JPS62288586A - Acoustic position measuring system - Google Patents

Acoustic position measuring system

Info

Publication number
JPS62288586A
JPS62288586A JP13187486A JP13187486A JPS62288586A JP S62288586 A JPS62288586 A JP S62288586A JP 13187486 A JP13187486 A JP 13187486A JP 13187486 A JP13187486 A JP 13187486A JP S62288586 A JPS62288586 A JP S62288586A
Authority
JP
Japan
Prior art keywords
sound source
region
angle
depth
theta4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13187486A
Other languages
Japanese (ja)
Other versions
JP2558637B2 (en
Inventor
Akiji Nagayama
長山 暁司
Hiroyoshi Nakajima
弘喜 中島
Kaoru Nakamura
薫 中村
Kiyoshi Kotanino
清 小谷野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Hitachi Ltd
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Japan Steel Works Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Hitachi Ltd
Priority to JP61131874A priority Critical patent/JP2558637B2/en
Publication of JPS62288586A publication Critical patent/JPS62288586A/en
Application granted granted Critical
Publication of JP2558637B2 publication Critical patent/JP2558637B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To estimate the depth, the distance and the bearing of a sound source and to perform positional limitation, by arranging a plurality of submerged receivers by utilizing a ship and reading an incident angle to draw a chart to measure the depth and distance of the sound source. CONSTITUTION:A plurality of submerged receivers are arranged by utilizing a ship. When the min. incident angle theta1 or theta4 from above and the min. incident angle theta2 or theta3 from below are calculated with respect to a horizontal reference plane, sea bottom angle-of-reflection theta2 > direct incident angle theta1 is formed in a region I and sea bottom angle-of-reflection theta3 < sea level angle-of-reflection theta4 is formed in a region II and, when it is judged whether an upper side is large or a lower side is large with respect to a horizontal plane in the relation between theta1 and theta2 and that between theta3 and theta4, it is cleared whether a receiving point is present in the region I or the region II with respect to a sound source. When the region is cleared, the position of the sound source of Fig. 2 can be calculated on a chart from the chart in the vicinity of the region and the seasonal sound velocity profile of a sea area on the basis of the aforementioned relation of theta1 and theta2 or theta3 and theta4.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔発明の利用分野〕 本発明は水中に存在する音源を聴知測位するパッシブ音
響測定法に係り、特に音源の深度を含めた6次元側位に
好適な、パッシブ音響測定方式に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a passive acoustic measurement method for audible positioning of a sound source existing underwater, and particularly relates to a six-dimensional measurement method including the depth of the sound source. This invention relates to a passive acoustic measurement method suitable for

〔発明の背景〕[Background of the invention]

従来の装置は、海洋音#研究会編;「海洋音響J4年音
響−基礎と応用−オ6部応用編矛8章音源の深川(パッ
シブ用法) P 256〜243(1984,3)の8
.4項「水中位置の測定J (P2S5)に記載されて
いるように、パッシブ音響測定においては、1組の測定
装置では音源の方位しか分からず、その距離を知る必要
がある場合には2組またはそれ以上の装置を用いて2個
所以上から方位を測り、交点を求めて位置局限するか、
トランスポンダの如く応答信号を用いた方法によってい
た。特に音源の深度を計測する場合は特公昭57−34
507 号公報に記載のように、ピンガ−等を用いて深
度情報を送出して、音源からの深度情報を利用した位置
局限の方式しかしながら、パッシブ音響測位の対象とす
るものの中には、音源が送出する深度情報を用いられな
いものもある。そのような中で目標音源の深度を局限す
ることは極めて困難であった。。
The conventional device is "Marine Sounds J4 Year Acoustics - Fundamentals and Applications - Part 6 Applied Edition Chapter 8 Fukagawa Sound Sources (Passive Usage)" edited by Marine Sound Research Group, pp. 8, 256-243 (1984, 3).
.. As described in Section 4 "Measurement of Underwater Position J (P2S5), in passive acoustic measurements, one set of measurement equipment can only determine the direction of the sound source, and if it is necessary to know the distance, two sets of measurement equipment are required. Or, use more devices to measure the direction from two or more locations, find the intersection, and localize the location.
The method used was a response signal similar to a transponder. Especially when measuring the depth of a sound source,
As described in Publication No. 507, a position localization method that uses depth information from a sound source by transmitting depth information using a pinger, etc. However, some of the targets of passive acoustic positioning include In some cases, the transmitted depth information cannot be used. Under such circumstances, it is extremely difficult to localize the depth of the target sound source. .

