JPS59228220A - Large diameter macro lens - Google Patents

Large diameter macro lens

Info

Publication number
JPS59228220A
JPS59228220A JP10335083A JP10335083A JPS59228220A JP S59228220 A JPS59228220 A JP S59228220A JP 10335083 A JP10335083 A JP 10335083A JP 10335083 A JP10335083 A JP 10335083A JP S59228220 A JPS59228220 A JP S59228220A
Authority
JP
Japan
Prior art keywords
lens
lens group
group
object side
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10335083A
Other languages
Japanese (ja)
Other versions
JPH0441322B2 (en
Inventor
Sho Tokumaru
得丸 祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP10335083A priority Critical patent/JPS59228220A/en
Publication of JPS59228220A publication Critical patent/JPS59228220A/en
Publication of JPH0441322B2 publication Critical patent/JPH0441322B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Abstract

PURPOSE:To obtain a compact lens system while correcting spherical aberration, etc., by moving the 1st - the 3rd lens groups to an object side for focusing so that the air gap between the 1st and the 2nd lens groups and the air gap between the 2nd and the 3rd lens groups both increase. CONSTITUTION:The lens system consists of three groups, i.e. the 1st lens group I having positive refracting power, the 2nd group II having positive refracting power, and the 3rd lens group III having negative refracting power successively from the object side. When focusing from an infinite-distance object to a short-distance object is performed, the lens groups are all moved so that the air gap between the 1st lens group I and the 2nd lens group II and the air gap between the 2nd lens group II and the 3rd lens group III both increase. Further, the lens system is composed so that inequalities I and II may hold.

Description

【発明の詳細な説明】 本発明は、無限遠から等倍付近までの物体を連続的に撮
影することの出来る大口節マクロレンズに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a large-mouth macro lens that is capable of continuously photographing objects from infinity to near the same magnification.

従来マクロレンズは、一般の撮影用レンスカ無限遠近傍
で最良の収差補正がなされているのに対し、撮影距離変
化による収差劣下を考慮して、撮影倍率1/10倍付近
で収差補正されている。 しかしながら、上記のように
最良収差補正を近距離に設定しても、撮影倍率をさらに
高くしていくにつれ、球面収差、コマ収差及び非点収差
の劣化は顕著になり大口径マクロレンズの実現を困難な
ものにしていた。これに対して、上記近距離フォーカシ
ングに伴う収差劣下をいわゆるフローティング機構を備
えて、補正することにより大口径マクロレンズを実現し
たものが知られている。このようなフローティング機構
を設けることにより、球面収差、コマ収差の補正は、有
利となるが、マクロレンズとして重要な歪曲収差の変動
及び非点隔差をある程度許容する傾向となる。一方、無
限遠から等倍付近までの物体を連続的に撮影できるよう
にするため(では、フォーカシングに際して、通常その
レンズの焦点距離相当のフォーカシング繰り出し量が必
要となり、レンズ系のみでは、コンパクトであっても、
そのフォーカシング繰り出し量の大きさから鏡胴構成が
複雑となり、製品全体としてコンパクトなレンズが実現
できなかった。
In conventional macro lenses, aberrations are best corrected near infinity for general photography lenses, but in consideration of aberration degradation due to changes in shooting distance, aberrations are corrected at a shooting magnification of around 1/10x. There is. However, even if the best aberration correction is set at short distances as described above, as the imaging magnification is further increased, the deterioration of spherical aberration, coma aberration, and astigmatism becomes noticeable, making it difficult to realize large-diameter macro lenses. It made it difficult. On the other hand, it is known that a large-diameter macro lens is realized by providing a so-called floating mechanism and correcting the aberration degradation caused by the short-distance focusing. By providing such a floating mechanism, it is advantageous to correct spherical aberration and coma aberration, but it tends to allow some variation in distortion and astigmatism, which are important for a macro lens. On the other hand, in order to be able to continuously photograph objects from infinity to close to the same magnification, focusing usually requires a focusing extension equivalent to the focal length of the lens, and the lens system alone is not compact enough. too,
The large focusing extension made the lens barrel structure complicated, making it impossible to create a compact lens as a whole.

