JPH07104181A - Wide-angle photographic lens - Google Patents
Wide-angle photographic lensInfo
- Publication number
- JPH07104181A JPH07104181A JP5249155A JP24915593A JPH07104181A JP H07104181 A JPH07104181 A JP H07104181A JP 5249155 A JP5249155 A JP 5249155A JP 24915593 A JP24915593 A JP 24915593A JP H07104181 A JPH07104181 A JP H07104181A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- aspherical surface
- wide
- aspherical
- radius
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Lenses (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、レンズシャッターカメ
ラ等に適した写真レンズに係わり、特に、Fナンバーが
2.8クラスの大口径で高性能な広角写真レンズに関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photographic lens suitable for a lens shutter camera or the like, and more particularly to a large-diameter and high-performance wide-angle photographic lens having an F number of 2.8 class.
【0002】[0002]
【従来の技術】従来、単焦点レンズの付いたレンズシャ
ッターカメラにおいては、画角が60°ないし64°程
度の広角レンズが標準的に採用されてきた。これらに用
いられるレンズとしては、トリップレットタイプが最も
有名であるが、Fナンバーは3.5程度が限界である。2. Description of the Related Art Conventionally, a wide-angle lens having an angle of view of about 60 ° to 64 ° has been standardly adopted in a lens shutter camera equipped with a monofocal lens. The most popular lens used for these is the triplet type, but the F number is limited to about 3.5.
【0003】ところで、F2.8クラスまで大口径化が
可能な広角レンズとしては、テレフォトタイプとテ
ッサータイプの2通りのものがよく使われる。前者のテ
レフォトタイプとしては、特開昭56−59217号、
特開昭57−116313号、特開昭59−14731
2号等のものが知られているが、これら以外にも多数の
提案がなされている。何れも正の前群と負の後群にて構
成されるもので、本来望遠レンズ用に開発されたタイプ
の応用であるが、主点位置を物体側へ設定できるため、
レンズ全長の短縮が可能となる。望遠比で1前後の設計
が可能である。しかし、このタイプは非点収差、像面湾
曲、歪曲収差の発生が大きく、その補正が難しいので、
上記の先行例では最終レンズを非球面化して対応してい
る。同様に、その他の先行例も前群や後群に非球面を使
用して収差の補正を行っている。By the way, as the wide-angle lens capable of increasing the aperture up to the F2.8 class, two types, a telephoto type and a tesser type, are often used. The former telephoto type is disclosed in JP-A-56-59217,
JP-A-57-116313 and JP-A-59-14731
No. 2 and the like are known, but many proposals have been made in addition to these. Both are composed of a positive front group and a negative rear group, which is an application of the type originally developed for telephoto lenses, but since the principal point position can be set to the object side,
The total lens length can be shortened. A telephoto ratio of around 1 is possible. However, this type has a large amount of astigmatism, field curvature, and distortion that are difficult to correct, so
In the above prior art example, the final lens is made aspherical to deal with it. Similarly, in other preceding examples, aberrations are corrected by using aspherical surfaces in the front and rear groups.
【0004】後者のテッサータイプとしては、特開昭6
0−176011号、特開平2−208616号等のも
のが知られている。何れもビハインド絞りの構成を採用
し、合焦時の繰り出し機構の簡素化を図っている。主点
位置がレンズ系の内部にあるため、テレフォトタイプと
比較してレンズ全長が長い分、カメラのコンパクト化に
とって不利である。The latter tesser type is disclosed in Japanese Patent Laid-Open No.
Nos. 0-176011 and JP-A-2-208616 are known. Both of them use a behind diaphragm configuration to simplify the feeding mechanism when focusing. Since the principal point position is inside the lens system, the total length of the lens is longer than that of the telephoto type, which is disadvantageous in making the camera compact.
【0005】一方、1眼レフカメラの標準レンズとして
は、画角47°程度のものが用いられており、ガウスタ
イプが有名であるが、構成枚数が多い。そこで、構成枚
数の少ないタイプとして、特開平3−212606号の
ものが提案されている。これは、正・負の接合レンズと
負・正の接合レンズの2群4枚で構成されており、1面
ないし3面の非球面を用いることで、焦点距離50m
m、Fナンバー2クラスのレンズが収差補正も良好にな
されて得られている。On the other hand, as a standard lens of a single-lens reflex camera, a lens having an angle of view of about 47 ° is used, and the Gauss type is famous, but the number of constituent lenses is large. Therefore, as a type having a small number of constituents, Japanese Patent Laid-Open No. 3-212606 has been proposed. It is composed of 4 lenses in 2 groups, positive / negative cemented lens and negative / positive cemented lens. By using an aspherical surface of 1 to 3 surfaces, the focal length is 50 m.
A lens of m, F number 2 class is obtained with good aberration correction.
【0006】[0006]
【発明が解決しようとする課題】従来、レンズシャッタ
ーカメラの小型化は、撮影レンズの全長(第1面からフ
ィルム面までの長さ)を短縮することが不可欠であっ
た。撮影レンズの全長が短い程カメラ厚を薄くでき、携
帯性の良いカメラが実現できた。したがって、多数提案
されている先行例も、その大部分はレンズ全長の短縮に
取り組んでいたと言える。Conventionally, in order to miniaturize a lens shutter camera, it has been indispensable to reduce the total length of the taking lens (the length from the first surface to the film surface). The shorter the overall length of the taking lens, the thinner the camera thickness, and a camera with good portability was realized. Therefore, it can be said that most of the many proposed examples have been working on shortening the total lens length.