一方、この困難さを助長するものとして大きく影響して
いることに、水中音波の伝ばんに関する特徴的現象があ
る。特に海中においては、水温、水圧の影響を強く受け
、その伝はん特性は複雑な態様を示す。この−例をR,
J、 URICK著、土屋明訳;「水中音響の原理J 
P 153、才6.14図(共立出版KK、昭和53年
12月1日発行)、より引用して、1F+図に示す。同
図に示すように、f源の深度により伝ばん形態が異なる
。このような複雑な物理的現象が、水中における音響測
置の難しさを象徴している所以でもある。
On the other hand, there is a characteristic phenomenon related to the propagation of underwater sound waves that has a major influence on this difficulty. Particularly in the sea, it is strongly influenced by water temperature and water pressure, and its propagation characteristics exhibit complex aspects. This example is R,
J. URICK, translated by Akira Tsuchiya; “Principles of Underwater Acoustics J.
Quoted from P 153, Figure 6.14 (Kyoritsu Shuppan KK, published December 1, 1978), and shown in Figure 1F+. As shown in the figure, the propagation form differs depending on the depth of the f source. These complex physical phenomena represent the difficulty of underwater acoustic measurements.

〔発明の目的〕[Purpose of the invention]

本発明の目的は深度情報の提供されない音源を対象とし
て、海中の音波伝ばん形態から、音源の深度を含めた位
置局限を提供することにある。
An object of the present invention is to provide location localization including the depth of a sound source based on the propagation form of sound waves in the sea, for sound sources for which depth information is not provided.

〔発明の概要〕[Summary of the invention]

本願発明は上述した目的馨達成するために、垂直配列し
た受波器出方間の信号の位相を検出して、それの入射f
液中、水平基準点の上方および下方からの入射角度が最
小入射角θ8.θ、またはθ、・ θ4を判別し、これ
により音線図を描いて未知の音源Sの深度および水平距
離を求めるようにしたものである。
In order to achieve the above-mentioned object, the present invention detects the phase of the signal between the output sides of the vertically arranged receivers, and
In the liquid, the angle of incidence from above and below the horizontal reference point is the minimum angle of incidence θ8. θ, or θ,·θ4 is determined, and a sound line diagram is drawn based on this to determine the depth and horizontal distance of the unknown sound source S.

〔発明の実施例〕[Embodiments of the invention]

才1図に例示したように、音源の深度によっても、その
伝ばん形態は異なるが、音源と受波点の関係な矛2図を
用いてわかり易く説明する。
As illustrated in Figure 1, the propagation form differs depending on the depth of the sound source, but this will be explained in an easy-to-understand manner using Figure 2, which shows the relationship between the sound source and the receiving point.

牙2図は縦軸を深度、横軸を距離として音線を示したも
のであるが、受波点に入射する音線の中、受波点より上
(即ち浅い方)からの入射波と下(深い方)からの入射
波に着目すると領域■と領域■では状況が逆転する。特
に受波点への入射波に対して、受波点の水平方向を基準
として上方からの入射波の中最も入射角度の小さい音線
と、受波点の下方からの入射波の中最も入射角度の小さ
い上下各1本の計2本の音線のみに着目して、その垂直
入射角を用いて、その附近の海図を基にして音線な描け
ば、逆に音源深度を推測することが可能である。
Diagram 2 shows sound rays with depth on the vertical axis and distance on the horizontal axis, but among the sound rays that are incident on the receiving point, there are waves that are incident from above (i.e., shallower) than the receiving point. If we focus on the incident waves from below (deeper side), the situation is reversed in areas ■ and ■. In particular, for waves incident on the receiving point, the sound ray with the smallest incident angle among the waves coming from above with respect to the horizontal direction of the receiving point, and the one with the smallest incident angle among the waves coming from below the receiving point. By focusing only on two sound rays with small angles, one above and one above, and using their normal angle of incidence to draw the sound rays based on the nearby chart, it is possible to estimate the depth of the sound source. is possible.

また、従来の水平面内における複数個(最小2点)の受
波点の方位から交点を求める測距方式は、受波点の間隔
が目標点までの距離に対して短いことが一般的であり精
度の点で必らずしも良くはなかった。本発明によれば作
図を行なう場合、受波点は海底反射又は海面反射を含む
ために受波点および反射に鏡映される仮想受波点の2点
間がベースラインとみなされるために、1受波点であっ
ても距離算出精度は従来方式に比べて向上する効果があ
る。
In addition, in the conventional ranging method that calculates the intersection point from the orientation of multiple (minimum 2 points) receiving points in a horizontal plane, the interval between the receiving points is generally short compared to the distance to the target point. It wasn't necessarily good in terms of accuracy. According to the present invention, when drawing a diagram, since the receiving point includes seabed reflection or sea surface reflection, the point between the receiving point and the virtual receiving point reflected in the reflection is regarded as the baseline. Even with one receiving point, the distance calculation accuracy is improved compared to the conventional method.

上述のような方法に基いて、音源の深度を推定測位する
・ものであるが、水平方位については。
Based on the method described above, the depth of the sound source is estimated and positioned, but the horizontal direction is also determined.

