グラン−トンプソン型プリズムに適
用した場合の一例である。このタイプのプリズムでは異
常光線が利用される。即ち、この実施例で示ツー偏光プ
リズムは、複屈折材料からなる第1の三角プリズム1に
、該複屈折材料の異常光線の特定光波長に対する屈折率
とは異なる屈折率をもつ等方性透明材料からなる第2の
三角プリズム2を、接着剤3によりそれらの斜面同士で
接着一体化してなる。この場合、第1の三角プリズム1
は直角プリズムであり、その一つの角度は約20度とな
っている。複屈折材料としては、方解石結晶(カルサイ
ト)や金紅石結晶(ルチール)等各種のものが使用でき
る。第2の三角プリズム2は、その一端面2aを、光軸
X−Xとプリズムの斜面(接着面)との交点が丁度焦点
fとなるような凸面に形成してなるものであり、円筒面
状でも球面状でもよい。等方性透明材料としては各種光
学ガラスのほか、プラスチックス等でもよい。Hereinafter, the present invention will be explained in more detail based on the drawings. FIG. 1 is an explanatory diagram showing an embodiment of a polarizing prism according to the present invention, and is an example of a case where the polarizing prism is applied to a Glan-Thompson type prism. This type of prism utilizes extraordinary rays. That is, the two-polarizing prism shown in this embodiment includes a first triangular prism 1 made of a birefringent material, and an isotropic transparent prism having a refractive index different from the refractive index for a specific light wavelength of the extraordinary ray of the birefringent material. A second triangular prism 2 made of a material is integrally bonded to each other with an adhesive 3 at their inclined surfaces. In this case, the first triangular prism 1
is a right-angled prism, and one angle is about 20 degrees. As the birefringent material, various materials such as calcite crystal (calcite) and rutile crystal (rutile) can be used. The second triangular prism 2 has one end surface 2a formed into a convex surface such that the intersection of the optical axis XX and the slope (adhesive surface) of the prism is exactly the focal point f, and has a cylindrical surface. It may be shaped or spherical. The isotropic transparent material may be various optical glasses or plastics.
第1図は、光が複屈折材料からなる第1の三角プリズム
1に入射した場合を示している。第1の三角プリズム1
に入射した光線は、該第1の三角プリズム1内を直進し
、第1の三角プリズム1と接着剤3との境界面で常光線
0と異常光線eに分離する。接着剤3の屈折率は、常光
線0のそれより小さく、異常光線eのそれより大きく選
定される。したがって、異常光線eは接着剤3の層を通
過するが、常光線0は入射角が臨界角を超えるので前記
境界面で全反射されるため、両光線に分離できるのであ
る。第2の三角プリズム2での異常光線eに対する屈折
率は、前記のように第1の三角プリズム1での屈折率と
は異なるから、そこで屈折するが、その屈折光は、第2
の三角プリズム2において凸面状をなす端面2aの焦点
fを通る光であり、それ故、端面2aにおいて光軸と平
行となるよう屈折する。結局、出射光は入射光と平行な
状態で第2の三角プリズム2の端面2aから出射される
ことになる。FIG. 1 shows a case where light is incident on a first triangular prism 1 made of a birefringent material. First triangular prism 1
The incident light ray travels straight through the first triangular prism 1 and is separated into an ordinary ray 0 and an extraordinary ray e at the interface between the first triangular prism 1 and the adhesive 3. The refractive index of the adhesive 3 is selected to be smaller than that of the ordinary ray 0 and larger than that of the extraordinary ray e. Therefore, the extraordinary ray e passes through the layer of adhesive 3, but the ordinary ray 0, whose incident angle exceeds the critical angle, is totally reflected at the boundary surface and can be separated into both rays. Since the refractive index for the extraordinary ray e at the second triangular prism 2 is different from the refractive index at the first triangular prism 1 as described above, it is refracted there, but the refracted light is
The light passes through the focal point f of the convex end surface 2a of the triangular prism 2, and is therefore refracted at the end surface 2a so as to be parallel to the optical axis. As a result, the emitted light is emitted from the end surface 2a of the second triangular prism 2 in a state parallel to the incident light.
常光線を利用しようとする場合には、例えば第2図に示
すようなロツション型プリズムとすればよい。この場合
も第1の三角プリズム1は複屈折材料からなり、第2の
三角プリズム2は等方性透明材料からなる。ここで、第
2の三角プリズム2は、その一端面を、光軸X−Xとプ
リズムの斜面(接着面)との交点が丁度焦点fとなるよ
うな円筒状、もしくは球面状をなす凸面に形成されてお
り、この点も前記実施例の場合と同様である。なお、第
1の三角プリズム1における接合面の角度と結晶方位は
、ロツション・プリズムと同様にする。この場合、第1
の三角プリズム1に入る入射光と第2の三角プリズム2
から出る常光線0とは平行となる。ここで注目すべきは
、従来のロツション・プリズムでは、光軸に対して傾斜
して出射する異常光線eも、光軸と平行に出射される点
である。つまり、異常光線eも第2の三角プリズム2に
おいて凸面状をなす端面2aの焦点fを通る光であり、
それ故、端面2aにおいて光軸と平行となるよう屈折す
るからである。つまり、本実施例では、常光線0と異常
光線eとを分離し、かつ両者とも入射光に対して平行に
出射させることができるので、両者とも利用したい場合
には特に好適な装置となる。If ordinary rays are to be used, a Rotchon prism as shown in FIG. 2 may be used, for example. In this case as well, the first triangular prism 1 is made of a birefringent material, and the second triangular prism 2 is made of an isotropic transparent material. Here, the second triangular prism 2 has one end surface formed into a cylindrical or spherical convex surface such that the intersection of the optical axis XX and the slope (adhesive surface) of the prism is exactly the focal point f. This point is also similar to the case of the previous embodiment. Incidentally, the angle and crystal orientation of the cemented surface in the first triangular prism 1 are the same as those of the Rochon prism. In this case, the first
Incident light entering the triangular prism 1 and the second triangular prism 2
It is parallel to the ordinary ray 0 that comes out from. What should be noted here is that in the conventional Rotchon prism, the extraordinary ray e, which is emitted at an angle to the optical axis, is also emitted parallel to the optical axis. In other words, the extraordinary ray e is also light that passes through the focal point f of the convex end surface 2a of the second triangular prism 2,
Therefore, it is refracted so as to be parallel to the optical axis at the end surface 2a. That is, in this embodiment, the ordinary ray 0 and the extraordinary ray e can be separated and both can be emitted in parallel to the incident light, so the apparatus is particularly suitable when it is desired to use both.