【0007】しかし、近年になって、鏡枠の高精度化、
高機能化の発展の中で、今までのように単に鏡枠長を短
くするのみでなく、レンズ系を沈胴させて小型化を達成
する方法が用いられるようになってきた。このとき、沈
胴時のカメラ厚は、レンズ全長と同時に、レンズ系のΣ
d(第1面から最終面までの長さ)で決まってくる。結
局、小型化のためには、レンズ全長とレンズ系のΣdの
両者を短縮する必要が生じてくる。However, in recent years, the precision of the lens frame has been improved,
Along with the development of higher functionality, a method of not only simply shortening the lens frame length as in the past but also retracting the lens system to achieve miniaturization has been used. At this time, the thickness of the camera when retracted is
It is determined by d (the length from the first surface to the last surface). In the end, for downsizing, it becomes necessary to shorten both the total lens length and the lens system Σd.
【0008】このような観点で見た場合、前記テレフォ
トタイプはΣdが大きいので、沈胴には向いていない。From this point of view, since the telephoto type has a large Σd, it is not suitable for collapsing.
【0009】一方、テッサータイプはΣdが小さいので
非常に有利であるが、このタイプの欠点として、非点収
差や像面湾曲の発生が大きく、非球面を使用してもこれ
らの収差の補正が十分にできないため、性能上難点があ
る。On the other hand, the tesser type is very advantageous because it has a small Σd, but as a drawback of this type, astigmatism and field curvature are largely generated, and even if an aspherical surface is used, these aberrations can be corrected. There is a problem in performance because it cannot be fully performed.
【0010】また、前記した特開平3−212606号
のものをレンズシャッターカメラへ適用することも考え
られる。このとき、良好な収差補正が可能であり、Σd
も小さくできるので好ましいが、本来、光学系が対称形
を有しているため、主点位置がレンズの中央付近にあ
り、レンズ全長の短縮ができない。したがって、このタ
イプも大きさに難点がある。It is also possible to apply the above-mentioned Japanese Patent Laid-Open No. 3-212606 to a lens shutter camera. At this time, good aberration correction is possible, and Σd
However, since the optical system originally has a symmetrical shape, the principal point position is near the center of the lens, and the total lens length cannot be shortened. Therefore, this type also has a difficulty in size.
【0011】本発明は上記のような従来技術の欠点に鑑
みてなされたものであり、その目的は、レンズ全長とレ
ンズのΣdの両者が小さく、沈胴方式に向いたレンズ系
であって、しかも、高性能な広角写真レンズを達成する
ことである。また、その仕様としては、焦点距離35m
m、Fナンバー2.8クラスの大口径で広画角な広角写
真レンズを提供するものである。The present invention has been made in view of the above-mentioned drawbacks of the prior art, and an object thereof is to provide a lens system suitable for a collapsible system because both the total lens length and the lens Σd are small. , To achieve a high-performance wide-angle photographic lens. In addition, the specifications include a focal length of 35 m.
It provides a wide-angle photographic lens with a large aperture and a wide angle of view in the m, F number 2.8 class.
【0012】[0012]
【課題を解決するための手段】上記目的を達成する本発
明の広角写真レンズは、物体側から順に、前群と後群に
て構成されるレンズにおいて、前記前群と後群は共に、
正レンズと負レンズをこの順に接合したレンズからな
り、少なくとも1面の非球面を有することを特徴とする
ものである。A wide-angle photographic lens of the present invention which achieves the above object is a lens composed of a front group and a rear group in order from the object side, wherein the front group and the rear group are both
A positive lens and a negative lens are cemented in this order, and have at least one aspherical surface.
【0013】この場合、前群と後群の間に絞りを配置す
ることが望ましい。In this case, it is desirable to arrange a diaphragm between the front group and the rear group.
【0014】さらに、これらの場合、少なくとも1面の
非球面が下記条件式(1)を満たすことが望ましい。 Δ/φ<0 〔φ=(n’−n)/r〕 ・・・(1) ただし、rは非球面の近軸曲率半径、n、n’は非球面
の前後の媒質の屈折率、Δは有効半径における非球面量
である。Further, in these cases, it is desirable that at least one aspherical surface satisfies the following conditional expression (1). Δ / φ <0 [φ = (n′−n) / r] (1) where r is the paraxial radius of curvature of the aspherical surface, n and n ′ are the refractive indices of the media before and after the aspherical surface, Δ is the amount of aspherical surface at the effective radius.
【0015】また、さらに以上の何れかの場合、下記条
件式(2)を満たすことが望ましい。 1<r1 /r3 <2 ・・・(2) ただし、ri は物体側から数えて第i面の曲率半径であ
る。Further, in any of the above cases, it is desirable that the following conditional expression (2) is satisfied. 1 <r 1 / r 3 <2 (2) where r i is the radius of curvature of the i-th surface counted from the object side.