本発明は、無限遠から等倍付近までの広い撮影領域にお
いて、歪曲収差の変動が小さくかつ球面収差、コマ収差
と非点収差との7<ランス75;良好に補正されている
とともに、フォー力シンク°繰1」」量が小さくコン・
ぐクトな大口径マクロレンス゛系を提供することを目的
とするものである、。
The present invention has a wide photographic area from infinity to around the same magnification, has small fluctuations in distortion, and is well corrected for spherical aberration, coma aberration, and astigmatism (7 < lance 75; ° Repetition 1"" amount is small and con-
The objective is to provide a highly efficient large-diameter macro lens system.

本発明の大V:、1径マクロレンス°は、第1区1う・
ら算53図の如く物体側より順に正の屈折力を有する第
1721群(1)、正の屈折力を有する第2レンス゛B
¥(n)、そして負の屈折力を有する第3レノス゛群(
III)の3群から構成され、無限遠物体から近接物体
へのフォーカシングに際して、前記第1721群から第
3レンズ群をいずれも物体側に移動させ、このとき前記
第1721群と第2レンズ群間の空気間隔及び前記第2
レンズ群と第3レンズ群間の空気間隔をともに増大させ
る構成を有している。
The large V:, 1 diameter macrolens degree of the present invention is the 1st section 1 degree.
As shown in Figure 53, in order from the object side, the 1721st lens group (1) has a positive refractive power, and the second lens unit B has a positive refractive power.
¥(n), and the third lens group (
When focusing from an object at infinity to a nearby object, the 1721st lens group to the 3rd lens group are all moved toward the object side, and at this time, the distance between the 1721st lens group and the second lens group is air spacing and said second
It has a configuration that increases the air distance between both the lens group and the third lens group.

本発明は上記のようにして、第1721群と第2レンズ
群との間の空気間隔を増大しつつこれらを繰り出すこと
により、R面収差、特にコマ収差の劣化をイ11正する
ぶともに第1721群と第2レンズ群との繰り出しによ
る歪曲収差の負方向への増加と、非点収差のバランスを
第2レンズ群と第3レンズ群との間の空気間隔の増大に
より補正している。すなわち、第1721群と第2レン
ズ群間のフローティングで主に球面収差とコマ収差の補
正を行うとともに、第2レンズ群と第3レンズ群間の7
0−ティングで主に歪曲収差と非点収差の補正を行うこ
とにより、諸収差を分離して補正できるのでより良好な
補正が可能と々っている。
As described above, the present invention corrects the deterioration of R-plane aberration, especially coma aberration, by increasing the air distance between the 1721st lens group and the second lens group while extending them. The increase in distortion in the negative direction due to the extension of the 1721st lens group and the second lens group and the balance of astigmatism are corrected by increasing the air gap between the second and third lens groups. That is, the floating between the 1721st lens group and the second lens group mainly corrects spherical aberration and coma, and the floating between the 1721st lens group and the 3rd lens group
By mainly correcting distortion and astigmatism using 0-ting, various aberrations can be corrected separately, making it possible to perform better correction.

又本発明では、所定の屈折力を有する負の第3レンズ群
を最も像面側に配し、正の第1Vンズ群及び正の第2レ
ンズ群との空気間隔を増大させて近接物体にフォーカシ
ングすることにより、第1721群及び第2レンズ群の
フォーカシング移動量をより小さくしている。
In addition, in the present invention, the negative third lens group having a predetermined refractive power is disposed closest to the image plane, and the air distance between the positive first V lens group and the positive second lens group is increased, so that it is possible to focus on nearby objects. By focusing, the amount of focusing movement of the 1721st lens group and the second lens group is made smaller.

本発明は以上の基本的構成を有するとともに、次の条件
を満足することを特徴とする。
The present invention is characterized by having the above basic configuration and satisfying the following conditions.

(1)    −14< f3/f  <−3(2) 
 0.1 < m3/mz <O18但し、fは全系の
焦点距離、f3は第3レンズ群の焦点距離、m2は第2
レンズ群の移動量、1η3は第3レンズ群の移動量であ
る。
(1) -14< f3/f <-3 (2)
0.1 < m3/mz <O18 However, f is the focal length of the entire system, f3 is the focal length of the third lens group, and m2 is the focal length of the second lens group.
The amount of movement of the lens group, 1η3, is the amount of movement of the third lens group.

