JPS59226842A - Water temperature measuring device - Google Patents

Water temperature measuring device

Info

Publication number
JPS59226842A
JPS59226842A JP10214283A JP10214283A JPS59226842A JP S59226842 A JPS59226842 A JP S59226842A JP 10214283 A JP10214283 A JP 10214283A JP 10214283 A JP10214283 A JP 10214283A JP S59226842 A JPS59226842 A JP S59226842A
Authority
JP
Japan
Prior art keywords
point
ultrasonic
water temperature
temperature
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10214283A
Other languages
Japanese (ja)
Other versions
JPH0160774B2 (en
Inventor
Kiyomi Minohara
箕原 喜代美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP10214283A priority Critical patent/JPS59226842A/en
Publication of JPS59226842A publication Critical patent/JPS59226842A/en
Publication of JPH0160774B2 publication Critical patent/JPH0160774B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/22Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To improve reliability of a detected underwater temperature by detecting in advance a reflecting point of an ultrasonic pulse, receiving a reflected wave from a detected reflecting point in a pulse transmitted from other point, and making a theoretical propagation path coincide with a measured propagation path. CONSTITUTION:A temperature variation boundary H1 is set to an optional depth, and a water temperature above H1 and a water temperature below it are denoted deg.C1 and deg.C2, respectively. A sound wave reflected by a point R1 emitted from a Q point is refracted at H1 and reach to the Q point. An incident angle theta1 and a refractive angle theta2 are determined by water temperatures deg.C1, deg.C2, therefore, a refractive path of the sound wave extending from the point R1 to a Q1 point can be calculated. When a calculated time coincides with a measurement time, it is known that a temperature is varied from deg.C1 to deg.C2. After detecting a temperation variation to the R1 point, a temperation variation to R2 and R3 is detected. In this way, by detecting a water temperature by which the propagation time coincides with the measurement time, a temperature variation to an R4 point can be detected, and a water temperature can be measured exactly.

Description

【発明の詳細な説明】 (発明の技術分野) この発明は、水中の温度を測定する装置に関し、特に、
水中に超音波を送受波して水中温度を測定する装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a device for measuring temperature in water, and in particular, to a device for measuring temperature in water.
The present invention relates to a device that measures the temperature of water by transmitting and receiving ultrasonic waves into the water.

(従来技術) 一般に、漁場と水温は密接な関係を有しており、従って
、水温を検出することにより好漁場の発見が成能になる
(Prior Art) In general, there is a close relationship between fishing grounds and water temperature, and therefore, by detecting water temperature, it is possible to discover good fishing grounds.

水温の検出は、サーミスタのような感温素子を用いるの
が最も一般的である。しかし、このような測定装置は、
表層の水温を測定するのは比較的簡単であるが、水中の
特定深度の温度測定には不適である。
Water temperature is most commonly detected using a temperature sensing element such as a thermistor. However, such measuring devices
Although it is relatively easy to measure surface water temperature, it is not suitable for measuring temperature at a specific depth underwater.

そこで、最近、上記のような感温素子を用いずに、超音
波を用いて水中温度を測定する装置が提案されている。
Therefore, recently, a device has been proposed that uses ultrasonic waves to measure the temperature of water without using a temperature-sensitive element as described above.

現在、提案されているこの種の装置は、異なる経路の音
波を同時に受波して、経路長の差によって生じる受波時
間の差を利用して水温を測定しようとするものである。
Currently proposed devices of this type attempt to measure water temperature by simultaneously receiving sound waves along different paths and utilizing the difference in reception time caused by the difference in path length.