【0016】[0016]
【作用】以下、上記構成を採用した理由と作用について
説明する。トリップレットタイプやテッサータイプ等の
レンズ系においては、3〜4枚のレンズにて構成されて
いるが、正屈折力の第1レンズと負屈折力の第2レンズ
が分離されており、第2レンズの前後の面にて大きな収
差を発生させ、全系の収差補正を可能にしている。した
がって、これらレンズの偏心精度が自ずと厳しくなって
しまう欠点を有している。The function and operation of adopting the above configuration will be described below. A triplet type or tesser type lens system is composed of three to four lenses, but the first lens of positive refracting power and the second lens of negative refracting power are separated from each other. Large aberrations are generated on the front and back surfaces of the lens, enabling aberration correction for the entire system. Therefore, there is a drawback in that the decentration accuracy of these lenses naturally becomes severe.
【0017】一方、本発明においては、正屈折力の第1
レンズと負屈折力の第2レンズ、及び、正屈折力の第3
レンズと負屈折力の第4レンズが共に接合レンズとなっ
ているため、このままでは収差補正の能力が十分ではな
い。特にFナンバーを小さくして大口径化する程、球面
収差の発生量が大きくなり、補正が困難になってしま
う。したがって、少なくとも1面の非球面を導入して球
面収差の補正を可能にする必要がある。このとき、少な
くとも1面の非球面は、以下の条件式(1)を満たすこ
とが望ましい。 Δ/φ<0 〔φ=(n’−n)/r〕 ・・・(1) ただし、rは非球面の近軸曲率半径、n、n’は非球面
の前後の媒質の屈折率、Δは有効半径における非球面量
である。On the other hand, in the present invention, the first positive refractive power
The lens and the second lens of negative refractive power, and the third lens of positive refractive power
Since the lens and the fourth lens having a negative refractive power are both cemented lenses, the aberration correction capability is not sufficient as it is. In particular, the smaller the F number and the larger the diameter, the larger the amount of spherical aberration generated, and the more difficult it becomes to correct. Therefore, it is necessary to introduce at least one aspherical surface to enable correction of spherical aberration. At this time, it is desirable that at least one aspherical surface satisfies the following conditional expression (1). Δ / φ <0 [φ = (n′−n) / r] (1) where r is the paraxial radius of curvature of the aspherical surface, n and n ′ are the refractive indices of the media before and after the aspherical surface, Δ is the amount of aspherical surface at the effective radius.
【0018】上記条件式(1)は非球面の形状を定める
ものであり、光軸から離れるに従って徐々に負の屈折力
を強める、又は、正の屈折力を弱めるような非球面形状
であることを示している。条件式(1)を満たすこと
で、球面収差の補正が可能になる。特に、少なくとも第
3面(第2レンズの像側の面)を非球面化することが望
ましい。このとき、全系の諸収差を最もバランス良く補
正することができる。The above conditional expression (1) defines the shape of the aspherical surface, and the aspherical shape is such that the negative refractive power is gradually strengthened or the positive refractive power is weakened as the distance from the optical axis increases. Is shown. By satisfying conditional expression (1), it becomes possible to correct spherical aberration. In particular, it is desirable to make at least the third surface (the image-side surface of the second lens) aspheric. At this time, various aberrations of the entire system can be corrected in the best balance.
【0019】本発明のレンズ系は、絞りを挟んで、正屈
折力の前群と正屈折力の後群にて構成されているから、
大局的には対称形の配置となっている。したがって、歪
曲収差や倍率色収差等を良好に補正することができる。
しかし、前記した先行技術の特開平3−212606号
のものとは異なり、後群を正レンズと負レンズの順に接
合して構成することで、最も像側に配置された負レンズ
の作用により、テレフォトタイプのように主点位置を物
体側へ設定し、レンズ全長の短縮が可能になっている。
このような効果をより活かすためには、第4レンズの像
側の面が像側に凹面を向けていることが望ましい。Since the lens system of the present invention is composed of a front group having a positive refracting power and a rear group having a positive refracting power with a diaphragm interposed therebetween,
The overall arrangement is symmetrical. Therefore, it is possible to satisfactorily correct distortion and lateral chromatic aberration.
However, unlike the above-mentioned prior art JP-A-3-212606, by constructing the rear lens group by cementing a positive lens and a negative lens in this order, the negative lens arranged closest to the image side causes Like the telephoto type, the principal point position is set to the object side, and the total lens length can be shortened.
In order to make full use of such effects, it is desirable that the image-side surface of the fourth lens be concave on the image side.
【0020】さらに、より良好な収差補正のために下記
条件式(2)を満たすことが望ましい。 1<r1 /r3 <2 ・・・(2) ただし、ri は物体側から数えて第i面の曲率半径であ
る。Further, it is desirable to satisfy the following conditional expression (2) for better aberration correction. 1 <r 1 / r 3 <2 (2) where r i is the radius of curvature of the i-th surface counted from the object side.