条件式(1)は第3レンズ群の屈折力を規定するもので
、条件式(2)と伴に、無限遠時から近接時の第1・第
2レンズ群の移動量に関部している。
Conditional expression (1) defines the refractive power of the third lens group, and together with conditional expression (2), it is related to the amount of movement of the first and second lens groups from infinity to close-up. There is.

すなわち条件式(1)の下限を越えると、第3レンズ群
の屈折力が弱くなりすぎ、無限遠時から近接時(等倍付
近まで)の第1・第2レンズ群の移動量を小さくし、製
品全体をコンパクトな型で実現したいという本発明の目
的からはずれることになる。一方その上限を越えると球
面収差及び非点収差の補正が困難となる。
In other words, if the lower limit of conditional expression (1) is exceeded, the refractive power of the third lens group becomes too weak, and the amount of movement of the first and second lens groups from infinity to close-up (near the same magnification) becomes small. This would deviate from the purpose of the present invention, which is to realize the entire product in a compact mold. On the other hand, if the upper limit is exceeded, it becomes difficult to correct spherical aberration and astigmatism.

条件式(2)は、第3レンズ群の第1・第2レンズ群に
対する移動量比を規定するもので、条件式(1)と伴に
無限遠時から近接時の第1・第2レンズ群の移動量に関
連すると同時に、近接時の歪曲収差の変動及び非点収差
の補正に関連している。
Conditional expression (2) defines the ratio of the amount of movement of the third lens group to the first and second lens groups, and together with conditional expression (1), the ratio of the amount of movement of the third lens group to the first and second lens groups is It is related to the amount of movement of the group, and at the same time, it is related to the correction of distortion aberration and astigmatism when approaching.

すなわち、条件式(2)の上限を越えると、前記の条件
式(1)の場合と同様(lて、無限遠時から近接時の第
1・第2レンズ群の移動爪を小さくすることが出来なく
なると伴に、歪曲収差の変動を小さくすることが困難と
なる。一方、条件(2)の下限を越えると条件式(1)
の元での非点収差の補正が困難となるとともに等倍付近
までフォーカシングしようとすると第3レンズ群に必要
な有効径が大きくなりすぎる。
In other words, if the upper limit of conditional expression (2) is exceeded, the movement claws of the first and second lens groups from infinity to close-up cannot be made smaller, as in the case of conditional expression (1) above. If the lower limit of condition (2) is exceeded, condition (1)
It becomes difficult to correct astigmatism under such conditions, and the effective diameter required for the third lens group becomes too large if focusing is attempted to near the same magnification.

なお、第ルンズ群と第2レンズ群の無限時から近接時へ
の移動量比も前記条件式(IO2)の元では、球面収差
とコマ収差の良好な補正をするにはその妥当な値が決1
ってくるが、具体的には、以下の条件式に従うのが望ま
しい。
Furthermore, under the above conditional expression (IO2), the ratio of the amount of movement of the first lens group and the second lens group from infinity to close-up must have a reasonable value for good correction of spherical aberration and coma aberration. Decision 1
However, specifically, it is desirable to follow the following conditional expressions.

(3)  1.14 < ms/mz 〈1.22但し
、lη1は第1Vンズ群の移動量である。
(3) 1.14 < ms/mz <1.22 However, lη1 is the amount of movement of the first V lens group.

条件式(3)は、無限時から近接時の球面収差とコマ収
差の補正に関連している。すなわち、その−上限を越え
ると近接時の球面収差が1■正不足となり、一方その下
限を越えると(像面性を考慮した状態でのコマ収差の補
正が困難となる。
Conditional expression (3) is related to correction of spherical aberration and coma aberration from infinity to close range. That is, if the - upper limit is exceeded, the spherical aberration at close range will be 1 square positive, while if the lower limit is exceeded (it becomes difficult to correct coma aberration while taking image surface properties into consideration).

本発明の実施にあたっては、さら知以丁の条件式に従う
のが望ましい。
In carrying out the present invention, it is desirable to follow Sarachi's conditional expression.

(4)  0.1(ΔdA//ΔdB (0,5但し、
ΔdAは第1Vンズ群と第2レンズ群の間の空気間隔の
変化量、ΔdBは第2レンズ群と第3レンズ群の間の空
気間隔の変化量である。
(4) 0.1(ΔdA//ΔdB (0,5 However,
ΔdA is the amount of change in the air distance between the first V lens group and the second lens group, and ΔdB is the amount of change in the air distance between the second lens group and the third lens group.