例えば、一定距離だけ離れた地点から水中の斜め方向に
超音波パルスを送波して、水中で乱反射する反射波を他
の地点に設置した受波器で受波する。このとき、指向方
向の若干具なる複数の受波器を設置して反射波を受波す
ると伝播経路のわずかに異なる反射波が経路差に相当す
る時間だけ異なって受波される。従って、理論上の経路
差によって生じる時間差と測定時間差とを比較すること
によシ、音波伝播速度の変化を算出することができるか
ら、伝播速度変化率か温度変化を知ることができる。と
ころが、このような測定方法は、理論上の伝播経路と実
際の伝播経路とは一致しない。すなわち、水中の音波は
水温変化に応じて屈折しながら伝播するのに対して理論
上の伝播経路はこのような屈折は無視してa−出するだ
め、実際の伝播経路と理論上の伝播経路とは全く対応し
ない。従って、上記のような時間差比較を行っても水温
測定を行うことはできない。
For example, ultrasonic pulses are transmitted obliquely underwater from a point a certain distance away, and the reflected waves that are diffusely reflected in the water are received by a receiver installed at another point. At this time, if a plurality of receivers with slightly different pointing directions are installed to receive the reflected waves, the reflected waves with slightly different propagation paths will be received with different times corresponding to the path difference. Therefore, by comparing the time difference caused by the theoretical path difference with the measured time difference, it is possible to calculate the change in the sound wave propagation velocity, and therefore the rate of change in the propagation velocity or the temperature change can be known. However, in such measurement methods, the theoretical propagation path and the actual propagation path do not match. In other words, while sound waves in water propagate while being refracted according to changes in water temperature, the theoretical propagation path should ignore such refraction and emit a-, so there is a difference between the actual propagation path and the theoretical propagation path. It does not correspond at all. Therefore, even if the time difference comparison as described above is performed, the water temperature cannot be measured.

(発明の目的) この発明は、上記のような欠点に対処して、音波の実際
の伝播経路を検出しながら、音波が伝播してくる時間測
定を行うことにより、正確な水温測定の行い得る装置を
実現する。
(Objective of the Invention) The present invention addresses the above-mentioned drawbacks and makes it possible to accurately measure water temperature by detecting the actual propagation path of the sound waves and measuring the propagation time of the sound waves. Realize the device.

(発明の原理) 第1図において、P点の送受波器Z□から直下の海底方
向に周波数f1の超音波パルスを送受波する。
(Principle of the Invention) In FIG. 1, an ultrasonic pulse of frequency f1 is transmitted and received from the transducer Z□ at point P toward the seabed directly below.

このとき、超音波パルスは指向特性がペンシル状の鋭い
ビームが用いられる。
At this time, a sharp beam with pencil-like directivity is used as the ultrasonic pulse.

送受波器Z1から送波された超音波パルスは水中の気泡
のような浮遊物R,J、、R8、R4等によって反射さ
れる結果、第2図aに示すような水中反射波Ar 、A
 2 、A s、A1等が受波される。
The ultrasonic pulses transmitted from the transducer Z1 are reflected by floating objects such as bubbles R, J, , R8, R4, etc. in the water, resulting in underwater reflected waves Ar, A as shown in Fig. 2a.
2, As, A1, etc. are received.

他方、P点から距離り。だけ異なるQ点に超音波受波器
2.が設けられ、周波数f2の超音波パルスを送波する
。そして、受波器Z2は、送受波器Z1の送受波領域を
含む比較的広範囲の方向に指向性を有する。
On the other hand, the distance from point P. Ultrasonic receivers at Q points that differ by 2. is provided and transmits an ultrasonic pulse of frequency f2. The wave receiver Z2 has directivity in a relatively wide range of directions including the wave transmitting/receiving area of the wave transmitter/receiver Z1.

従って、受波器Z2は、送受波器Z工から送波された超
音波パルスのうち水中浮遊物R1、R,、几8、几。に
よって受波器Z、の指向方向に反射される反射波を受波
する。従って、送受波器Z1から超音波パルスを送波す
る場合、受波器Z2に受波される水中浮遊物R0、R7
、R8、&からの反射波は、第2図すに受波信号B1、
B2、B8、B、として示すように、送受波器Z1の受
波信号A1、A、2 、A、8 、A4に対してΔT1
、司゛2、△T8.671時間だけ遅れて受波される。
Therefore, the receiver Z2 detects the underwater floating objects R1, R,, 几8, 几 out of the ultrasonic pulses transmitted from the transducer Z. The reflected wave reflected in the directional direction of the receiver Z is received by the receiver Z. Therefore, when transmitting ultrasonic pulses from the transducer Z1, the underwater floating objects R0 and R7 received by the transducer Z2
, R8, & are the received signals B1, R8, & in Fig. 2.
As shown as B2, B8, B, ΔT1 for the received signals A1, A,2, A,8, A4 of the transducer Z1.
, 2, △T8. The wave is received with a delay of 671 hours.