【0021】条件式(2)は、球面収差やコマ収差をよ
り良好に補正するための条件式であり、第1面より第3
面の曲率半径の方が小さいことを示している。第1面で
発生した収差と後群で発生した収差が加算されて全体の
収差を悪化させている。これらの収差を第3面にて補正
しなければならないから、この面により強いパワーを持
たせ、より大きな収差を発生させて全系の収差補正を行
っている。したがって、条件式(2)の下限の1を越え
ると、この収差補正能力が発揮されず、非球面のみでは
良好な収差補正が困難になる。逆に、上限の2を越える
と、第3面で発生した収差が大きくなりすぎ、非球面を
用いても他で発生された収差とバランスがとれなくな
る。Conditional expression (2) is a conditional expression for better correcting spherical aberration and coma, and it is the third surface from the first surface.
It indicates that the radius of curvature of the surface is smaller. The aberration generated in the first surface and the aberration generated in the rear group are added to deteriorate the overall aberration. Since these aberrations must be corrected by the third surface, stronger power is given to this surface and larger aberrations are generated to correct the aberrations of the entire system. Therefore, if the lower limit of 1 to condition (2) is exceeded, this aberration correction capability will not be exhibited, and good aberration correction will be difficult only with an aspherical surface. On the other hand, when the upper limit of 2 is exceeded, the aberration generated on the third surface becomes too large, and even if an aspherical surface is used, it cannot be balanced with the aberrations generated on other surfaces.
【0022】また、一般に知られているように、色収差
の補正には、アッベ数の大きな正レンズとアッベ数の小
さな負レンズとを組み合わせて使うことが有効である。
そこで、負レンズに用いられるガラスは、以下の条件式
(3)を満たすことが望ましい。 νN <50 ・・・(3) ただし、νN は負レンズのアッベ数である。条件式
(3)の範囲を越えて負レンズのアッベ数が50以上に
なると、色収差を良好に補正することが困難になる。As is generally known, it is effective to use a positive lens having a large Abbe number and a negative lens having a small Abbe number in combination for correcting chromatic aberration.
Therefore, it is desirable that the glass used for the negative lens satisfy the following conditional expression (3). ν N <50 (3) where ν N is the Abbe number of the negative lens. If the Abbe number of the negative lens exceeds 50 beyond the range of the conditional expression (3), it becomes difficult to satisfactorily correct chromatic aberration.
【0023】以上のような構成とすることで、レンズ全
長とレンズ系のΣdを共に短縮しながら、性能が良好な
大口径広角写真レンズを得ることができる。さらに、ト
リップレットタイプやテッサータイプ等で問題になった
偏心精度も、本発明のように接合レンズ化することで、
精度を緩くできる。また、トリップレットタイプやテッ
サータイプ等では分離された第1レンズと第2レンズの
間でゴーストが発生しやすいが、本発明ではそのような
問題も解決されている。With the above-mentioned structure, it is possible to obtain a large-diameter wide-angle photographic lens having good performance while shortening both the total lens length and Σd of the lens system. Furthermore, the decentering accuracy, which was a problem with the triplet type and the tesser type, can be changed to a cemented lens as in the present invention.
The accuracy can be loosened. Further, in the triplet type or the tesser type, a ghost is likely to occur between the separated first lens and second lens, but the present invention solves such a problem.
【0024】[0024]
【実施例】以下、図面を参照にして本発明の広角写真レ
ンズの実施例1〜4について説明する。図1は実施例1
の図2は実施例3のレンズ断面図であり、実施例2、4
は実施例1と同様な断面形状を有するので図示は省く。
レンズデータは後記するが、全ての実施例の焦点距離は
35mm、Fナンバーは2.8である。EXAMPLES Examples 1 to 4 of the wide-angle photographic lens of the present invention will be described below with reference to the drawings. FIG. 1 shows Example 1.
2 is a lens cross-sectional view of Example 3, and FIGS.
Has a cross-sectional shape similar to that of the first embodiment and is not shown.
Although the lens data will be described later, the focal lengths of all the examples are 35 mm, and the F number is 2.8.
【0025】何れの実施例も、物体側から順に、物体側
へ凸面を向けた正メニスカスレンズL1と物体側へ凸面
を向けた負メニスカスレンズL2との接合レンズ、絞
り、正レンズL3と負レンズL4との接合レンズからな
り、後群の接合面は物体側に凹面を向けた接合レンズに
て構成されている。実施例3は最終面が像側に凸面を向
けているが、それ以外の実施例は最終面が像側に凹面を
向けている。In any of the embodiments, in order from the object side, a cemented lens of a positive meniscus lens L1 having a convex surface facing the object side and a negative meniscus lens L2 having a convex surface facing the object side, a diaphragm, a positive lens L3 and a negative lens. It is composed of a cemented lens with L4, and the cemented surface of the rear group is a cemented lens with a concave surface facing the object side. In the third embodiment, the final surface is convex on the image side, but in the other embodiments, the final surface is concave on the image side.
【0026】非球面については、実施例1は、第1面、
第3面、第5面の3面に、実施例2は、第1面、第3
面、第5面、第7面の4面に、実施例3は、第3面、第
7面の2面に、実施例4は、第1面、第3面、第7面の
3面に用いている。As for the aspherical surface, the first embodiment has the first surface,
In Example 3, the first surface and the third surface are provided on the third surface and the fifth surface.
Surface, 5th surface, 7th surface, 4th surface, Example 3 has 3rd surface, 7th surface, 2nd surface, Example 4 has 1st surface, 3rd surface, 7th surface Used for.