(5) 0.05 < ’m3/ml < 0.7上記
の条件式(4)はフォーカシングにおいてともに増大す
る第1・2Vンズ群間及び、第273レンズ群間の空気
間隔の増大比を規定するもので上限値を越えると近接フ
ォーカシングの際の球面収差とコマ収差変動を補正する
ことが困難となり、一方、下限値を越えると球面収差と
非点収差の変動をバランスよく補正するのが困難となる
(5) 0.05 <'m3/ml< 0.7 The above conditional expression (4) defines the increase ratio of the air distance between the 1st and 2nd V lens groups and between the 273rd lens group, which both increase during focusing. If the upper limit is exceeded, it becomes difficult to correct variations in spherical aberration and coma aberration during close focusing, while if the lower limit is exceeded, it is difficult to correct variations in spherical aberration and astigmatism in a well-balanced manner. becomes.

また、条件式(5)は条件式(1)、(2)とも関連し
、その下限を越えると第3群の有効径を大きく取らなけ
ればならなくなるとともに、像面彎曲の変動の補正が不
充分となる。一方、条件式(5)の上限を越えると、第
1・第2レンズ群のフォーカシング繰出量を小さくする
効果が薄れるとともに歪曲の変動を補正するのが困難と
なる。
Furthermore, conditional expression (5) is also related to conditional expressions (1) and (2), and if the lower limit is exceeded, the effective diameter of the third group must be increased, and correction of field curvature fluctuations becomes impossible. It will be enough. On the other hand, if the upper limit of conditional expression (5) is exceeded, the effect of reducing the amount of focusing movement of the first and second lens groups will be diminished, and it will become difficult to correct fluctuations in distortion.

本発明の具体的なレンズ構成としては、下記の正メニス
カスレンズ及び負レンズより構成し、前記第2レンズ群
は曲率の強い面を物体側に向けた負レンズと曲率の強い
而を@側に向けた正レンズとを貼り合わせて成る接合レ
ンズ及び曲率の強い而を像側に向けた正レンズよりtM
−成するとともに、ifJ記第3Vンズ群は物体側に凸
面を向けた負のメニスカスレンズより構成する。
A specific lens configuration of the present invention includes the following positive meniscus lens and negative lens, and the second lens group includes a negative lens with a surface with a strong curvature facing the object side, and a negative lens with a surface with a strong curvature facing the @ side. A cemented lens made by bonding a positive lens that faces toward the image side, and a cemented lens that has a strong curvature than a positive lens that faces the image side.
In addition, the third V lens group in ifJ is composed of a negative meniscus lens with a convex surface facing the object side.

なお、上記において第3レンズ群を構成する負のメニス
カスレンズは条件式(2)から明らかなようにその屈折
力は弱く温度変化によるレンズバンクの変動の影響が小
さいのでプラスチックレンズで構成することが可能であ
る。(実施例3参照)また屈折力の弱いメニスカスレン
ズという第3Vンズ群の具体的形状は、これをプラスチ
ックで形成するならば、その製造も容易となる。
In addition, as is clear from conditional expression (2), the negative meniscus lens constituting the third lens group in the above has weak refractive power and is less affected by fluctuations in the lens bank due to temperature changes, so it can be constructed from a plastic lens. It is possible. (See Example 3) Furthermore, if the specific shape of the third V lens group, which is a meniscus lens with a weak refractive power, is made of plastic, it will be easier to manufacture.

次に本発明の実施例の無限遠フォーカス状態の諸元を示
す。実施例においてriは物体側から順に第1番目の而
の曲率半径、diは物体側より順に第1番目の軸上間隔
、Nlとνiはそれぞれ物体側から順に第1番目のレン
ズの屈折率とアツベ藪である。
Next, the specifications of the infinity focus state of the embodiment of the present invention will be shown. In the example, ri is the radius of curvature of the first lens from the object side, di is the first axial distance from the object side, and Nl and νi are the refractive index of the first lens from the object side, respectively. It's a thicket.

