JPH0694992A - Photographic lens - Google Patents
Photographic lensInfo
- Publication number
- JPH0694992A JPH0694992A JP4244605A JP24460592A JPH0694992A JP H0694992 A JPH0694992 A JP H0694992A JP 4244605 A JP4244605 A JP 4244605A JP 24460592 A JP24460592 A JP 24460592A JP H0694992 A JPH0694992 A JP H0694992A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- positive
- negative
- aspherical
- object side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Lenses (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、レンズシャッターカメ
ラ等に用いられる小型で広角の撮影レンズに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compact and wide-angle photographing lens used for a lens shutter camera or the like.
【0002】[0002]
【従来の技術】正、負、正の全群と、負の後群からなる
いわゆるテレフォトタイプの広角レンズは、レンズ全長
をレンズの焦点距離と同等程度に小さくできるため、い
わゆるコンパクトカメラの撮影レンズとして広く用いら
れている。そして近年は、特開昭61−182010号
公報のように後群の凹レンズをプラスチック非球面レン
ズとして、欠点であった歪曲収差を改善したもの、特開
昭61−138225号公報のようにレンズ枚数を増や
して大口径化したもの、特開昭61−6616号公報の
ように4枚のレンズの内3枚をプラスチックレンズと
し、生産コストの低減を図ったものなどが知られてい
る。2. Description of the Related Art In a so-called telephoto type wide-angle lens composed of all positive, negative, and positive rear groups and a negative rear group, the total lens length can be made as small as the focal length of the lens. Widely used as a lens. In recent years, as in Japanese Patent Laid-Open No. 61-182010, a concave lens in the rear group is made of a plastic aspherical lens to improve distortion, which is a defect, and in Japanese Patent Laid-Open No. 61-138225, the number of lenses is increased. It is known that the number of lenses is increased to increase the diameter, and that the production cost is reduced by using three of the four lenses as plastic lenses as disclosed in Japanese Patent Laid-Open No. 61-6616.
【0003】[0003]
【発明が解決しようとする問題点】ところが、従来のテ
レフォトタイプの広角レンズは、画角がせいぜい60°
程度が限度であって、無理に広角化しようとしても、最
大画角の非点隔差を小さく抑えることが困難であった。
これを改善しようとする試みとして、特開昭58−21
9509号公報のように、前後群の間に厚肉正レンズを
挿入し非点収差を抑え広角化したものが知られている。
しかしながらこの手法は、必然的にレンズ全長の増大を
招くため、小型化を目指すテレフォトタイプを用いる意
味がなくなってしまう。さらにこの従来のレンズでは、
すべてのレンズに高屈折率のガラス材料が用いられてお
り、レンズ系のコストアップが避けられない。そこで本
発明は、Fナンバーが4程度で、70°程度の画角を有
しながら、テレ比が1に近い小型で安価な撮影レンズを
提供することを目的とする。However, the conventional telephoto wide-angle lens has a field angle of at most 60 °.
There is a limit to the degree, and it is difficult to keep the astigmatic difference of the maximum angle of view small even if an attempt is made to widen the angle.
As an attempt to improve this, JP-A-58-21
It is known that a thick positive lens is inserted between the front and rear groups to reduce the astigmatism and widen the angle, as in Japanese Patent No. 9509.
However, this method inevitably causes an increase in the total length of the lens, so there is no point in using the telephoto type, which is aimed at downsizing. Furthermore, with this conventional lens,
A glass material having a high refractive index is used for all lenses, and the cost of the lens system is inevitably increased. Therefore, it is an object of the present invention to provide a small-sized and inexpensive photographing lens having an F number of about 4 and an angle of view of about 70 °, and a tele ratio of close to 1.
【0004】[0004]
【課題を解決するための手段】本発明は、上述の目的を
達成するために、物体側より順に、像側の面が像側に凹
面の正第1レンズL1と、物体側の面が物体側に凹面の
負第2レンズL2と、両凸第3レンズL3と、像側に凸
面を向けた負メニスカス第4レンズL4からなる4群4
枚のレンズであって、前記第1レンズL1と第4レンズ
L4をプラスチック材料で構成し、第2レンズL2と第
3レンズL3をガラス材料で構成すると共に、前記第1
レンズL1の物体側面を非球面形状とし、かつ以下の条
件を満足することによって、上記問題点を解決しようと
するものである。 1.3 <f1/f < 2.4 (1) −1.2 <f4/f <−0.6 (2) −2.0 <fa/f <−0.8 (3) 0.075<S1/r1< 0.0825 (4) 但し f :全系の焦点距離、 f1:正第1レンズL1の焦点距離、 f4:負第4レンズL4の焦点距離、 fa:正第1レンズL1と負第2レンズL2の合成焦点
距離、 S1:正第1レンズL1の物体側面の非球面の形状を表
す数値であって、一般に非球面形状は、光軸方向の座標
をx、光軸と垂直方向の座標をyとし、Rを基準の曲率
半径、kを円錐係数、Cn をn次の非球面係数としたと
き、 x(y)=(y2 /R)/(1+(1−k・y2 /R2)1/2)+C2・y2 +C4・y4 +C6・y6 +C8・y8 +C10・y10+・・・・(a) という式で表され、この面の近軸曲率半径を r=1/(2・C2+(1/R)) と定義したとき、 S1=x(0.4・r) で表される数値、 r1:正第1レンズL1の物体側非球面の近軸曲率半
径、 である。SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention has a positive first lens L1 whose image side surface is concave toward the image side, and an object side surface is the object side. 4th group 4 including a negative second lens L2 having a concave surface on the side, a biconvex third lens L3, and a negative meniscus fourth lens L4 having a convex surface facing the image side
The first lens L1 and the fourth lens L4 are made of a plastic material, the second lens L2 and the third lens L3 are made of a glass material, and the first lens L1 and the third lens L3 are made of a glass material.