【0027】以下に、各実施例のレンズデータを示す
が、記号は、上記の外、fは全系焦点距離、FNOはFナ
ンバー、2ωは画角、fB はバックフォーカス、r1 、
r2 …は各レンズ面の曲率半径、d1 、d2 …は各レン
ズ面間の間隔、nd1、nd2…は各レンズのd線の屈折
率、νd1、νd2…は各レンズのアッベ数である。なお、
非球面形状は、光軸の光の進行方向をx、光軸に直交す
る方向をyとしたとき、次の式で表される。 x=(y2 /r)/[1+{1−P(y/
r)2 }1/2 ]+A4y4 +A6y6 +A8y8 + A10y10+
A12y12 ただし、rは近軸曲率半径、Pは円錐係数、A4、A6、
A8、A10 、A12 は非球面係数である。The lens data of each embodiment are shown below. In addition to the above, the symbols are f, the focal length of the entire system, F NO is the F number, 2ω is the angle of view, f B is the back focus, r 1 ,
r 2 ... curvature radius of each lens surface, d 1, d 2 ... the spacing between the lens surfaces, n d1, n d2 ... d-line refractive index of each lens, ν d1, ν d2 ... Each lens Is the Abbe number. In addition,
The aspherical shape is represented by the following equation, where x is the traveling direction of light on the optical axis and y is the direction orthogonal to the optical axis. x = (y 2 / r) / [1+ {1-P (y /
r) 2 } 1/2 ] + A 4 y 4 + A 6 y 6 + A 8 y 8 + A 10 y 10 +
A 12 y 12 where r is the paraxial radius of curvature, P is the conic coefficient, A 4 , A 6 ,
A 8 , A 10 , and A 12 are aspherical coefficients.
【0028】実施例1 f =35.0 ,FNO= 2.9 ,2ω=63.4° ,fB =22.2 r1 = 10.3590(非球面) d1 = 4.000 nd1 =1.77250 νd1 =49.66 r2 = 48.6590 d2 = 1.000 nd2 =1.67270 νd2 =32.10 r3 = 8.8120(非球面) d3 = 3.600 r4 = ∞(絞り) d4 = 2.400 r5 = 117.0460(非球面) d5 = 5.800 nd3 =1.77250 νd3 =49.66 r6 = -9.4290 d6 = 1.000 nd4 =1.56444 νd4 =43.78 r7 = 109.1830 非球面係数 第1面 P = 1.0000 A4 = 0.11240×10-4 A6 = 0.15627×10-6 A8 = 0.23392×10-9 A10= 0.92155×10-11 A12= 0 第3面 P = 1.0000 A4 = 0.14149×10-3 A6 = 0.21898×10-5 A8 = 0.49961×10-7 A10= 0.60708×10-9 A12= 0 第5面 P = 1.0000 A4 =-0.33016×10-4 A6 = 0.76904×10-6 A8 =-0.13092×10-7 A10= 0.10222×10-9 A12= 0
。Example 1 f = 35.0, F NO = 2.9, 2ω = 63.4 °, f B = 22.2 r 1 = 10.3590 (aspherical surface) d 1 = 4.000 n d1 = 1.77250 ν d1 = 49.66 r 2 = 48.6590 d 2 = 1.000 n d2 = 1.67270 ν d2 = 32.10 r 3 = 8.8120 (aspherical surface) d 3 = 3.600 r 4 = ∞ (aperture) d 4 = 2.400 r 5 = 117.0460 (aspherical surface) d 5 = 5.800 n d3 = 1.77250 ν d3 = 49.66 r 6 = -9.4290 d 6 = 1.000 n d4 = 1.56444 ν d4 = 43.78 r 7 = 109.1830 Aspheric coefficient 1st surface P = 1.0000 A 4 = 0.11240 × 10 -4 A 6 = 0.15627 × 10 -6 A 8 = 0.23392 × 10 -9 A 10 = 0.92155 × 10 -11 A 12 = 0 3rd surface P = 1.0000 A 4 = 0.14149 × 10 -3 A 6 = 0.21898 × 10 -5 A 8 = 0.49961 × 10 -7 A 10 = 0.60708 × 10 -9 A 12 = 0 fifth surface P = 1.0000 A 4 = -0.33016 × 10 -4 A 6 = 0.76904 × 10 -6 A 8 = -0.13092 × 10 -7 A 10 = 0.10222 × 10 - 9 A 12 = 0
.