この遅れ時間ΔT1.1hT2.1hTI11耳4は上
記から明らかなように、Q点から水中浮遊物R1、R2
、R8、R4までの超音波の伝搬によって生じるもので
ある。
As is clear from the above, this delay time ΔT1.1hT2.1hTI11 ear 4 is from point Q to floating objects R1, R2 in the water.
, R8, and the propagation of ultrasonic waves up to R4.

Q点から水中浮遊物R1、R2、R8、R4までの距離
は、PQ間の距離り。とP点から水中浮遊物R□、R2
、R8、B4甘での距離によって算出することができる
。なお、P点から水中浮遊物までの距離は、送受波器Z
1から超音波パルスを送波して浮遊物R□、几2、几8
、R4の反射波が受波されるまでの時間を測定すること
により算出することができる。
The distance from point Q to underwater floating objects R1, R2, R8, and R4 is the distance between PQ. and floating objects R□, R2 from point P
, R8, and B4. In addition, the distance from point P to the floating object in the water is the distance from the transducer Z.
Transmit ultrasonic pulses from 1 to remove floating objects R□, 几2, 几8
, R4 can be calculated by measuring the time until the reflected waves of R4 are received.

従って、Q点から水中浮遊物R1、R2、R8、R4ま
での距離が算出されると、Q点から水中浮遊物R51、
R2、R8、R4までの音波伝播時間を算出することが
できるから、その算出時間が第2図の測定時間△T0.
46m’f 、、ΔT、に一致するような水温を検出す
ればよい。
Therefore, when the distances from point Q to underwater floating objects R1, R2, R8, and R4 are calculated, from point Q to underwater floating objects R51,
Since the sound wave propagation time up to R2, R8, and R4 can be calculated, the calculated time is the measurement time ΔT0 in FIG.
It is sufficient to detect a water temperature that matches 46m'f, , ΔT.

この水温の検出は次のようにして行うことができる。This water temperature detection can be performed as follows.

第3図において、Q点から水中浮遊物R,’!’で超音
波が伝搬する間の任意の深度に温度変化境界H1を設定
して、境界部H1から上の水温をQ、C1下の水温をC
7゜とする。従って、点R1で反射した音波は境界部H
1で屈折してQ点に到達し、音波が境界部で屈折すると
きの入射角θ1、屈折角θ、は水温C1゜、C2゜によ
って決まる。従って、水温C,0、C,Oを設定すると
点R1から91点までの音波の屈折経路を算出すること
ができるから、それによってR51から91点までの音
波の伝播時間を算出することができる。その算出時間が
第2図の測定時間△T、に一致するとき、境界部I(□
における温度変化が010から02゜へ変化しているこ
とを知ることができる。なお、上記において、温度変化
境界H2は仮想点であるが、水中浮遊物までの距離間隔
を小さくして検出することにより、仮想点による温度変
化を実際の温度変化にほぼ近似したものに設定すること
ができる。
In Figure 3, from point Q, floating objects R,'! ', set the temperature change boundary H1 at an arbitrary depth during the propagation of the ultrasonic wave, set the water temperature above the boundary H1 to Q, and the water temperature below C1 to C.
Set it to 7°. Therefore, the sound wave reflected at point R1 is at the boundary H
The incident angle θ1 and the refraction angle θ when the sound wave is refracted at the boundary are determined by the water temperatures C1° and C2°. Therefore, by setting the water temperatures C,0, C,O, the refraction path of the sound wave from point R1 to point 91 can be calculated, and thereby the propagation time of the sound wave from point R51 to point 91 can be calculated. . When the calculation time matches the measurement time △T in Fig. 2, the boundary part I (□
It can be seen that the temperature change at 010° to 02°. In the above, the temperature change boundary H2 is a virtual point, but by detecting the distance to the floating object at a small distance, the temperature change due to the virtual point is set to be almost similar to the actual temperature change. be able to.