The object side surface of the lens L1 has an aspherical shape, and the following conditions are satisfied to solve the above problems. 1.3 <f1 / f <2.4 (1) -1.2 <f4 / f <-0.6 (2) -2.0 <fa / f <-0.8 (3) 0.075 < S1 / r1 <0.0825 (4) where f: focal length of the entire system, f1: positive focal length of the first lens L1, f4: negative focal length of the fourth lens L4, fa: positive first lens L1 and negative Synthetic focal length of the second lens L2, S1: Numerical value representing the shape of the aspherical surface on the object side surface of the positive first lens L1. In general, the aspherical shape has a coordinate x in the optical axis direction and a direction perpendicular to the optical axis. Where y is the coordinate of R, R is the reference radius of curvature, k is the conic coefficient, and Cn is the aspherical coefficient of the nth order, x (y) = (y 2 / R) / (1+ (1-k · y 2 / R 2) 1/2) + of C2 · y 2 + C4 · y 4 + C6 · y 6 + C8 · y 8 + C10 · y 10 + ···· (a) represented by the formula, the near-axis of the plane When the index radius is defined as r = 1 / (2 · C2 + (1 / R)), S1 = a numerical value represented by x (0.4 · r), r1: positive object-side aspherical surface of the first lens L1 Is the paraxial radius of curvature of.
【0005】[0005]
【作用】本発明は基本的に、正の第1レンズL1と負の
第2レンズL2と正の第3レンズL3からなる前群と、
負の第4レンズL4からなる後群によって構成されたい
わゆるテレフォトタイプのレンズである。この構成で全
長を短く保ちながら広角化してゆくと、最大画角での非
点隔差の増大が避けられない。この原因は各レンズの屈
折力の増大、とりわけ第1正レンズL1の屈折力が増す
ために発生すると考えられる。そこで本発明において
は、極力第1レンズの屈折力を小さく保ちながら小型化
可能な構成を見いだすことにした。第1レンズL1の屈
折力を弱めながら小型化を達成するためには、必然的に
第3正レンズL3及び第4負レンズL4の屈折力を強め
る必要がある。しかしながらこの構成では、正の歪曲収
差と球面収差、コマ収差の補正に破綻を来してしまう。
ところがここで従来第4負レンズL4に用いられていた
非球面を球面とし、代わりに第1正レンズL1の物体側
面を非球面化することによって、歪曲収差と球面収差、
コマ収差を同時に良好に補正し得ることを見いだした。
第1正レンズを非球面としたとき、コスト低減のために
は第1レンズをプラスチック材料で構成することが望ま
しい。ガラスモールド技術の進歩は近年著しいが、いか
に技術が進歩しようとも、プラスチックモールドレンズ
と同じコストで製作できるとは考えられないからであ
る。The present invention basically comprises a front group consisting of a positive first lens L1, a negative second lens L2 and a positive third lens L3,
This is a so-called telephoto type lens including a rear group including a negative fourth lens L4. With this configuration, if the total length is kept short and the angle of view is widened, an increase in the astigmatic difference at the maximum angle of view cannot be avoided. It is considered that this cause occurs because the refractive power of each lens increases, and in particular, the refractive power of the first positive lens L1 increases. Therefore, in the present invention, it was decided to find a configuration that can be miniaturized while keeping the refractive power of the first lens as small as possible. In order to achieve downsizing while weakening the refractive power of the first lens L1, it is necessary to strengthen the refractive power of the third positive lens L3 and the fourth negative lens L4. However, with this configuration, the correction of positive distortion, spherical aberration, and coma fails.
However, here, by making the aspherical surface conventionally used for the fourth negative lens L4 a spherical surface and instead making the object side surface of the first positive lens L1 aspherical, distortion and spherical aberration,
We have found that coma can be corrected well at the same time.
When the first positive lens is an aspherical surface, it is desirable that the first lens be made of a plastic material for cost reduction. The progress of glass molding technology has been remarkable in recent years, but no matter how advanced the technology is, it cannot be considered that it can be manufactured at the same cost as a plastic molded lens.
