JPS59226300A - Rotary fluid machine - Google Patents

Rotary fluid machine

Info

Publication number
JPS59226300A
JPS59226300A JP9945183A JP9945183A JPS59226300A JP S59226300 A JPS59226300 A JP S59226300A JP 9945183 A JP9945183 A JP 9945183A JP 9945183 A JP9945183 A JP 9945183A JP S59226300 A JPS59226300 A JP S59226300A
Authority
JP
Japan
Prior art keywords
fins
impeller
casing
labyrinth seal
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9945183A
Other languages
Japanese (ja)
Inventor
Shigeki Morii
茂樹 森井
Koji Nishimoto
西本 興治
Tatsuya Ogawa
達也 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9945183A priority Critical patent/JPS59226300A/en
Publication of JPS59226300A publication Critical patent/JPS59226300A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To restrain the oscillating power of labyrinth seal by a simple structure by a method wherein a plurality of fins are provided in a clearance between the outer surface of a cover or the like for an impeller and the surface of a casing, which is opposing to the outer surface, and a cavity is formed between the outside rims of respective fins and the surface of the casing. CONSTITUTION:A plurality of fins 12, extending radially in planes substantially vertical to the axial center of a rotary shaft 1, are provided in the clearance 10 between the outer surface of the cover 33 for the impeller 3 and the surface 22 of the casing, which is opposing to the outer surface of the cover 33, with predetermined intervals along the peripheral direction. A plurality of fins 13, extending radially in surfaces substantially vertical to the axial center of the rotary shaft 1, are also provided in the clearance 8 between the outer surface of the disc 31 and the surface 21 of the casing, which is opposing to the outer surface of the disc 31, with predetermined intervals along the peripheral direction. The cavities 14, 15 are formed between the outside rims of respective fins 12, 13 and the surfaces 22, 21 of the casing respectively. According to this method, the flow directions of leaked gas flowed into the clearances 8, 10 are regulated by respective fins 12, 13 to reduce the oscillating power generated in the labyrinth seals 6, 7.

Description

【発明の詳細な説明】 本発明は遠心圧縮機、遠心プロワ、遠心ファン、遠心ポ
ンプ等のインペラを有する回転流体機械に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotary fluid machine having an impeller, such as a centrifugal compressor, centrifugal blower, centrifugal fan, or centrifugal pump.

第1図は従来の多段遠心圧縮機の最終段を示す部分的縦
断面図で、(出1回伝軸、(3)は回転軸(1)に固定
されたインペラ、(2)はケーシング、(4)は回転軸
(1)とともに回転するスペーサ、(5)はインペラ(
3)の出口から吐出されたガスの動圧を静圧に変換する
ディフューザ、(6)(7)はケーシング(2)に固定
されたラビリンスシールを示す。回転軸(1)を駆動す
ると、回転軸(1)とともにイン投う(3)およびスは
−サ(4)が回転し、前段からのブfスはインペラ(3
)の入口04)から流入して、ディスク(3I)、カバ
ーO;9およびこれらの間に架橋されたプレー)” (
32によって限界される流路を流れる間に遠心力により
付勢され、インペラ(3)の出00mから吐き出され、
その大部分はディフューザ(5)に入って、ここでその
動圧が静圧に変換された後、圧縮機から吐出される。
Figure 1 is a partial longitudinal sectional view showing the final stage of a conventional multi-stage centrifugal compressor. (4) is a spacer that rotates together with the rotating shaft (1), and (5) is an impeller (
3) a diffuser that converts the dynamic pressure of the gas discharged from the outlet into static pressure; (6) and (7) indicate a labyrinth seal fixed to the casing (2). When the rotating shaft (1) is driven, the injector (3) and the spring (4) rotate together with the rotating shaft (1), and the bushing from the previous stage is driven by the impeller (3).
) from the inlet 04) of the disk (3I), the cover O;9 and the play bridged between them)'' (
While flowing through the flow path limited by 32, it is urged by centrifugal force and is discharged from the outlet 00m of the impeller (3),
Most of it enters the diffuser (5) where its dynamic pressure is converted into static pressure before being discharged from the compressor.

インペラ(3)の出口t3埼から吐出されたガスの1部
はディスク匈)の外面と対向するケーシング面tel)
との間隙(8)す矢印(9)のように流れて、ラビリン
スシール(6)に至り、ここで減勢されるが、その若干
量はこのラビリンスシール(6)を流フ1.″へして圧
縮機のガス吸込口に吸込まれる。また、インはう(3)
の出口0偵から吐出されたガスの他の1部はカバーO■
の外面と対向するケーシング面(221との間I竺0ω
を矢印(111のように流れてラビリンスシール(71
1C至りここで減勢されるが、その若干量はこのラビリ
ンスシール(7)を流過してインペラ(3)の入口(3
4)に流入する。
A part of the gas discharged from the outlet t3 of the impeller (3) is on the casing surface facing the outer surface of the disk t3).
The flow flows as shown by the arrow (9) between the gap (8) and the labyrinth seal (6), where the energy is reduced, but a small amount of the flow passes through the labyrinth seal (6) and flows through the labyrinth seal (6). '' and is sucked into the gas suction port of the compressor.
The other part of the gas discharged from the outlet 0 of the cover O
Between the outer surface of the casing surface (221) and the opposing casing surface (221)
Flows like the arrow (111) and labyrinth seal (71
1C, the power is reduced here, but some of it flows through this labyrinth seal (7) and enters the inlet (3) of the impeller (3).
4).