上記のようにしてR1点までの温度変化を検出した後、
R2点までの温度変化を検出す兄8′この場合も上記と
同様にして、温度変化境界H,を設定して境界部H2か
ら上の水温をQ、Q1下の水温を08゜とじて電点から
92点までの音波の伝播経路を算出する。
After detecting the temperature change up to point R1 as described above,
Detecting the temperature change up to point R2 8' In this case, in the same way as above, set the temperature change boundary H, and set the water temperature above the boundary H2 as Q, and the water temperature below Q1 as 08°, and then set the voltage. The propagation path of the sound wave from the point to the 92nd point is calculated.

そして、その伝播経路の伝播時間が第2図の測定時間Δ
1゛、に一致するような水温02′、CB。を検出する
Then, the propagation time of the propagation path is the measurement time Δ in Figure 2.
1゛, water temperature 02', CB. Detect.

以後同様にして、温度変化境界H,,l−I4を設定す
ることにより、R8点、R,点までの温度変化を検出す
る。
Thereafter, temperature changes up to point R8 and point R are detected by setting temperature change boundaries H,,l-I4 in the same way.

(発明の実施例) 第4図において、Z工は超音波送受波器、A2、Zsは
超音波受波器を示す。
(Embodiment of the Invention) In FIG. 4, Z indicates an ultrasonic transducer, and A2 and Zs indicate an ultrasonic receiver.

超音波送受波器Z1は第1図の超音波送受波器Z1と同
様に鋭い指向性を有し、送信器1に基づいてほぼ直下の
海底方向に向けて超音波パルスを送波する。そして、第
5図aに示すように、水中の反射点R61、R2、几8
、電からの反射波A1、A7、A8、A4を受波する。
The ultrasonic transducer Z1 has sharp directivity similar to the ultrasonic transducer Z1 shown in FIG. Then, as shown in Figure 5a, underwater reflection points R61, R2, and 8
, receives reflected waves A1, A7, A8, and A4 from the electric current.

又、超音波受波器Z2、A8は、超音波送受波器Z工に
対して距離り。たけ異る位置に対称配置される。
Also, the ultrasonic receivers Z2 and A8 are at a distance from the ultrasonic transducer Z. They are arranged symmetrically in different positions.

そして、第1図の超音波受波器Z、と同様に反射点几1
、島、馬、R6からの反射波を受波する。第5図b1は
超音波受波器Z2の受波信号、R2は超音波受波器Z8
の受波信号を示す。
Then, similarly to the ultrasonic receiver Z in Fig. 1, the reflection point 1 is
, Island, Uma, receives the reflected waves from R6. Figure 5 b1 is the received signal of the ultrasonic receiver Z2, R2 is the ultrasonic receiver Z8.
The received signal is shown.

超音波送受波器Z1の受波信号は受信器2で増巾、検波
された後、A/D変換器5においてディジタルデータに
変換される。そして、変換されたディジタルデータは入
出力変換器4を経てマイクロプロセッサ−5に取シ込ま
れる。マイクロプロセッサ=5は、取り込んだ受波信号
データを、受波信号の受信までの時間データと共に記憶
回路6に送出して記憶させる。
The received signal of the ultrasonic transducer Z1 is amplified and detected by the receiver 2, and then converted into digital data by the A/D converter 5. The converted digital data is then input to the microprocessor 5 via the input/output converter 4. The microprocessor 5 sends the captured received signal data together with time data until reception of the received signal to the storage circuit 6 for storage.

他方、超音波受波器Z2、A8の受波信号はそれぞれの
受信器7,8で増巾、検波された後、A/D変換器9.
10でディジタル信号に変換される。そして、上記と同
様にして、入出力変換器11.12を経てマイクロプロ
セッサ−5に取シ込まれた後、記憶回路13.14に時
間データと共に記憶される。
On the other hand, the received signals from the ultrasonic receivers Z2 and A8 are amplified and detected by the respective receivers 7 and 8, and then sent to the A/D converters 9.
10, it is converted into a digital signal. Then, in the same manner as described above, the data is input to the microprocessor 5 via the input/output converters 11.12, and then stored in the storage circuit 13.14 together with the time data.