【0006】しかしプラスチック材料を撮影レンズに組
み込むには大きな問題がある。それは、温度変化による
性能劣化である。プラスチックはガラスに比べて非常に
大きな線膨張係数を有し、その密度の変化から、温度変
化によって屈折率が大幅に変化する。そのためレンズの
焦点距離が変化したり、バックフォーカスが変化する現
象が発生する。いわゆるコンパクトカメラのように、自
動焦点機構をレンズとは独立に有するカメラにおいて
は、バックフォーカスの変化は致命的である。本発明の
レンズも、この種のカメラに用いられることを目的とし
ているから、この温度変化によるバックフォーカスの変
化を補償するような何らかの手段が必要になってくる。
いわゆる温度消しである。このため本発明では、第1正
レンズL1にプラスチック材料を用いると共に、第4負
レンズL4もプラスチック材料で構成することによっ
て、温度変化によるバックフォーカスの変化を相殺可能
な構成とした。そしてさらに条件式(1)(2)を設定
することによって、広角化、小型化を図りながら良好な
温度消しを図っている。条件式(1)の上限を越える
と、非点収差の補正には有利であるが、レンズ全長の増
大を招く。また無理に小型化しようとすると歪曲収差と
球面収差の補正に破綻を来す。逆に下限を越えると、非
点収差が増大し広角化が図れなくなる。また第4負レン
ズL4の屈折力を増しても温度消しが困難になる。条件
式(2)の上限を越えると、小型化には有利であるが、
正の歪曲収差の補正が困難であって、逆に下限を越える
と、小型化と温度消しが達成できない。条件式(3)
は、球面収差の補正に関する。本発明のレンズは、従来
のレンズに比べて第1正レンズL1の屈折力が小さいた
め、第3正レンズの屈折力が必然的に大きくなってしま
う。そのため、負の球面収差と正の歪曲収差が発生しが
ちである。これを良好に補正するためには、第1正レン
ズL1と第2負レンズL2の合成焦点距離を負の適切な
値とすることが望ましい。したがってこの下限を越える
と前記負の球面収差と正の歪曲収差が甚大であって、逆
に上限を越えた場合、球面収差が過剰補正となり、また
前群がいわゆるレトロフォーカス型になるため、小型化
に不利となる。条件式(4)は、第1正レンズL1物体
側面の非球面形状を規定している。この上限を越えた場
合、非球面の効果に乏しく、前記諸収差の補正が効果的
になされず、逆に下限を越えた場合、非球面の効果が大
きすぎて、球面収差が過剰補正となる。このように本発
明によれば、小型化と広角化を両立させながら、2枚の
レンズをプラスチック材料に置き換えることによって、
安価な広角レンズが達成できる。However, there are major problems in incorporating a plastic material into a taking lens. It is performance deterioration due to temperature change. Plastic has a much larger coefficient of linear expansion than glass, and changes in its density cause a large change in refractive index due to changes in temperature. Therefore, the phenomenon that the focal length of the lens changes or the back focus changes occurs. In a camera such as a so-called compact camera that has an autofocus mechanism independent of the lens, the change in back focus is fatal. Since the lens of the present invention is also intended to be used in this type of camera, some means for compensating for the change in back focus due to this temperature change is required.
This is so-called temperature erasing. Therefore, in the present invention, the first positive lens L1 is made of a plastic material, and the fourth negative lens L4 is also made of a plastic material, so that the back focus change due to the temperature change can be offset. Further, by setting the conditional expressions (1) and (2), it is possible to achieve a good temperature elimination while widening the angle and reducing the size. If the upper limit of conditional expression (1) is exceeded, it is advantageous for correction of astigmatism, but the overall length of the lens is increased. Further, if the size is forcibly reduced, the correction of distortion and spherical aberration will fail. On the other hand, when the value goes below the lower limit, astigmatism increases and wide angle cannot be achieved. Further, even if the refractive power of the fourth negative lens L4 is increased, it becomes difficult to erase the temperature. If the upper limit of conditional expression (2) is exceeded, it is advantageous for downsizing, but
It is difficult to correct positive distortion, and if the lower limit is exceeded, size reduction and temperature elimination cannot be achieved. Conditional expression (3)
Relates to correction of spherical aberration. In the lens of the present invention, the refractive power of the first positive lens L1 is smaller than that of the conventional lens, so that the refractive power of the third positive lens inevitably becomes large. Therefore, negative spherical aberration and positive distortion tend to occur. In order to satisfactorily correct this, it is desirable that the combined focal length of the first positive lens L1 and the second negative lens L2 be an appropriate negative value. Therefore, if the lower limit is exceeded, the negative spherical aberration and the positive distortion are extremely large, while if the upper limit is exceeded, the spherical aberration is overcorrected, and the front group becomes a so-called retrofocus type, so the size is small. Is disadvantageous to Conditional expression (4) defines the aspherical shape of the object side surface of the first positive lens L1. If the upper limit is exceeded, the effect of the aspherical surface is poor, and the above-mentioned various aberrations are not effectively corrected. On the contrary, if the lower limit is exceeded, the effect of the aspherical surface is too large and the spherical aberration is overcorrected. . Thus, according to the present invention, by replacing the two lenses with a plastic material while achieving both miniaturization and wide angle,
An inexpensive wide-angle lens can be achieved.