実  施  例   1 f=100.OFNO,=28 LB、=78.674
、 曲率半径  軸上面間隔  屈折率(Nd)   
分散(νd)rx   360.308 d 1 4.660   Nr  1.72000  
 rl  50.31r2 −167084 d2 0.291 ra    41310 d34B54   N2 1.77250   ν2 
49.77r4 109ユ32 d4 2.136 ra  −806933 ds  6.602   N3 1fi0342   
ν3 3801r7  −34380 d7 5D68   N4 1.67339   ν4
 2925r8 −131;?67 ds  6.718   NS  1.71300  
 ν5 5393r9  −40.011 d9  C)291 rlo   464.140 dto  6.446   N6 1.77250  
 シロ  49.77r12  105.011 Σd=53960 来β−−0,995の時 d6’=27.266  d
+t’−54,214L、 B′、=112.721 f 3/f= −6,67、ms/mz=0.39. 
m 1/m 2=1.17 、 m3/m 1=0.3
3d6’−d6 ΔdMΔdB=d□、’−71.= 0.28実  施
  例   2 f=xoo、o   FNO,=2.8 L、B:=8
0.876曲率半径  軸上面間隔  屈折率(Nd)
   分散(νd)rl   354.106 Σd= 51803 米β−−0,997の時 d6’=23.944  a
lt’=32.27’4L、 B′、=129.226 f 3/f−−333,ms/m2=0.61. ml
/m 2=1.15 、 m37m1=053実  施
  例   3 f=too、o   FNO=2.8 L、B7=78
.058曲率半径   軸上面間隔  屈折率(Nd)
   分散(νd)rl   374.036 d2  0.II!91 r3   41.480 d4  2D30 rs−1144216 r7  −34.653 rl2  102945 Σd=54200 米β= −0,997の時 d6’ =28.012 
 dxt’ =83.903L、 B′、=s 9.3
63 f3/f−−1333,ms/m2=012.mz/m
2=1.18.ms/m1=o、10ds’ −d6 ΔdMΔdB−dtt’−dt□=0.20
Example 1 f=100. OFNO,=28 LB,=78.674
, Radius of curvature Distance between upper surfaces of shaft Refractive index (Nd)
Dispersion (νd) rx 360.308 d 1 4.660 Nr 1.72000
rl 50.31r2 -167084 d2 0.291 ra 41310 d34B54 N2 1.77250 ν2
49.77r4 109yu32 d4 2.136 ra -806933 ds 6.602 N3 1fi0342
ν3 3801r7 -34380 d7 5D68 N4 1.67339 ν4
2925r8 -131;? 67 ds 6.718 NS 1.71300
ν5 5393r9 -40.011 d9 C)291 rlo 464.140 dto 6.446 N6 1.77250
White 49.77r12 105.011 Σd=53960 Next β-0,995 d6'=27.266 d
+t'-54,214L, B',=112.721 f3/f=-6,67, ms/mz=0.39.
m1/m2=1.17, m3/m1=0.3
3d6'-d6 ΔdMΔdB=d□,'-71. = 0.28 Example 2 f=xoo,o FNO,=2.8 L, B:=8
0.876 Radius of curvature Axis top surface interval Refractive index (Nd)
Dispersion (νd) rl 354.106 Σd= 51803 When rice β--0,997 d6'=23.944 a
lt'=32.27'4L, B',=129.226 f3/f--333, ms/m2=0.61. ml
/m2=1.15, m37m1=053 Example 3 f=too, o FNO=2.8 L, B7=78
.. 058 Radius of curvature Axis top surface interval Refractive index (Nd)
Dispersion (νd) rl 374.036 d2 0. II! 91 r3 41.480 d4 2D30 rs-1144216 r7 -34.653 rl2 102945 Σd=54200 When rice β= -0,997 d6' =28.012
dxt' =83.903L, B', =s 9.3
63 f3/f--1333, ms/m2=012. mz/m
2=1.18. ms/m1=o, 10ds'-d6 ΔdMΔdB-dtt'-dt□=0.20