従って、記憶回路6は第5図aの受波信号を記憶し、記
憶回路13.14は第5図b1、b、の受波信号を記憶
する。
Therefore, the memory circuit 6 stores the received signal of FIG. 5a, and the memory circuits 13 and 14 store the received signals of FIG. 5 b1, b.

マイクロプロセッサ−5は、記憶回路6並びに13.1
4にそれぞれの受波信号データを記憶させた後、それぞ
れの記憶データを読出して、第5図における時間差耳1
1、△Tz、 th’f y、可1いべ2□、△T4、
△1゛3、到゛、4の測定を行う。
Microprocessor-5 includes memory circuit 6 and 13.1
After storing each received signal data in 4, each stored data is read out and the time difference signal 1 in FIG.
1, △Tz, th'f y, OK 1 Ibe 2□, △T4,
Measure △1゛3, ゛, and 4.

この時間差測定は、超音波送受波器z1の受波信号(第
5図a)に基づいて、第5図における几1、R,、R3
、R,の各反射点を検出する。そして、Ql、Q9点か
ら反射点R1、R2、R8、R4までの距離を算出し、
その距離を音波が伝播する理論上の伝播時間ΔT□、△
’p、、48.6T41i!出L、超音波受e 器Z 
x、Z、 ノ受波信号(第5図b1、b、)の内から、
算出時聞耳1、雌2、△T8、△T4に最も近接して出
現する受波信号I3□1、馬、BIJ % B14、島
、B22、B’2g、B、の各々を選出する。そして、
選出後、対応する受波信号A1、A、、AB、A、に対
する時間差△’I’11、ΔT!2、△Ttg、△T1
い△T’n %△T22、Δ′1゛8、△T飄の各々を
算出して、その時間差データ△Tuz△T12、△T1
B、△T14、を記憶回路13に、又時間差データ△T
21、△T22、到゛、8、△T24を記憶回路14に
記憶させる。
This time difference measurement is performed based on the received signal of the ultrasonic transducer z1 (Fig. 5a).
, R, are detected. Then, calculate the distances from points Ql and Q9 to reflection points R1, R2, R8, and R4,
Theoretical propagation time ΔT□, △ for a sound wave to propagate that distance
'p,,48.6T41i! Output L, ultrasonic receiver E receiver Z
x, Z, from among the received signals (Fig. 5 b1, b,),
At the time of calculation, the received signals I3□1, horse, BIJ % B14, island, B22, B'2g, and B, which appear closest to ear 1, female 2, ΔT8, and ΔT4, are selected. and,
After selection, the time differences Δ'I'11, ΔT! with respect to the corresponding received signals A1, A, , AB, A! 2, △Ttg, △T1
Calculate each of △T'n %△T22, Δ'1゛8, and △T, and calculate the time difference data △Tuz△T12, △T1
B, △T14, to the memory circuit 13, and the time difference data △T
21, △T22, ゛, 8, △T24 are stored in the storage circuit 14.

マイクロプロセッサ−5は、上記のようにして記憶回路
13.14に時間差データをそれぞれ記憶させた後、そ
れぞれの時間差データを読出して対応する時間差を互い
に平均化する。すなわち、時rdJ差△Tuに対応する
時間差△T21とを互いに平均化する。同様にして、時
間差△T+’2と△T22を、時間差△Tagと△′r
、8を、時間差へT14とΔT24をそれぞれ平均化す
る。そして、平均化した時間差データを記憶回路15に
記憶させる。
After storing the time difference data in the storage circuits 13 and 14 as described above, the microprocessor-5 reads out the respective time difference data and averages the corresponding time differences. That is, the time difference ΔT21 corresponding to the time rdJ difference ΔTu is averaged with respect to each other. Similarly, the time differences △T+'2 and △T22 are changed to the time differences △Tag and △'r
, 8, and the time differences T14 and ΔT24 are respectively averaged. Then, the averaged time difference data is stored in the storage circuit 15.