参考文献(1)に例示されているように従来の方法によ
って求め得るので、従来の方式と併用して音源位置につ
いて、その深度、距離、方位が求まり真の意味で位置局
限を行なうことが可能である。以下、深度のみに着目し
た表現で説明する。
As exemplified in Reference (1), it can be determined using the conventional method, so when used in conjunction with the conventional method, the depth, distance, and direction of the sound source position can be determined, making it possible to perform true location localization. It is. In the following, description will be given using expressions focusing only on depth.

以下、本発明の一実施例を牙3図〜才4図により説明す
る。矛3図に示すように水中受波器は船腹等を利用して
複数個の受波器1を配列する。この個々の受波器の信号
出力間の相関をとり、垂直入射角度を決定する。水平基
準面に対して、上方からの最小入射角θ、又はθ4.下
方からの最小入射角θ、又はθ、を求めると1.?2図
において領域■では海底反射角θ、〉直接入射角θ。
Hereinafter, one embodiment of the present invention will be explained with reference to Figures 3 to 4. As shown in Figure 3, the underwater receiver uses a ship's belly or the like to arrange a plurality of receivers 1. The normal angle of incidence is determined by correlating the signal outputs of the individual receivers. The minimum angle of incidence θ from above with respect to the horizontal reference plane, or θ4. Determining the minimum angle of incidence θ or θ from below: 1. ? In Figure 2, in region ■, the seafloor reflection angle θ and the direct incidence angle θ.

となり、領域■では海底反射角θ、く海面反射角θ4と
なる。このθ、とθ、の関係、θ、と04の関係は水平
面に関して上側が大きいか下側が大きいかを判断すれば
才2図で音源に対して受波点が領域■にあるか、領域■
にあるか判明する。領域が判明すれば上述のθ、とθ、
又はθ、とθ4の関係よりその附近の海図と季節疋よる
その海域の音速プロファイルより、作図的に矛2図の音
源の位置を求めることができる。
Therefore, in region (2), the seafloor reflection angle is θ, and the sea surface reflection angle is θ4. The relationship between θ and θ, and the relationship between θ and 04 can be determined by determining whether the upper side or the lower side is larger with respect to the horizontal plane.
It turns out that there is. Once the area is known, the above θ, and θ,
Alternatively, from the relationship between θ and θ4, the position of the sound source in Figure 2 can be found graphically from the nearby nautical chart and the sound speed profile of the sea area depending on the season.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、水中受波器を船腹等を利用して複数個
配列し、入射角度を判読して作図により音源の深度と距
離を計測できるので、パッシブ音響位置測定において、
音源の深度、距離方位を推定でき、位置局限ができる効
果がある。
According to the present invention, it is possible to measure the depth and distance of a sound source by arranging a plurality of underwater receivers on the hull of a ship, interpreting the angle of incidence, and plotting, so in passive acoustic position measurement,
It has the effect of estimating the depth, distance and direction of the sound source, and localizing the location.

【図面の簡単な説明】[Brief explanation of drawings]

、?1図は音源の水深が異なる場合の音波伝ばん特性を
例示した説明図1,172図は本発明による音源の深度
を聴知するための音線による説明図、矛3図は受波器を
船慣等に配列a成した場合の、配列例を示す構成図、才
4図は本発明の一実J 151′11’Y示すシステム
構成のブロックダイヤグラムである。 S・・・音源、P、、 P、・・・受波器アレイ、θ8
.θ番人射角、A、△、■、■・・・音線、■、〜Vn
垂直出力、81〜8m水平出力、1・・・受波器、2・
・・入力端子、3−・増幅器、4・・・ビームフォーミ
ング回路、5・・・ビームフォーミンク回路、6・・・
モード検出回路、7・・・水平方位処理器、8・・・総
合処理器、9・・・表示器。
,? Figure 1 is an explanatory diagram illustrating the sound wave propagation characteristics when the water depth of the sound source is different, Figure 172 is an explanatory diagram using sound rays for sensing the depth of the sound source according to the present invention, and Figure 3 is an explanatory diagram illustrating the wave receiver. Figure 4 is a block diagram of a system configuration showing one embodiment of the present invention. S...Sound source, P...Receiver array, θ8
.. θ Keeper shooting angle, A, △, ■, ■... sound ray, ■, ~Vn
Vertical output, 81~8m horizontal output, 1... Receiver, 2.
...Input terminal, 3--Amplifier, 4... Beamforming circuit, 5... Beamforming circuit, 6...
Mode detection circuit, 7... Horizontal direction processor, 8... General processor, 9... Display device.