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第3図は本発明の実施例1から3の各レンズ
構成図、第4図から第6図は実施例1から3のそれぞれ
の諸収差図を示す。 ■・・・第ルンズ群 ■・・・第2レンズ群 II・・・第3レンズ群 出願人  ミノルタカメラ株式会社 第1図 第2図 ■ 第3図 第 レニ0つのロー Y’= β・−1のめ Y′・ 1′ \ \ \ \ つ、5 ・42Y′−42 5 =42  DsY’=42 9丁 一一−] 015         −7       2 lA
ハ第6図 β・−10時 D5Y’=42 42   D3   Y’=4Z
1 to 3 show respective lens configuration diagrams of Examples 1 to 3 of the present invention, and FIGS. 4 to 6 show various aberration diagrams of Examples 1 to 3, respectively. ■...Luns group ■...Second lens group II...Third lens group Applicant: Minolta Camera Co., Ltd. Fig. 1 Fig. 2 ■ Fig. 3 Leni 0 low Y' = β・- 1-me Y'・1' \ \ \ \ \ Tsu, 5 ・42Y'-42 5 =42 DsY'=42 9-cho-11-] 015 -7 2 lA
Figure 6 β・-10 o'clock D5Y'=42 42 D3 Y'=4Z

Claims (1)

【特許請求の範囲】 1、物体側より順に正の屈折力を有する第ルンズ群(I
)、正の屈折力を有する第2レンズ群(It)、そして
負の屈折力を有する第3レンズ群(1u)の3群から構
成され、無限遠物体から近接物体へのフォーカシングに
際して、前記第ルンズ群と第2レンズ群間の空気間隔及
び前記第2Vンズ群と第3、レンズ群間の空気間隔がと
もに増大するよう前記第ルンズ群から第3レンズ群をい
ずれも物体側に移動させて合焦を行うとともに、以下の
条件式を満足することを特徴とする大口径マクロレンズ
ニ ー 14 < fs/f <−a 0.1  <m3/mz (0,8 但し  f :全系の焦点距離、 f3:第3レンズ群の焦点距離、 m2:第2レンズ群の移動量、 m3:第3レンズ群の移動量。 2、 さらに以下の条件を満足することを特徴とする特
許請求の範囲第1項記載の大口径マクロレンズ: 0.1 (ΔdA/JdB < 0.5但し、ΔdA:
第ルンズ群と第2レンズ群の間の空気間隔の変化量、 JdB :第2レンズ群と第3レンズ群の間の空気間隔
の変化量。 3、 さらに以下の条件を満足することを特徴とする特
許請求の範囲第1項記載の大口径マクロレンズ: 0.05 (m3/ml(0,7 但し、ml:第ルンズ群の移動量。 4、物体側より順に前記第ルンズ群は、正レンズ、物体
側に凸面を向けた正メニスカスレンズ及び負レンズより
成り、前記第2レンズ群は曲率の強い面を物体側に向け
た負レンズと曲率の強い面を像側に向けた正レンズとを
貼り合わせて成る接合レンズ及び曲率の強い面を像側に
向けた正レンズより成り、前記第3レンズ群は物体側に
凸面を向けだ負のメニスカスレンズより成ることを特徴
とする特許請求の範囲第1項記載の大口径マクロレンズ
。 5、前記第3レンズ群がプラスチックレンズであること
を特徴とする特許請求の範囲第4項記載の大口径マクロ
レンズ。 6、 さらに以下の条件を満足することを特徴とする特
許請求の範囲第1項記載の大口径マクロレンズ。 1.14 (m+An2 (1,22 m1:第1721群の移動、l:。
[Claims] 1. A lens group (I) having positive refractive power in order from the object side.
), a second lens group (It) having a positive refractive power, and a third lens group (1u) having a negative refractive power. The lens group from the lens group to the third lens group are all moved toward the object side so that the air distance between the lens group and the second lens group and the air distance between the second V lens group and the third lens group are both increased. A large-diameter macro lens knee that performs focusing and satisfies the following conditional expressions: 14 < fs/f <-a 0.1 < m3/mz (0,8 where f: focal length of the entire system , f3: Focal length of the third lens group, m2: Amount of movement of the second lens group, m3: Amount of movement of the third lens group.2. Large diameter macro lens described in item 1: 0.1 (ΔdA/JdB < 0.5, however, ΔdA:
Amount of change in the air distance between the second lens group and the second lens group, JdB: Amount of change in the air distance between the second lens group and the third lens group. 3. A large-diameter macro lens according to claim 1, which further satisfies the following conditions: 0.05 (m3/ml (0.7) where ml is the amount of movement of the lens group. 4. In order from the object side, the lens group consists of a positive lens, a positive meniscus lens with a convex surface facing the object side, and a negative lens, and the second lens group is a negative lens with a surface with strong curvature facing the object side. It consists of a cemented lens made by bonding together a positive lens with a surface with strong curvature facing the image side, and a positive lens with a surface with strong curvature facing the image side, and the third lens group has a negative lens with a convex surface facing the object side. 5. The large-diameter macro lens according to claim 1, characterized in that the lens comprises a meniscus lens. 5. The large-diameter macro lens according to claim 4, characterized in that the third lens group is a plastic lens. Large-diameter macro lens. 6. The large-diameter macro lens according to claim 1, further satisfying the following conditions: 1.14 (m+An2 (1,22 m1: movement of the 1721st group, l:.
JP10335083A 1983-06-08 1983-06-08 Large diameter macro lens Granted JPS59228220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10335083A JPS59228220A (en) 1983-06-08 1983-06-08 Large diameter macro lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10335083A JPS59228220A (en) 1983-06-08 1983-06-08 Large diameter macro lens