第4図において、超音波受波器Z2、A8は超音波受波
器Z、に対して対称に配置されている。従って、Z□、
A2、ZBが定位置に停止して超音波の送受波を行うと
きは、水中反射点R□、R2、R8、電から超音波受波
器Z2、Z8マでの音波到達時間は互いに等しい。
In FIG. 4, ultrasonic receivers Z2 and A8 are arranged symmetrically with respect to ultrasonic receiver Z. Therefore, Z□,
When A2 and ZB stop at fixed positions and transmit and receive ultrasonic waves, the arrival time of the sound waves from the underwater reflection points R□, R2, R8 and the electric waves to the ultrasonic wave receivers Z2 and Z8 are equal to each other.

ところが、超音波送受波器Z工及び超音波受波器z2、
z8を船底に装備して移動しながら水温測定を行う場合
、超音波信号がドプラ効果を受けるため、R1、亀、R
8、R4の反射点から超音波受波器Z2まで音波が到達
する時間と超音波受波器Z8まで音波が到達する時間と
がわずかに相異する。従って、両時間差を上記のように
平均化することにより、ドプラ効果による影響を相殺し
て几1、R9、R8、R4の反射点から超音波受波器Z
2あるいはZ8までの正確な到達時間を測定することが
できる。
However, the ultrasonic transducer Z-engine and the ultrasonic receiver Z2,
When measuring water temperature while moving with Z8 mounted on the bottom of a ship, the ultrasonic signal is subject to the Doppler effect, so R1, Kame, R
8. The time for the sound wave to reach the ultrasonic wave receiver Z2 from the reflection point of R4 is slightly different from the time for the sound wave to reach the ultrasonic wave receiver Z8. Therefore, by averaging both time differences as described above, the influence of the Doppler effect can be canceled and the ultrasonic wave receiver Z
2 or Z8 can be measured accurately.

マイクロプロセッサ−5は反射点R1J、、、R8、R
6から超音波受波器Z2あるいはZ8マでの正確な時間
差データを記憶回路15に記憶させた後、水温検出器1
6から水温データを入出力変換器17を経て取り込む。
Microprocessor-5 has reflection points R1J, , R8, R
6 to the ultrasonic receiver Z2 or Z8 in the storage circuit 15, the water temperature detector 1
The water temperature data is taken in from 6 through the input/output converter 17.

なお、水温検出器16は、例えば感温素子が用いられ、
水面温度を測定する。
Note that the water temperature detector 16 uses, for example, a temperature sensing element,
Measure water surface temperature.

マイクロプロセッサ−5は、水温検出器16の水温デー
ター、記憶回路6から得られる反射点R4、R2、几8
、凡□の深度データー、PQあるいはPQ2間の距離り
。データーとに基づいて、第3図で説明したように、Q
点から反射点R工、R2、R8、R4までの音波伝播経
路を算出する。そして、温度変化境界H1、H2、Ha
 、H4における温度変化を順次変化させた伝播経路を
各々算出し、各伝播経路の音波伝播時間のうち、第5図
の測定時間△T□0、△T12、△T1B、△T14と
、(△T2□、△T22、△T2B、△T44との平均
化時間に一致する伝播経路を検出し、その伝播経路を算
出するだめの設定温度を表示器18に表示する。なお、
表示器18に導かれる水温データーは入出力変換器19
を経て導かれる。又、29間距離り。データーはあらが
じめ既知の場合は記憶回路にあらかじめ記憶させておけ
ばよい。
The microprocessor 5 receives the water temperature data from the water temperature detector 16 and the reflection points R4, R2, and 8 obtained from the storage circuit 6.
, depth data of □, distance between PQ or PQ2. Based on the data, Q
The sound wave propagation path from the point to the reflection points R, R2, R8, and R4 is calculated. And temperature change boundaries H1, H2, Ha
, H4, and calculated the propagation paths in which the temperature changes were sequentially changed, and out of the sound wave propagation time of each propagation path, the measurement times △T□0, △T12, △T1B, △T14 and (△ A propagation path that matches the averaging time of T2□, △T22, △T2B, and △T44 is detected, and the set temperature for calculating the propagation path is displayed on the display 18.
The water temperature data guided to the display 18 is input to the input/output converter 19.
guided through. Also, 29 minutes apart. If the data is known in advance, it may be stored in the memory circuit in advance.