【0007】構成上あるいは諸収差を良好に補正するた
め、さらに以下の条件を満足することが望ましい。 1.45< n1 < 1.55 (5) 1.45< n4 < 1.55 (5’) 1.8 < n2 (6) 0.5 <Σd/f < 0.7 (7) 0.05<d5/f < 0.11 (8) 0.8 <d2/d4< 1.4 (9) 0.22<d6/f < 0.3 (10) −0.9 <r3/r4< 0.2 (11) 5 <ν1−ν3< 13 (12) ここで n1:第1正レンズL1のd線における屈折率、 n2:第2負レンズL2のd線における屈折率、 n4:第4負レンズL4のd線における屈折率、 f :全系の焦点距離、 Σd:全系の全厚、第1正レンズL1の物体側面光軸頂
点から第4負レンズL4の像側面頂点までの距離、 d2:第1正レンズL1の像側面から第2負レンズL2
の物体側面の光軸間距離、 d4:第2負レンズL2の像側面から第3正レンズL3
の物体側面の光軸間距離、 d5:第3正レンズL3の軸上厚、 d6:第3正レンズL3の像側面から第4負レンズL4
の物体側面の光軸間距離、 r3:第2負レンズL2の物体側面の曲率半径、 r4:第2負レンズL2の像側面の曲率半径、 ν1:第1正レンズのアッベ数、 ν3:第3正レンズのアッベ数、 である。条件式(5)(5′)は、第1正レンズL1と
第4負レンズL4の屈折率を定めている。第1レンズL
1および第4レンズL4は前記のようにプラスチックで
あり、材料の制約からきている。ただし収差補正上も、
第1レンズL1の屈折率が下限を越えるとレンズの曲率
がきつくなるため好ましくなく、上限を越えると小型化
を図るときペッツバール和を適切な値にしがたい。第4
レンズL4の屈折率は、諸収差の補正上、上限に近いほ
ど好ましい。条件式(6)は、第2負レンズL2の屈折
率を規定している。小型化を図ると第4負レンズL4の
屈折率が増し、ペッツバール和が小さくなりがちであ
る。そこで第2負レンズL2の屈折率を1.8以上とし
てペッツバール和を適切な値にする必要がある。条件式
(7)は、レンズの全厚を規定している。全厚が大きく
なれば、収差補正上は有利であるが、小型化に反する。
逆に小さくすれば小型化につながるが、広角化が困難に
なる。条件式(8)は、第3レンズL3のレンズ厚を規
定している。この上限を越えると非点収差の補正に有利
であるが、第3レンズL3後方に絞りを配置した場合、
周辺光量の低下を招き易い。逆に下限を越えると、非点
収差の補正が困難であって、第3レンズL3の縁厚が薄
くなるため、加工上も好ましくない。条件式(9)は、
第2負レンズL2の位置を規定している。第2レンズL
2がより物体側にあった時、すなわち下限を越えた場
合、歪曲収差の補正に有利であるだ、球面収差と像面の
バランスがとり難い。また第1レンズL1と第2レンズ
L2が機械的に干渉し易くなるため、周辺光量の低下が
起こり易い。逆に第2レンズL2がより像側にあった場
合、歪曲収差の補正が難しくなる。条件式(10)は、
第3正レンズL3と第4負レンズL4の空気間隔を定め
ている。前記のように第3正レンズL3の後方に絞りを
配置する場合、この間隔をある程度広くとっておかない
と、絞りと第4負レンズが干渉してしまう。しかしなが
らあまりこの間隔が広すぎると小型化に不利であり、正
の歪曲収差とコマ収差の補正が困難になる。但し絞り及
び第4負レンズL4を固定のままでレンズL1〜L3を
繰り出すフォーカス方式を採用する場合、下限を越える
と球面収差の変動が甚大で好ましくなく、上限を越える
と、非点収差の変動が増えるため、好ましくない。条件
式(11)は、第2負レンズL2の形状を定めたもので
ある。この上限を越えても下限を越えてもコマ収差の補
正がしがたい。条件式(12)は、色収差のバランスを
規定している。この範囲を越えると軸上色収差と軸外の
色収差のバランスをとることが困難になる。In order to satisfactorily correct various aberrations in terms of configuration or the like, it is desirable to further satisfy the following conditions. 1.45 <n1 <1.55 (5) 1.45 <n4 <1.55 (5 ') 1.8 <n2 (6) 0.5 <Σd / f <0.7 (7) 0.05 <D5 / f <0.11 (8) 0.8 <d2 / d4 <1.4 (9) 0.22 <d6 / f <0.3 (10) -0.9 <r3 / r4 <0. 2 (11) 5 <ν1-ν3 <13 (12) where n1: refractive index of the first positive lens L1 at d line, n2: refractive index of the second negative lens L2 at d line, n4: fourth negative lens Refractive index of d-line of L4, f: focal length of the entire system, Σd: total thickness of the entire system, distance from the optical axis vertex of the object side surface of the first positive lens L1 to the image-side vertex of the fourth negative lens L4, d2 : From the image side surface of the first positive lens L1 to the second negative lens L2
Distance between the optical axes of the object side surface of d3, d4: from the image side surface of the second negative lens L2 to the third positive lens L3
Distance between the optical axes of the object side surface of d3, d5: axial thickness of the third positive lens L3, d6: image side surface of the third positive lens L3 to the fourth negative lens L4
R3: radius of curvature of object side surface of second negative lens L2, r4: radius of curvature of image side surface of second negative lens L2, ν1: Abbe number of first positive lens, ν3: first The Abbe number of a 3 positive lens is Conditional expressions (5) and (5 ') define the refractive indices of the first positive lens L1 and the fourth negative lens L4. First lens L
The first and fourth lenses L4 are made of plastic as described above, and are due to the material restrictions. However, in terms of aberration correction,
If the refractive index of the first lens L1 exceeds the lower limit, the curvature of the lens becomes tight, which is not preferable. If the refractive index of the first lens L1 exceeds the upper limit, it is difficult to set the Petzval sum to an appropriate value when the size is reduced. Fourth
The refractive index of the lens L4 is preferably as close to the upper limit as possible for correction of various aberrations. Conditional expression (6) defines the refractive index of the second negative lens L2. When the size is reduced, the refractive index of the fourth negative lens L4 increases, and the Petzval sum tends to decrease. Therefore, it is necessary to set the refractive index of the second negative lens L2 to 1.8 or more and set the Petzval sum to an appropriate value. Conditional expression (7) defines the total thickness of the lens. If the total thickness is large, it is advantageous for aberration correction, but it is against size reduction.