なお、本発明に係る偏光プリズムは、光波長依存性がな
く、入射してくる光の波長が若干変化しても光は光軸と
平行に出射し、前記光アイソレータのほか、光スィッチ
、光サーキュレータなど特にレーザー光を利用する各種
光学装置に広く適用しうるちのである。The polarizing prism according to the present invention has no light wavelength dependence, and even if the wavelength of the incident light changes slightly, the light is emitted parallel to the optical axis. It can be widely applied to various optical devices that use laser light, such as circulators.
本発明は上記のように構成した偏光プリズムであるから
、一方の三角プリズムをガラスの如き等方性透明材料と
しているので、加工性が良く、端面の無反射コートが行
ない易いし、高価な加工性の悪い複屈折材料の三角プリ
ズムは唯一個のみで済むため、歩留りが向上し、製作容
易で大幅なコストダウンを図ることができるし、出射光
と入射光とが平行になっているので、従来の偏光プリズ
ムが用いられていたところにそのまま設置でき、従って
従来の光学システムをそのまま利用できるなど、数々の
り“ぐれた効果を秦しうるちのである。Since the present invention is a polarizing prism configured as described above, one of the triangular prisms is made of an isotropic transparent material such as glass, so it is easy to process, anti-reflection coating on the end face is easy, and expensive processing is required. Since only one triangular prism is required, which is made of a birefringent material with poor properties, the yield is improved, manufacturing is easy, and costs can be significantly reduced.The output light and the input light are parallel, so It offers a number of superior effects, such as being able to be installed in locations where conventional polarizing prisms have been used, and thus allowing the use of conventional optical systems as is.
第1図は本発明に係る偏光プリズムの一実施例を示す説
明図、第2図は他の実施例を示す説明図である。
1・・・第1の三角プリズム、2・・・第2の三角プリ
ズム、2a・・・端面、3・・・接着剤。FIG. 1 is an explanatory diagram showing one embodiment of a polarizing prism according to the present invention, and FIG. 2 is an explanatory diagram showing another embodiment. DESCRIPTION OF SYMBOLS 1... First triangular prism, 2... Second triangular prism, 2a... End surface, 3... Adhesive.
Claims (1)
屈折材料の常光線もしくは異常光線に対する屈折率とは
異なる屈折率を有する等方性透明材料からなる第2の三
角プリズムを接着し、該第2の三角プリズムの一端面を
、光軸と前記接着面との交点が焦点となるような凸面に
形成してなる偏光プリズム。1. A second triangular prism made of an isotropic transparent material having a refractive index different from the refractive index for ordinary rays or extraordinary rays of the birefringent material is adhered to a first triangular prism made of a birefringent material, A polarizing prism in which one end surface of the second triangular prism is formed into a convex surface such that the intersection of the optical axis and the adhesive surface serves as a focal point.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10403383A JPS59228611A (en) | 1983-06-10 | 1983-06-10 | Polarizing prism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10403383A JPS59228611A (en) | 1983-06-10 | 1983-06-10 | Polarizing prism |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59228611A true JPS59228611A (en) | 1984-12-22 |
JPS6340286B2 JPS6340286B2 (en) | 1988-08-10 |
Family
ID=14369915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10403383A Granted JPS59228611A (en) | 1983-06-10 | 1983-06-10 | Polarizing prism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59228611A (en) |
-
1983
- 1983-06-10 JP JP10403383A patent/JPS59228611A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6340286B2 (en) | 1988-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2710451B2 (en) | Polarization independent optical isolator | |
US7426325B2 (en) | Compact, high power, fiber pigtailed faraday isolators | |
JPH03132603A (en) | Polarizer | |
JPH0954283A (en) | Polarization independent type optical isolator device | |
JP2001504947A (en) | Optical isolator | |
JPH042934B2 (en) | ||
JP2572627B2 (en) | Optical isolator and optical circulator | |
US5559633A (en) | Optical isolator with reduced relative walk-off | |
JP2006208710A (en) | Optical isolator element, its manufacturing method, and fiber with optical isolator | |
JPS59228611A (en) | Polarizing prism | |
JPS59228610A (en) | Polarizing prism | |
JPH10239520A (en) | Polarized beam splitter | |
JPS6340287B2 (en) | ||
JP2000180789A (en) | Optical isolator | |
CN105842846B (en) | It is a kind of to polarize uncorrelated reflected light uncoupling system | |
US20050207010A1 (en) | Optical isolator and method of producing the same | |
JP2541014B2 (en) | Polarizing prism | |
JPH0391715A (en) | Optical isolator | |
US3460883A (en) | Total internal reflection deflector | |
US5864428A (en) | Polarizing device | |
JP2000231080A (en) | Optical circulator | |
JPH02211404A (en) | Polarized light eliminator | |
JPH0532826Y2 (en) | ||
JPH08286150A (en) | Optical isolator | |
JPS60238813A (en) | Optical isolator |