(発明の効果) 上記説明から明らかなように、この発明は、超音波パル
スを送波して、超音波パルスの反射点をあらかじめ検出
しておき、他の点から送波した超音波パルスのうち検出
した反射点からの反射波を受波するものである。従って
、超音波の反射点があらかじめ特定されているから、理
論上の伝播経路と実測した伝播経路とを極めて正確に一
致させることができる。従って、検出した水中温度を極
めて信頼性の高いものにすることができる。
(Effects of the Invention) As is clear from the above description, the present invention transmits ultrasonic pulses, detects the reflection points of the ultrasonic pulses in advance, and reflects the ultrasonic pulses transmitted from other points. Among them, the reflected waves from the detected reflection points are received. Therefore, since the reflection points of the ultrasonic waves are specified in advance, it is possible to match the theoretical propagation path and the actually measured propagation path extremely accurately. Therefore, the detected water temperature can be made extremely reliable.

(発明の他の実施例) 第4図において、超音波送受波器P及び超音波受波器Z
2、Z8は海面から海底に向けて超音波パルスを送波す
るごとくなされているが、超音波送受波器Z1及び超音
波受波器Z2、Zsを水中を曳航するごとく配置して、
水面方向に超音波パルスを送受波するごとくしてもよい
(Other embodiments of the invention) In FIG. 4, an ultrasonic transducer P and an ultrasonic receiver Z
2. Z8 is designed to transmit ultrasonic pulses from the sea surface to the seabed, but the ultrasonic transducer Z1 and ultrasonic receivers Z2 and Zs are arranged as if being towed underwater.
Ultrasonic pulses may be transmitted and received in the direction of the water surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の詳細な説明するだめの図、第2図は
超音波の送受波動作を説明するための図、第3図は水中
温度の算出を説明するだめの図、第4図はこの発明の実
施例、第5図はその動作を説明するための波形図を示す
。 1・・・・・・送信器、2・・・・・・送信器、3・・
・・・・A/D変換器、4・・・・・・入出力変換器、
5・・・・・・マイクロプロセッサ−16・・・・・・
記憶回路、7.8・・・・・・受信器、9.10・・・
・・・A/D変換器、11.12・・・・・・入出力変
換器、13、14.15・・・・・・記憶回路、16・
・・・・・水温検出器、17・・・入出力変換器、18
・・・・・・表示器、19・・・・・・入出力変換器 出願人  古野電気株式会社
Fig. 1 is a diagram for explaining the details of this invention, Fig. 2 is a diagram for explaining the transmission and reception of ultrasonic waves, Fig. 3 is a diagram for explaining calculation of water temperature, Fig. 4 5 shows an embodiment of the present invention, and FIG. 5 shows a waveform diagram for explaining its operation. 1... Transmitter, 2... Transmitter, 3...
...A/D converter, 4...Input/output converter,
5...Microprocessor-16...
Memory circuit, 7.8...Receiver, 9.10...
... A/D converter, 11.12... Input/output converter, 13, 14.15... Memory circuit, 16.
...Water temperature detector, 17...Input/output converter, 18
... Display device, 19 ... Input/output converter Applicant Furuno Electric Co., Ltd.

Claims (1)