On the contrary, if it is made small, it leads to miniaturization, but it becomes difficult to widen the angle. Conditional expression (8) defines the lens thickness of the third lens L3. Exceeding this upper limit is advantageous for correction of astigmatism, but when a diaphragm is arranged behind the third lens L3,
It is easy to cause a decrease in peripheral light intensity. On the other hand, when the value goes below the lower limit, it is difficult to correct astigmatism and the edge thickness of the third lens L3 becomes thin, which is not preferable in terms of processing. Conditional expression (9) is
It defines the position of the second negative lens L2. Second lens L
When 2 is closer to the object side, that is, when it is below the lower limit, it is advantageous in correcting distortion, and it is difficult to balance spherical aberration and the image plane. Further, since the first lens L1 and the second lens L2 are likely to mechanically interfere with each other, the amount of peripheral light is likely to decrease. On the contrary, when the second lens L2 is closer to the image side, it becomes difficult to correct distortion. Conditional expression (10) is
The air gap between the third positive lens L3 and the fourth negative lens L4 is defined. When the diaphragm is arranged behind the third positive lens L3 as described above, the diaphragm and the fourth negative lens interfere with each other unless the distance is widened to some extent. However, if this interval is too wide, it is disadvantageous for downsizing, and it becomes difficult to correct positive distortion and coma. However, in the case of adopting a focus system in which the diaphragm and the fourth negative lens L4 are fixed and the lenses L1 to L3 are extended, if the lower limit is exceeded, the variation of spherical aberration is extremely large and not preferable, and if the upper limit is exceeded, the variation of astigmatism is increased. Is not preferable because it increases. Conditional expression (11) defines the shape of the second negative lens L2. It is difficult to correct coma aberration if the upper limit or the lower limit is exceeded. Conditional expression (12) defines the balance of chromatic aberration. If it exceeds this range, it becomes difficult to balance the axial chromatic aberration and the off-axis chromatic aberration.
【0008】[0008]
【実施例】以下に本発明の実施例を掲げる。以下の表
中、左端の数字は面番号、rは曲率半径、dは面間隔、
nはd線(λ=587.6nm)における屈折率、Abbeは
アッベ数、fは焦点距離、FNはFナンバー、Bf はバ
ックフォーカス、TL/fはテレ比を表している。なお
実施例1、2、3、5、7には第1正レンズL1の両
面、実施例4、6、8には第1正レンズL1の物体側面
に非球面が用いられている。非球面は、前記(a)式に
て表されている。第1正レンズL1の両面を非球面とす
ると、レンズ全長を短縮したときのコマ収差の補正に特
に有効である。EXAMPLES Examples of the present invention will be given below. In the table below, the leftmost number is the surface number, r is the radius of curvature, d is the surface spacing,
n is the refractive index at the d line (λ = 587.6 nm), Abbe is the Abbe number, f is the focal length, FN is the F number, Bf is the back focus, and TL / f is the tele ratio. In Examples 1, 2, 3, 5 and 7, both surfaces of the first positive lens L1 are used, and in Examples 4, 6 and 8, an aspherical surface is used on the object side surface of the first positive lens L1. The aspherical surface is represented by the formula (a). When both surfaces of the first positive lens L1 are aspherical surfaces, it is particularly effective in correcting coma aberration when the total lens length is shortened.
【0009】実施例1 f=32.00 FN=4.0 Bf =15.36 T
L/f=1.030 Example 1 f = 32.00 FN = 4.0 Bf = 15.36 T
L / f = 1.030
【0010】1面 非球面 k = .2323E+00 c2= .0000 c4= .0000 c6=− .4060E−05 c8=− .2622E−08 c10=− .3367E−08One surface aspherical surface k = .2323E + 00 c2 = .0000 c4 = .0000 c6 = -.4060E-05 c8 = -.2622E-08 c10 = -.3367E-08
【0011】2面 非球面 k = .6965E+00 c2= .0000 c4= .0000 c6=− .5440E−05 c8= .6746E−07 c10=− .6062E−08Two-sided aspherical surface k = .6965E + 00 c2 = .0000 c4 = .0000 c6 = -0.5440E-05 c8 = .6746E-07 c10 = -.6062E-08
【0012】実施例2 f=32.00 FN=4.0 Bf =14.77 T
L/f=1.068 Example 2 f = 32.00 FN = 4.0 Bf = 14.77 T
L / f = 1.068