Claims (1)

【特許請求の範囲】[Claims] 船腹等に複数個の受波器を配列構成し、垂直配列した受
波器出力間の信号の位相を検出して、それの入射音波の
中、水平基準点の上方および下方からの入射角度が最小
となる最小入射角θ_1、θ_2またはθ_3、θ_4
を判別し、これより音線図を描いて未知の音源Sの深度
および水平距離を求めることを特徴とする音響位置測定
方式。
By arranging multiple receivers on the ship's hull, etc., and detecting the phase of the signal between the outputs of the vertically arranged receivers, we can determine the angle of incidence from above and below the horizontal reference point among the incident sound waves. Minimum angle of incidence θ_1, θ_2 or θ_3, θ_4
An acoustic position measurement method characterized by determining the depth and horizontal distance of an unknown sound source S by drawing a sound ray diagram from this.
JP61131874A 1986-06-09 1986-06-09 Sound source position measurement method Expired - Lifetime JP2558637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61131874A JP2558637B2 (en) 1986-06-09 1986-06-09 Sound source position measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61131874A JP2558637B2 (en) 1986-06-09 1986-06-09 Sound source position measurement method

Publications (2)

Publication Number Publication Date
JPS62288586A true JPS62288586A (en) 1987-12-15
JP2558637B2 JP2558637B2 (en) 1996-11-27

Family

ID=15068158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61131874A Expired - Lifetime JP2558637B2 (en) 1986-06-09 1986-06-09 Sound source position measurement method

Country Status (1)

Country Link
JP (1) JP2558637B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149864A (en) * 2010-01-22 2011-08-04 Oki Electric Industry Co Ltd Sound source position estimating device
JP2018031606A (en) * 2016-08-22 2018-03-01 株式会社Ihi Oscillation source position estimation method and oscillation source position estimation system
CN113671443A (en) * 2021-08-16 2021-11-19 西北工业大学 Deep sea target positioning method of underwater acoustic sensor network based on grazing angle sound ray correction
WO2023213052A1 (en) * 2022-05-05 2023-11-09 中国科学院声学研究所 Deep-sea sound source localization method, computer device and storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516278A (en) * 1978-07-21 1980-02-04 Giken Toreeteingu Kk Method of counting number of passengers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516278A (en) * 1978-07-21 1980-02-04 Giken Toreeteingu Kk Method of counting number of passengers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149864A (en) * 2010-01-22 2011-08-04 Oki Electric Industry Co Ltd Sound source position estimating device
JP2018031606A (en) * 2016-08-22 2018-03-01 株式会社Ihi Oscillation source position estimation method and oscillation source position estimation system
CN113671443A (en) * 2021-08-16 2021-11-19 西北工业大学 Deep sea target positioning method of underwater acoustic sensor network based on grazing angle sound ray correction
CN113671443B (en) * 2021-08-16 2024-04-16 西北工业大学 Hydroacoustic sensor network deep sea target positioning method based on glancing angle sound ray correction
WO2023213052A1 (en) * 2022-05-05 2023-11-09 中国科学院声学研究所 Deep-sea sound source localization method, computer device and storage medium

Also Published As

Publication number Publication date
JP2558637B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
Aubauer et al. One-hydrophone method of estimating distance and depth of phonating dolphins in shallow water
US7366056B2 (en) Depth sounding by acoustic pingers in a seismic spread
RU2634787C1 (en) Method of detecting local object against background of distributed interference
CN107167224B (en) A kind of measurement method of Ship Radiated-Noise
KR20120108823A (en) Line array sonar and method for detecting target bearing of the same
KR102374304B1 (en) Method and system for estimating a location of an unidentified submarine signal
KR20180096482A (en) Method for analyzing motion of underwater target
Zimmer Range estimation of cetaceans with compact volumetric arrays
Gebbie et al. Localization of a noisy broadband surface target using time differences of multipath arrivals
RU2350983C2 (en) Method for determination of object submersion depth
RU2541435C1 (en) Method of determining iceberg immersion
JPS62288586A (en) Acoustic position measuring system
US20070223311A1 (en) Device for Avoiding Obstacles for High-Speed Multi-Hulled Watercraft
KR101126694B1 (en) Hull sticking type sonar and ship having the same
Su et al. Influence of sound speed profile on source localization at different depths
Pinto Split-beam range-gated Doppler velocity sonar for operations at high altitude above the seabed
RU2713053C1 (en) Method for passive acoustic determination of the location of a diver
JPH0385476A (en) Sea bottom searching apparatus
RU2625041C1 (en) Method for measuring object immersion depth
RU140840U1 (en) MULTI-BEAM ECHO SOUNDER-2
JP6922262B2 (en) Sonar image processing device, sonar image processing method and sonar image processing program
RU2660292C1 (en) Method for determining object immersion depth
JP4211218B2 (en) Target discrimination method
JPH0720230A (en) Sonar depression angle controller
RU126146U1 (en) MULTI-BEAM Echo Sounder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term