【特許請求の範囲】 指向特性がペンシル状の鋭い超音波パルスをほぼ鉛直方
向に送波し水中の各点から帰来する反射波を受波する超
音波送受波器と、 該超音波送受波器に対して距離り。だけ異なる対称位置
にそれぞれ設けられ、上記超音波送受波器の送受波領域
を含む指向角を有し上記反射波を受波する第1、第2の
超音波受波器と、 上記超音波送受波器が受波する反射波と上記第1、第2
それぞれの超音波受波器が受波する反射波のうち共通な
反射点から到来する反射波を測定する第1、第2の時間
差測定回路と、 該第1、第2の時間差測定回路によって測定された時間
差の−うち共通な反射点から到来fる反射波の時間差を
互いに平均する平均化回路と、上記共通な反射点と表層
との間に温度変化境界を仮想して、該温度変化に対応す
る上記共通な反射点から上記第1あるいは第2超音波受
波器までの伝播経路を演算すると共に、該伝播経路の音
波伝播時間が上記平均化回路の平均時間に一致する温度
変化境界を検出する演算回路とを具備してなる水温測定
装置。
[Scope of Claims] An ultrasonic transducer that transmits sharp ultrasonic pulses with pencil-like directivity in a substantially vertical direction and receives reflected waves returning from various points in water, and the ultrasonic transducer distance from. first and second ultrasonic receivers that are respectively provided at different symmetrical positions and have directivity angles that include the wave transmitting and receiving area of the ultrasonic transducer and receive the reflected waves; The reflected waves received by the transducer and the first and second
First and second time difference measurement circuits that measure reflected waves arriving from a common reflection point among the reflected waves received by each ultrasonic receiver; and measurement by the first and second time difference measurement circuits. An averaging circuit that mutually averages the time difference between reflected waves arriving from a common reflection point, and a temperature change boundary between the common reflection point and the surface layer, and A propagation path from the corresponding common reflection point to the first or second ultrasonic receiver is calculated, and a temperature change boundary where the sound wave propagation time of the propagation path coincides with the averaging time of the averaging circuit is determined. A water temperature measuring device comprising a detection arithmetic circuit.
JP10214283A 1983-06-07 1983-06-07 Water temperature measuring device Granted JPS59226842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10214283A JPS59226842A (en) 1983-06-07 1983-06-07 Water temperature measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10214283A JPS59226842A (en) 1983-06-07 1983-06-07 Water temperature measuring device

Publications (2)

Publication Number Publication Date
JPS59226842A true JPS59226842A (en) 1984-12-20
JPH0160774B2 JPH0160774B2 (en) 1989-12-25

Family

ID=14319503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10214283A Granted JPS59226842A (en) 1983-06-07 1983-06-07 Water temperature measuring device

Country Status (1)

Country Link
JP (1) JPS59226842A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190940U (en) * 1987-05-29 1988-12-08
EP1203936A1 (en) * 2000-11-06 2002-05-08 Siemens Building Technologies AG Device and method for evaluating, with acoustic waves, the temperature of a room

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190940U (en) * 1987-05-29 1988-12-08
EP1203936A1 (en) * 2000-11-06 2002-05-08 Siemens Building Technologies AG Device and method for evaluating, with acoustic waves, the temperature of a room
US6726359B2 (en) 2000-11-06 2004-04-27 Siemens Building Technologies Ag Apparatus and method of detecting the room temperature by means of sound waves

Also Published As

Publication number Publication date
JPH0160774B2 (en) 1989-12-25

Similar Documents

Publication Publication Date Title
Aubauer et al. One-hydrophone method of estimating distance and depth of phonating dolphins in shallow water
KR101238387B1 (en) Towing tank using ultrasonic measurement of ice thickness measurement system and method
CN108169752B (en) Ultrasonic ranging method and system based on wireless communication
CN110082706A (en) It is a kind of based on delay inequality and phase difference and to be suitable for the asynchronous underwater single beacon method of clock
JPS59226842A (en) Water temperature measuring device
KR100979286B1 (en) Apparatus and method for detecting distance and orientation between objects under water
CN116754032A (en) Ultrasonic water meter and self-calibration method thereof
CN106443646B (en) A kind of ultrasonic ranging system, echo processing techniques and device
JPH03277987A (en) Ultrasonic range finder
JPH0720230A (en) Sonar depression angle controller
JPS58186067A (en) Distance measuring system
US5426617A (en) Long baseline tracking system
CN110596711A (en) High-precision ultrasonic ranging system and method
CN111337881B (en) Underwater target detection method utilizing propeller noise
CN208421209U (en) Three-dimensional space tracing positioning device based on ultrasonic wave and infrared ray
CN109407099A (en) A kind of ultrasonic ranging method and its system
JPH0156368B2 (en)
RU2810693C1 (en) Method for determining vertical angle of underwater object
JPS58184525A (en) Device for measuring temperature in water
JPS622182A (en) Underwater position measuring instrument
RU2654366C1 (en) Active sonar
JPS6344180B2 (en)
US3336800A (en) System for measuring sea surface characteristics from a submerged submarine
JPS62288586A (en) Acoustic position measuring system
JP2593949B2 (en) Weighing fish finder