【0013】1面 非球面 k = .7693E+00 c2= .0000 c4= .0000 c6=− .2656E−05 c8= .8273E−07 c10=− .3831E−08One surface aspherical surface k =. 7693E + 00 c2 = .0000 c4 = .0000 c6 =-. 2656E-05 c8 = .8273E-07 c10 =-. 3831E-08
【0014】2面 非球面 k = .2055E+01 c2= .0000 c4= .0000 c6= .2069E−05 c8=− .1648E−06 c10=− .2130E−08Two-sided aspherical surface k = .2055E + 01 c2 = .0000 c4 = .0000 c6 = .2069E-05 c8 = -.1648E-06 c10 = -.2130E-08
【0015】実施例3 f=32.00 FN=4.0 Bf =14.77 T
L/f=1.012 Example 3 f = 32.00 FN = 4.0 Bf = 14.77 T
L / f = 1.012
【0016】1面 非球面 k = .2251E+00 c2= .0000 c4= .0000 c6=− .4594E−05 c8=− .3415E−07 c10=− .3460E−08One surface aspherical surface k =. 2251E + 00 c2 = .0000 c4 = .0000 c6 =-. 4594E-05 c8 =-. 3415E-07 c10 =-. 3460E-08
【0017】2面 非球面 k = .2581E+01 c2= .0000 c4= .0000 c6=− .7624E−05 c8= .2096E−06 c10=− .1051E−07Two-sided aspherical surface k = .2581E + 01 c2 = .0000 c4 = .0000 c6 = -.7624E-05 c8 = .2096E-06 c10 = -.1051E-07
【0018】実施例4 f=28.80 FN=4.0 Bf =12.83 T
L/f=1.046 Example 4 f = 28.80 FN = 4.0 Bf = 12.83 T
L / f = 1.046
【0019】1面 非球面 k =− .1176E+00 c2= .0000 c4=− .8580E−05 c6=− .4156E−05 c8=− .7963E−08 c10=− .2668E−08One surface aspherical surface k =-. 1176E + 00 c2 = .0000 c4 = -0.8580E-05 c6 =-. 4156E-05 c8 =-. 7963E-08 c10 =-. 2668E-08
【0020】実施例5 f=28.80 FN=4.0 Bf =12.69 T
L/f=1.031 Example 5 f = 28.80 FN = 4.0 Bf = 12.69 T
L / f = 1.031
【0021】1面 非球面 k = .1581E−01 c2= .0000 c4=− .3971E−04 c6=− .5137E−05 c8=− .5833E−08 c10=− .3207E−08One surface aspherical surface k = .1581E-01 c2 = .0000 c4 = -.3971E-04 c6 = -.5137E-05 c8 = -.5333E-08 c10 = -.3207E-08
【0022】2面 非球面 k =− .5691E+00 c2= .0000 c4= .0000 c6=− .2709E−05 c8= .1468E−06 c10=− .5450E−08Two-sided aspherical surface k =-.5691E + 00 c2 = .0000 c4 = .0000 c6 = -.2709E-05 c8 = .1468E-06 c10 =-.5450E-08
【0023】実施例6 f=32.00 FN=4.0 Bf =14.79 T
L/f=1.041 Example 6 f = 32.00 FN = 4.0 Bf = 14.79 T
L / f = 1.041
【0024】1面 非球面 k = .2130E+00 c2= .0000 c4= .3703E−04 c6=− .2854E−05 c8= .7544E−07 c10=− .2273E−08One surface aspherical surface k = .2130E + 00 c2 = .0000 c4 = .3703E-04 c6 = -.2854E-05 c8 = 0.7544E-07 c10 = -.2273E-08
【0025】実施例7 f=32.00 FN=4.0 Bf =14.95 T
L/f=0.994 Example 7 f = 32.00 FN = 4.0 Bf = 14.95 T
L / f = 0.994
【0026】1面 非球面 k = .1839E−01 c2= .0000 c4= .0000 c6=− .5021E−05 c8=− .1708E−07 c10=− .6550E−08One surface aspherical surface k = .1839E-01 c2 = .0000 c4 = .0000 c6 = -.5021E-05 c8 = -.1708E-07 c10 = -.65050E-08
【0027】2面 非球面 k = .5085E+00 c2= .0000 c4= .0000 c6=− .2723E−05 c8=− .2723E−07 c10=− .9000E−08Two-sided aspherical surface k = .5085E + 00 c2 = .0000 c4 = .0000 c6 = -.2723E-05 c8 =-. 2723E-07 c10 = -.9000E-08
【0028】実施例8 f=32.00 FN=4.0 Bf =14.43 T
L/f=1.074 Example 8 f = 32.00 FN = 4.0 Bf = 14.43 T
L / f = 1.074
【0029】1面 非球面 k = .2337E+01 c2= .0000 c4=− .1415E−03 c6=− .6411E−05 c8= .1297E−06 c10=− .3206E−08One surface aspherical surface k = .2337E + 01 c2 = .0000 c4 = -.1415E-03 c6 = -.6411E-05 c8 = .1297E-06 c10 = -.3206E-08
【0030】本発明の撮影レンズの実施例1のレンズ断
面図を図1に、実施例1から実施例8のレンズの収差図
を図2から図9に示す。各収差図からも、諸収差が良好
に補正されていることが分かる。FIG. 1 is a sectional view of lenses of Example 1 of the taking lens of the present invention, and FIGS. 2 to 9 are aberration diagrams of the lenses of Examples 1 to 8. From each aberration diagram, it can be seen that various aberrations are well corrected.
【0031】また各実施例のプラスチックレンズの屈折
率が+0.003変化したときの焦点距離、バックフォ
ーカスの変化を以下に示す。 Δn=+0.003 この屈折率変化は、およそ−30℃の温度変化に対応し
ており、この範囲で十分良好な温度消しがなされている
ことが分かる。ちなみにバックフォーカスの変化量は、
あえて完全にゼロに補正していない。それは屈折率変化
による球面収差や像面の変動を考慮して、画面全体にわ
たって良好な温度消しを得るためである。The changes in the focal length and the back focus when the refractive index of the plastic lens of each example changes by +0.003 are shown below. Δn = + 0.003 This change in the refractive index corresponds to a temperature change of about -30 ° C, and it can be seen that the temperature is erased sufficiently well in this range. By the way, the amount of change in back focus is
I have not dared to completely correct it to zero. This is to obtain good temperature erasing over the entire screen in consideration of spherical aberration and image plane variation due to changes in the refractive index.