【0029】実施例2 f =35.0 ,FNO= 2.9 ,2ω=63.4° ,fB =23.8 r1 = 11.0190(非球面) d1 = 4.300 nd1 =1.77250 νd1 =49.66 r2 = 36.8040 d2 = 1.000 nd2 =1.67270 νd2 =32.10 r3 = 8.7740(非球面) d3 = 3.000 r4 = ∞(絞り) d4 = 2.000 r5 = 76.8390(非球面) d5 = 6.000 nd3 =1.77250 νd3 =49.66 r6 = -8.1640 d6 = 1.000 nd4 =1.56444 νd4 =43.78 r7 = 90.9080(非球面) 非球面係数 第1面 P = 1.0000 A4 = 0.72931×10-5 A6 = 0.18426×10-7 A8 =-0.37198×10-9 A10=-0.13139×10-10 A12= 0 第3面 P = 1.0000 A4 = 0.13404×10-3 A6 = 0.18509×10-5 A8 = 0.11778×10-7 A10= 0.10083×10-8 A12= 0 第5面 P = 1.0000 A4 =-0.26437×10-5 A6 =-0.30450×10-6 A8 = 0.14034×10-7 A10=-0.14568×10-9 A12= 0 第7面 P = 1.0000 A4 = 0.28636×10-4 A6 =-0.15316×10-6 A8 = 0.90896×10-9 A10= 0.19591×10-10 A12= 0
。Example 2 f = 35.0, F NO = 2.9, 2ω = 63.4 °, f B = 23.8 r 1 = 11.0190 (aspherical surface) d 1 = 4.300 n d1 = 1.77250 ν d1 = 49.66 r 2 = 36.8040 d 2 = 1.000 n d2 = 1.67270 ν d2 = 32.10 r 3 = 8.7740 (aspherical surface) d 3 = 3.000 r 4 = ∞ (aperture) d 4 = 2.000 r 5 = 76.8390 (aspherical surface) d 5 = 6.000 n d3 = 1.77250 ν d3 = 49.66 r 6 = -8.1640 d 6 = 1.000 n d4 = 1.56444 ν d4 = 43.78 r 7 = 90.9080 (aspherical surface) aspherical coefficient 1st surface P = 1.0000 A 4 = 0.72931 × 10 -5 A 6 = 0.18426 × 10 -7 A 8 = -0.37198 x 10 -9 A 10 = -0.13139 x 10 -10 A 12 = 0 3rd surface P = 1.0000 A 4 = 0.13404 x 10 -3 A 6 = 0.18509 x 10 -5 A 8 = 0.11778 × 10 -7 A 10 = 0.10083 × 10 -8 A 12 = 0 5th surface P = 1.0000 A 4 = -0.26437 × 10 -5 A 6 = -0.30450 × 10 -6 A 8 = 0.14034 × 10 -7 A 10 = -0.14568 × 10 -9 A 12 = 0 seventh surface P = 1.0000 A 4 = 0.28636 × 10 -4 A 6 = -0.15316 × 10 -6 A 8 = 0.90896 × 10 -9 A 10 = 0.19591 × 10 - 10 A 12 = 0
.
【0030】実施例3 f =35.0 ,FNO= 2.9 ,2ω=63.4° ,fB =27.2 r1 = 15.5850 d1 = 4.400 nd1 =1.77250 νd1 =49.66 r2 = 124.0040 d2 = 3.100 nd2 =1.63636 νd2 =35.37 r3 = 10.4000(非球面) d3 = 2.800 r4 = ∞(絞り) d4 = 0.700 r5 = -162.5130 d5 = 5.000 nd3 =1.72916 νd3 =54.68 r6 = -6.1800 d6 = 1.000 nd4 =1.54814 νd4 =45.78 r7 = -51.2380(非球面) 非球面係数 第3面 P = 1.0000 A4 = 0.16032×10-3 A6 = 0.39935×10-5 A8 = 0.29120×10-6 A10=-0.16872×10-7 A12= 0.52011×10-9 第7面 P = 0.2202 A4 = 0.39011×10-4 A6 =-0.28026×10-5 A8 = 0.11737×10-6 A10=-0.22103×10-8 A12= 0.15966×10-10
。Example 3 f = 35.0, F NO = 2.9, 2ω = 63.4 °, f B = 27.2 r 1 = 15.5850 d 1 = 4.400 n d1 = 1.77250 ν d1 = 49.66 r 2 = 124.0040 d 2 = 3.100 n d2 = 1.63636 ν d2 = 35.37 r 3 = 10.4000 (aspherical surface) d 3 = 2.800 r 4 = ∞ (aperture) d 4 = 0.700 r 5 = -162.5130 d 5 = 5.000 n d3 = 1.72916 ν d3 = 54.68 r 6 =- 6.1800 d 6 = 1.000 n d4 = 1.54814 ν d4 = 45.78 r 7 = -51.2380 (aspherical surface) aspherical coefficient third surface P = 1.0000 A 4 = 0.16032 × 10 -3 A 6 = 0.39935 × 10 -5 A 8 = 0.29 120 × 10 -6 A 10 = -0.168 72 × 10 -7 A 12 = 0.52011 × 10 -9 7th surface P = 0.2202 A 4 = 0.39011 × 10 -4 A 6 = -0.28026 × 10 -5 A 8 = 0.11737 × 10 -6 A 10 = -0.22 103 × 10 -8 A 12 = 0.15966 × 10 -10
.