Publications (2)

Publication Number Publication Date
JPS59228220A true JPS59228220A (en) 1984-12-21
JPH0441322B2 JPH0441322B2 (en) 1992-07-08

Family

ID=14351682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10335083A Granted JPS59228220A (en) 1983-06-08 1983-06-08 Large diameter macro lens

Country Status (1)

Country Link
JP (1) JPS59228220A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147126A (en) * 1986-12-11 1988-06-20 Canon Inc Photographic lens with variable optical characteristic
US4786153A (en) * 1986-02-24 1988-11-22 Olympus Optical Co., Ltd. Large-aperture macro lens system
US4923292A (en) * 1988-02-23 1990-05-08 Asahi Kogaku Kogyo Kabushiki Kaisha Macro lens system
US5007720A (en) * 1989-04-26 1991-04-16 Nikon Corporation Lens system enabling close distance photographing
JP2021009339A (en) * 2019-06-29 2021-01-28 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing optical lens

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107210A (en) * 1980-01-31 1981-08-26 Nippon Kogaku Kk <Nikon> Lens system permitting short-distance photographing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107210A (en) * 1980-01-31 1981-08-26 Nippon Kogaku Kk <Nikon> Lens system permitting short-distance photographing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786153A (en) * 1986-02-24 1988-11-22 Olympus Optical Co., Ltd. Large-aperture macro lens system
JPS63147126A (en) * 1986-12-11 1988-06-20 Canon Inc Photographic lens with variable optical characteristic
US4923292A (en) * 1988-02-23 1990-05-08 Asahi Kogaku Kogyo Kabushiki Kaisha Macro lens system
US5007720A (en) * 1989-04-26 1991-04-16 Nikon Corporation Lens system enabling close distance photographing
JP2021009339A (en) * 2019-06-29 2021-01-28 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing optical lens
US11209629B2 (en) * 2019-06-29 2021-12-28 Aac Optics Solutions Pte. Ltd. Camera optical lens comprising seven lenses of ++−−+−− or ++−−−+− refractive powers

Also Published As

Publication number Publication date
JPH0441322B2 (en) 1992-07-08

Similar Documents

Publication Publication Date Title
US6735020B2 (en) Zoom lens and image pickup apparatus
JPH11153752A (en) Bright wide-angle lens
TWI698673B (en) Optical lens assembly, imaging apparatus and electronic device
TW202115453A (en) Imaging optical system, imaging apparatus and electronic device
JP2001183578A (en) Image pickup lens
JP2002162562A (en) Photographic lens
JPH0667092A (en) Zoom lens
JP2001356269A (en) Zoom lens
JPS59228220A (en) Large diameter macro lens
TW202045975A (en) Imaging lens, imaging device and electronic device having the same
JPH08152555A (en) Photographing lens
TWM583949U (en) Imaging lens, imaging device and electronic device having the same
JP4253479B2 (en) Retro focus type super wide angle lens
JP7425616B2 (en) Optical system and imaging device
JPH07318798A (en) Photographic lens
JPH07333494A (en) Photographing lens
JPH063588A (en) Wide-angle lens
JPH03230112A (en) Projection lens system
JPS6167814A (en) Wide angle photographing lens with short whole length
TW202040201A (en) Optical imaging lens
JPH0694992A (en) Photographic lens
JPH07104181A (en) Wide-angle photographic lens
JPS62124515A (en) Photography system with soft focusing function
JPS5926715A (en) Photographic lens
JPH05264897A (en) Video camera lens