【0032】[0032]
【発明の効果】このように本発明によれば、Fナンバー
が4程度で、70°程度の画角を有しながら、テレ比が
1に近い小型で安価な撮影レンズを得ることが出来る。
ちなみに本発明のレンズは、全体繰り出しはもちろん、
第4負レンズL4を繰り込むことによっても、前群のL
1〜L3を一体に繰り出すことによってもフォーカシン
グが出来る。As described above, according to the present invention, it is possible to obtain a small and inexpensive photographing lens having an F number of about 4 and an angle of view of about 70 °, and a tele ratio of close to 1.
By the way, the lens of the present invention is of course not only extended,
Also by retracting the fourth negative lens L4,
Focusing can also be performed by feeding 1 to L3 together.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の撮影レンズの実施例1のレンズ断面図
である。FIG. 1 is a lens cross-sectional view of Example 1 of a taking lens according to the present invention.
【図2】本発明の撮影レンズの実施例1のレンズの収差
図である。FIG. 2 is an aberration diagram of a lens of Example 1 of the taking lens of the present invention.
【図3】本発明の撮影レンズの実施例2のレンズの収差
図である。FIG. 3 is an aberration diagram of a lens of Example 2 of the taking lens according to the present invention.
【図4】本発明の撮影レンズの実施例3のレンズの収差
図である。FIG. 4 is an aberration diagram of a lens of Example 3 of the taking lens according to the present invention.
【図5】本発明の撮影レンズの実施例4のレンズの収差
図である。FIG. 5 is an aberration diagram of a lens of Example 4 of the taking lens of the present invention.
【図6】本発明の撮影レンズの実施例5のレンズの収差
図である。FIG. 6 is an aberration diagram of a lens of Example 5 of the taking lens of the present invention.
【図7】本発明の撮影レンズの実施例6のレンズの収差
図である。FIG. 7 is an aberration diagram of a lens of Example 6 of the taking lens of the present invention.
【図8】本発明の撮影レンズの実施例7のレンズの収差
図である。FIG. 8 is an aberration diagram of a lens of Example 7 of the taking lens of the present invention.
【図9】本発明の撮影レンズの実施例8のレンズの収差
図である。FIG. 9 is an aberration diagram of a lens of Example 8 of the taking lens of the present invention.
L1 正第1レンズ L2 負第2レンズ L3 両凸第3レンズ L4 負メニスカス第4レンズ L1 Positive first lens L2 Negative second lens L3 Biconvex third lens L4 Negative meniscus fourth lens
Claims (1)
の正第1レンズL1と、物体側の面が物体側に凹面の負
第2レンズL2と、両凸第3レンズL3と、像側に凸面
を向けた負メニスカス第4レンズL4からなる4群4枚
のレンズであって、 前記第1レンズL1と第4レンズL4をプラスチック材
料で構成し、第2レンズL2と第3レンズL3をガラス
材料で構成すると共に、 前記第1レンズL1の物体側面を非球面形状とし、 かつ以下の条件を満足することを特徴とする撮影レン
ズ。 1.3 <f1/f < 2.4 (1) −1.2 <f4/f <−0.6 (2) −2.0 <fa/f <−0.8 (3) 0.075<S1/r1< 0.0825 (4) 但し f :全系の焦点距離、 f1:正第1レンズL1の焦点距離、 f4:負第4レンズL4の焦点距離、 fa:正第1レンズL1と負第2レンズL2の合成焦点
距離、 S1:正第1レンズL1の物体側面の非球面の形状を表
す数値であって、一般に非球面形状は、光軸方向の座標
をx、光軸と垂直方向の座標をyとし、Rを基準の曲率
半径、kを円錐係数、Cn をn次の非球面係数としたと
き、 x(y)=(y2 /R)/(1+(1−k・y2 /R2)1/2)+C2・y2 +C4・y4 +C6・y6 +C8・y8 +C10・y10+・・・・(a) という式で表され、この面の近軸曲率半径を r=1/(2・C2+(1/R)) と定義したとき、 S1=x(0.4・r) で表される数値、 r1:正第1レンズL1の物体側非球面の近軸曲率半
径、 である。1. A positive first lens L1 whose image-side surface is concave on the image side, a negative second lens L2 whose object-side surface is concave on the object side, and a biconvex third lens L3 in order from the object side. And a negative meniscus fourth lens L4 having a convex surface directed toward the image side, the four lenses in four groups, wherein the first lens L1 and the fourth lens L4 are made of a plastic material, and the second lens L2 and the second lens L2. A taking lens, wherein the third lens L3 is made of a glass material, the object side surface of the first lens L1 is aspherical, and the following conditions are satisfied. 1.3 <f1 / f <2.4 (1) -1.2 <f4 / f <-0.6 (2) -2.0 <fa / f <-0.8 (3) 0.075 < S1 / r1 <0.0825 (4) where f: focal length of the entire system, f1: positive focal length of the first lens L1, f4: negative focal length of the fourth lens L4, fa: positive first lens L1 and negative Synthetic focal length of the second lens L2, S1: Numerical value representing the shape of the aspherical surface on the object side surface of the positive first lens L1. In general, the aspherical shape has a coordinate x in the optical axis direction and a direction perpendicular to the optical axis. Where y is the coordinate of R, R is the reference radius of curvature, k is the conic coefficient, and Cn is the aspherical coefficient of the nth order, x (y) = (y 2 / R) / (1+ (1-k · y 2 / R 2) 1/2) + of C2 · y 2 + C4 · y 4 + C6 · y 6 + C8 · y 8 + C10 · y 10 + ···· (a) represented by the formula, the near-axis of the plane When the index radius is defined as r = 1 / (2 · C2 + (1 / R)), S1 = a numerical value represented by x (0.4 · r), r1: positive object-side aspherical surface of the first lens L1 Is the paraxial radius of curvature of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4244605A JPH0694992A (en) | 1992-09-14 | 1992-09-14 | Photographic lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4244605A JPH0694992A (en) | 1992-09-14 | 1992-09-14 | Photographic lens |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0694992A true JPH0694992A (en) | 1994-04-08 |