【0031】実施例4 f =35.0 ,FNO= 2.9 ,2ω=63.4° ,fB =23.6 r1 = 11.2670(非球面) d1 = 4.500 nd1 =1.77250 νd1 =49.66 r2 = 43.2120 d2 = 1.000 nd2 =1.67270 νd2 =32.10 r3 = 9.0610(非球面) d3 = 5.000 r4 = ∞(絞り) d4 = 1.000 r5 = 59.6430 d5 = 4.000 nd3 =1.77250 νd3 =49.66 r6 = -8.6880 d6 = 1.000 nd4 =1.56732 νd4 =42.83 r7 = 67.6480(非球面) 非球面係数 第1面 P = 1.0000 A4 = 0.92931×10-5 A6 =-0.26552×10-6 A8 = 0.61038×10-8 A10=-0.67672×10-10 A12= 0 第3面 P = 1.0000 A4 = 0.13393×10-3 A6 = 0.26539×10-6 A8 = 0.77612×10-7 A10=-0.58284×10-9 A12= 0 第7面 P = 1.0000 A4 = 0.33942×10-4 A6 =-0.25675×10-6 A8 = 0.18468×10-8 A10= 0.24893×10-10 A12= 0
。Example 4 f = 35.0, F NO = 2.9, 2ω = 63.4 °, f B = 23.6 r 1 = 1.11.2670 (aspherical surface) d 1 = 4.500 n d1 = 1.77250 ν d1 = 49.66 r 2 = 43.2120 d 2 = 1.000 n d2 = 1.67270 ν d2 = 32.10 r 3 = 9.0610 (aspherical surface) d 3 = 5.000 r 4 = ∞ (aperture) d 4 = 1.000 r 5 = 59.6430 d 5 = 4.000 n d3 = 1.77250 ν d3 = 49.66 r 6 = -8.6880 d 6 = 1.000 n d4 = 1.56732 ν d4 = 42.83 r 7 = 67.6480 (aspherical surface) aspherical coefficient 1st surface P = 1.0000 A 4 = 0.92931 × 10 -5 A 6 = -0.26552 × 10 -6 A 8 = 0.61038 × 10 -8 A 10 = -0.67672 × 10 -10 A 12 = 0 third surface P = 1.0000 A 4 = 0.13393 × 10 -3 A 6 = 0.26539 × 10 -6 A 8 = 0.77612 × 10 - 7 A 10 = -0.58284 × 10 -9 A 12 = 0 7th surface P = 1.0000 A 4 = 0.33942 × 10 -4 A 6 = -0.25675 × 10 -6 A 8 = 0.18468 × 10 -8 A 10 = 0.24893 × 10 -10 A 12 = 0
.
【0032】これら実施例1〜4の無限遠合焦時の球面
収差、非点収差、歪曲収差、倍率色収差を表す収差図を
それぞれ図3〜図6に示す。また、各実施例における条
件式(1)〜(3)の数値を次の表1に示す。この表
中、Yの値は非球面量Δを計算するときの有効半径を示
す。また、Ri は面番号(第i面)を示す。Aberration diagrams showing spherical aberration, astigmatism, distortion, and chromatic aberration of magnification of Examples 1 to 4 upon focusing on infinity are shown in FIGS. 3 to 6, respectively. Further, the numerical values of the conditional expressions (1) to (3) in each example are shown in Table 1 below. In this table, the value of Y indicates the effective radius when calculating the aspheric amount Δ. Further, Ri represents the surface number (i-th surface).
【0033】 [0033]
【0034】[0034]
【発明の効果】以上の説明から明らかなように、本発明
の構成により、レンズ全長及びレンズ系のΣdを共に短
縮して沈胴方式に適した寸法としながら、大口径で高性
能な広角写真レンズを達成することができた。As is apparent from the above description, the construction of the present invention shortens both the total lens length and the lens system Σd to make it a size suitable for the collapsible system, and has a large aperture and high performance wide-angle photographic lens. Could be achieved.
【図1】本発明の広角写真レンズの実施例1の断面図で
ある。FIG. 1 is a sectional view of a wide-angle photographic lens according to a first embodiment of the present invention.
【図2】実施例3の断面図である。FIG. 2 is a sectional view of a third embodiment.
【図3】実施例1の無限遠合焦時の球面収差、非点収
差、歪曲収差、倍率色収差を表す収差図である。FIG. 3 is an aberration diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when focusing on an object at infinity in Example 1;
【図4】実施例2の図3と同様な収差図である。FIG. 4 is an aberration diagram similar to FIG. 3 of Example 2.
【図5】実施例3の図3と同様な収差図である。FIG. 5 is an aberration diagram similar to FIG. 3 of Example 3;
【図6】実施例4の図3と同様な収差図である。FIG. 6 is an aberration diagram similar to FIG. 3 of Example 4.
L1…正メニスカスレンズ L2…負メニスカスレンズ L3…正レンズ L4…負レンズ L1 ... Positive meniscus lens L2 ... Negative meniscus lens L3 ... Positive lens L4 ... Negative lens
Claims (4)
れるレンズにおいて、前記前群と後群は共に、正レンズ
と負レンズをこの順に接合したレンズからなり、少なく
とも1面の非球面を有することを特徴とする広角写真レ
ンズ。1. In a lens composed of a front group and a rear group in order from the object side, both the front group and the rear group are composed of a lens in which a positive lens and a negative lens are cemented in this order, and at least one surface A wide-angle photographic lens having an aspherical surface.
特徴とする請求項1記載の広角写真レンズ。2. The wide-angle photographic lens according to claim 1, further comprising a stop disposed between the front group and the rear group.
(1)を満たすことを特徴とする請求項1又は2記載の
広角写真レンズ。 Δ/φ<0 〔φ=(n’−n)/r〕 ・・・(1) ただし、rは非球面の近軸曲率半径、n、n’は非球面
の前後の媒質の屈折率、Δは有効半径における非球面量
である。3. The wide-angle photographic lens according to claim 1, wherein at least one aspherical surface satisfies the following conditional expression (1). Δ / φ <0 [φ = (n′−n) / r] (1) where r is the paraxial radius of curvature of the aspherical surface, n and n ′ are the refractive indices of the media before and after the aspherical surface, Δ is the amount of aspherical surface at the effective radius.
する請求項1から3の何れか1項記載の広角写真レン
ズ。 1<r1 /r3 <2 ・・・(2) ただし、ri は物体側から数えて第i面の曲率半径であ
る。4. The wide-angle photographic lens according to claim 1, wherein the following conditional expression (2) is satisfied. 1 <r 1 / r 3 <2 (2) where r i is the radius of curvature of the i-th surface counted from the object side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5249155A JPH07104181A (en) | 1993-10-05 | 1993-10-05 | Wide-angle photographic lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5249155A JPH07104181A (en) | 1993-10-05 | 1993-10-05 | Wide-angle photographic lens |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07104181A true JPH07104181A (en) | 1995-04-21 |
Family
ID=17188728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5249155A Withdrawn JPH07104181A (en) | 1993-10-05 | 1993-10-05 | Wide-angle photographic lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07104181A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007286153A (en) * | 2006-04-13 | 2007-11-01 | Konica Minolta Opto Inc | Imaging lens, imaging apparatus with the imaging lens, and portable terminal with the imaging apparatus |
EP2015121A3 (en) * | 2007-07-10 | 2009-09-09 | Fujinon Corporation | Imaging lens, camera module and imaging apparatus |
US8400719B2 (en) | 2009-08-31 | 2013-03-19 | Panasonic Corporation | Lens system, interchangeable lens apparatus, and camera system |
WO2017094503A1 (en) * | 2015-11-30 | 2017-06-08 | ソニー株式会社 | Imaging device and electronic device |
US9791666B2 (en) | 2015-09-25 | 2017-10-17 | Largan Precision Co., Ltd. | Imaging optical system, image capturing apparatus and electronic device |
-
1993
- 1993-10-05 JP JP5249155A patent/JPH07104181A/en not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007286153A (en) * | 2006-04-13 | 2007-11-01 | Konica Minolta Opto Inc | Imaging lens, imaging apparatus with the imaging lens, and portable terminal with the imaging apparatus |
EP2015121A3 (en) * | 2007-07-10 | 2009-09-09 | Fujinon Corporation | Imaging lens, camera module and imaging apparatus |
US8102608B2 (en) | 2007-07-10 | 2012-01-24 | Fujinon Corporation | Imaging lens, camera module, and imaging apparatus |
US8400719B2 (en) | 2009-08-31 | 2013-03-19 | Panasonic Corporation | Lens system, interchangeable lens apparatus, and camera system |
US8564890B2 (en) | 2009-08-31 | 2013-10-22 | Panasonic Corporation | Lens system, interchangeable lens apparatus, and camera system |
US9791666B2 (en) | 2015-09-25 | 2017-10-17 | Largan Precision Co., Ltd. | Imaging optical system, image capturing apparatus and electronic device |
WO2017094503A1 (en) * | 2015-11-30 | 2017-06-08 | ソニー株式会社 | Imaging device and electronic device |
US10591704B2 (en) | 2015-11-30 | 2020-03-17 | Sony Semiconductor Solutions Corporation | Imaging device and electronic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5510634B2 (en) | Wide angle lens and optical apparatus having the wide angle lens | |
JP5263589B2 (en) | Zoom lens system, optical apparatus equipped with the zoom lens system, and zooming method using the zoom lens system | |
JP3579627B2 (en) | Wide-angle lens system | |
JPH11153752A (en) | Bright wide-angle lens | |
JP2000235145A (en) | Wide-angle lens | |
JP2007256695A (en) | Zoom lens, imaging apparatus and variable power method | |
JP3033137B2 (en) | Compact zoom lens | |
JP3652179B2 (en) | Zoom lens | |
JPH0990220A (en) | Zoom lens | |
JP4624744B2 (en) | Wide angle zoom lens | |
JP3610160B2 (en) | Photo lens | |
JP4098586B2 (en) | Zoom lens | |
JP2843311B2 (en) | Small wide-angle lens | |
JP4838899B2 (en) | Zoom lens and optical apparatus using the same | |
JP2003005070A (en) | Zoom lens | |
JPH1144839A (en) | Rear diaphragm type photographing lens | |
JP7556211B2 (en) | Optical Systems and Instruments | |
JPH07104181A (en) | Wide-angle photographic lens | |
JP3231404B2 (en) | Shooting lens | |
JPH0772388A (en) | Small-sized zoom lens | |
JP3038974B2 (en) | Small wide-angle lens | |
JP5338345B2 (en) | Wide angle lens, imaging device, and manufacturing method of wide angle lens | |
JP3695952B2 (en) | Camera with 2 zoom lens | |
JPH05188292A (en) | Small-sized zoom lens | |
JPH05134175A (en) | Compact wide angle lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20001226 |