Family
ID=17121220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4244605A Withdrawn JPH0694992A (en) | 1992-09-14 | 1992-09-14 | Photographic lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0694992A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007219520A (en) * | 2006-02-15 | 2007-08-30 | Samsung Electro-Mechanics Co Ltd | Subminiature optical system |
EP2037306A1 (en) * | 2007-09-12 | 2009-03-18 | Fujinon Corporation | Imaging lens and imaging apparatus |
WO2009125522A1 (en) * | 2008-04-10 | 2009-10-15 | 株式会社タムロン | Imaging lens |
WO2010143459A1 (en) * | 2009-06-08 | 2010-12-16 | コニカミノルタオプト株式会社 | Image pickup lens, image pickup device provided with image pickup lens, and mobile terminal provided with image pickup device |
US7889442B2 (en) | 2007-09-12 | 2011-02-15 | Fujinon Corporation | Imaging lens and imaging apparatus |
-
1992
- 1992-09-14 JP JP4244605A patent/JPH0694992A/en not_active Withdrawn
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007219520A (en) * | 2006-02-15 | 2007-08-30 | Samsung Electro-Mechanics Co Ltd | Subminiature optical system |
EP2037306A1 (en) * | 2007-09-12 | 2009-03-18 | Fujinon Corporation | Imaging lens and imaging apparatus |
US7787196B2 (en) | 2007-09-12 | 2010-08-31 | Fujinon Corporation | Imaging lens and imaging apparatus |
US7889442B2 (en) | 2007-09-12 | 2011-02-15 | Fujinon Corporation | Imaging lens and imaging apparatus |
WO2009125522A1 (en) * | 2008-04-10 | 2009-10-15 | 株式会社タムロン | Imaging lens |
EP2264504A1 (en) * | 2008-04-10 | 2010-12-22 | Tamron Co., Ltd. | Imaging lens |
CN102590984A (en) * | 2008-04-10 | 2012-07-18 | 株式会社腾龙 | Imaging lens |
US8264785B2 (en) | 2008-04-10 | 2012-09-11 | Tamron Co., Ltd. | Imaging lens |
EP2264504A4 (en) * | 2008-04-10 | 2014-05-28 | Tamron Kk | Imaging lens |
WO2010143459A1 (en) * | 2009-06-08 | 2010-12-16 | コニカミノルタオプト株式会社 | Image pickup lens, image pickup device provided with image pickup lens, and mobile terminal provided with image pickup device |
JPWO2010143459A1 (en) * | 2009-06-08 | 2012-11-22 | コニカミノルタアドバンストレイヤー株式会社 | IMAGING LENS, IMAGING DEVICE WITH IMAGING LENS, AND PORTABLE TERMINAL WITH IMAGING DEVICE |
US8659838B2 (en) | 2009-06-08 | 2014-02-25 | Konica Minolta Opto, Inc. | Image pickup lens, image pickup device provided with image pickup lens, and mobile terminal provided with image pickup device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3253405B2 (en) | Two-group zoom lens | |
JP3438295B2 (en) | Standard zoom lens | |
JP3769373B2 (en) | Bright wide-angle lens | |
US7274519B2 (en) | Zoom lens system | |
US8000035B2 (en) | Wide-angle lens, optical apparatus, and method for focusing | |
JPH05264902A (en) | Zoom lens | |
JP3725284B2 (en) | Compact wide-angle lens | |
US6600610B2 (en) | Standard photographic lens | |
JPH04261511A (en) | Wide-angle lens | |
JPH09113799A (en) | Retrofocus type photographic lens | |
JP4929902B2 (en) | Single focus lens and imaging apparatus having the same | |
JPH10301021A (en) | Small-sized lens | |
JPH09211320A (en) | Small-sized wide-angle lens | |
JPH08201686A (en) | Triplet lens with behind diaphragm | |
JPH0894930A (en) | Variable power lens system for copying | |
JPH07104183A (en) | Bright triplet lens | |
JPH1144839A (en) | Rear diaphragm type photographing lens | |
JP3331228B2 (en) | Bright wide-angle lens | |
JPH0694992A (en) | Photographic lens | |
JPH0569209B2 (en) | ||
JP3038974B2 (en) | Small wide-angle lens | |
US5764425A (en) | Telephoto lens | |
JPH03230112A (en) | Projection lens system | |
US6384986B1 (en) | Zoom lens and optical apparatus having the same | |
JPH063588A (en) | Wide-angle lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19991130 |