第2図にラビリンスシール(6)の詳細が示され、図の
左方の高圧側から流入したガスはストリップ(61)の
先端とスペーサ(4)との隙間を通って膨張室(62)
に入る際に膨張して減勢減圧され、以下これを繰返すこ
とによってガスの流出を制限するようになっているが、
この1彰脹室(62)内のガスはスペーサ(4)の回転
に伴って、その回転方向に向って円周方向に流れる。
Figure 2 shows the details of the labyrinth seal (6), and the gas flowing in from the high pressure side on the left side of the figure passes through the gap between the tip of the strip (61) and the spacer (4) and enters the expansion chamber (62).
When entering the gas, it expands, deenergizes and decompresses, and then repeats this process to restrict the outflow of gas.
The gas in this first expansion chamber (62) flows circumferentially in the direction of rotation of the spacer (4) as the spacer (4) rotates.

第6図は第2図のト」線に沿う断面図で、スペーサ(4
)即ち回転部の回転中心(0)が何らかの原因で距離(
e)だゆ偏心して(0′)になると、偏心した方向の隙
間(ハは狭くなり、反対方向の隙間(、q)は広<t、
cる。従って、膨張室(62)内を周方向に流れるガス
の流速は図の矢印の長さで示すように狭い隙間び)で最
も大きくなり、次第に大きくなって広い隙間(、q)で
最も小さくなる。そうすると、ガスの周方向流速が次第
に大きくなる右半分の隙間(A)を流れるガスの圧力は
周方向流速が次第に小さくなる左半部の隙間0)を流れ
るガスの圧力より大きくなり、この圧力差によって回転
部は(F)で示す力を受ける。この力(F)はガスの周
方向平均流速が大きい程大きくなり、また隙間内のガス
の平均圧力が大きい程大きくなる。
Figure 6 is a cross-sectional view taken along line G in Figure 2.
) In other words, for some reason, the center of rotation (0) of the rotating part may have a distance (
e) When the eccentricity becomes (0'), the gap in the eccentric direction (c) becomes narrower, and the gap in the opposite direction (, q) becomes wider < t,
Cru. Therefore, the flow velocity of the gas flowing in the circumferential direction inside the expansion chamber (62) is highest in the narrow gap (, q), as shown by the length of the arrow in the figure, gradually increases, and becomes the lowest in the wide gap (, q). . Then, the pressure of the gas flowing through the right half gap (A) where the circumferential flow velocity of gas gradually increases becomes greater than the pressure of the gas flowing through the left half gap 0) where the circumferential flow velocity gradually decreases, and this pressure difference The rotating part receives the force shown in (F). This force (F) increases as the circumferential average flow velocity of the gas increases, and also increases as the average pressure of the gas within the gap increases.

一方、第4図に示すようにラビリンスシール(6)の入
口で大きな周方向平均流速を持つガスはラビリンスシー
ルを流れる過程で曲線(A)に示されるように減速され
、小さな同方向平均流速を持つガスは曲線(B)に示さ
れるように増速されて、いずれも回転部の周速より小さ
いある定常な速度(clに収束する。インRう(3)の
出口(殉から出たガスは出口05)の周速とほぼ同じ周
速を持っており、この周速を持ったまま間隙(8)およ
び(10)を通ってラビリンスシール(6)または(7
)の人口に達するので、このガスの周速度はラビ1戸ン
ス(6)(710回転部の周速より犬きくナリ、従って
ラビリンスシールf61(71において発生するロータ
の励振力(F)は意外に大きくなり、また、ラビリンス
シール(6)(力内のガス圧力が所定値以上に大きくな
るとこの励振力(Flは回転軸(1)の軸受等の減衰で
は吸収できなくなる。
On the other hand, as shown in Figure 4, the gas having a large average flow velocity in the circumferential direction at the entrance of the labyrinth seal (6) is decelerated as shown in curve (A) in the process of flowing through the labyrinth seal, and has a small average flow velocity in the same direction. As shown in the curve (B), the gas is accelerated and converges to a certain steady velocity (cl) which is smaller than the circumferential speed of the rotating part. has a circumferential speed that is almost the same as the circumferential speed of exit 05), and the labyrinth seal (6) or (7) passes through the gaps (8) and (10) while maintaining this circumferential speed.
), the circumferential velocity of this gas is much faster than the circumferential velocity of the labyrinth seal f61 (710), so the excitation force (F) of the rotor generated at the labyrinth seal f61 (71) is unexpectedly large. If the gas pressure within the labyrinth seal (6) increases beyond a predetermined value, this excitation force (Fl) cannot be absorbed by the damping of the bearings of the rotating shaft (1).

不発ヴ1は上記問題点に対処するため、インペラのディ
スクまたは(および)カバーの外面とこれに対向するケ
ーシング面との間の間隙内に該インペラの鞠出口からラ
ビリンスシールの入口に至る漏れ流体の流れ方向を規制
する複截のフィンを設けろとともに、これらフィンの外
側縁と上記ケーシング面との間にドーナツ状の空胴部を
形成したことを特徴とする・rンベラを有する回転流体
機械に係り、その門口jとするところは、ラビリンスシ
ールにおいて発生ずる励振力をIii Qlな格造によ
って制振しようとす2:・ものである。
In order to address the above-mentioned problems, Misfire V1 is designed to prevent leakage fluid from the impeller ball outlet to the labyrinth seal inlet in the gap between the outer surface of the impeller disk or (and) cover and the opposing casing surface. A rotary fluid machine having a rotary fluid machine having a rotary roller, characterized in that a plurality of fins are provided to regulate the flow direction of the fluid, and a donut-shaped cavity is formed between the outer edge of these fins and the casing surface. The gate j is an attempt to dampen the excitation force generated in the labyrinth seal by means of a structure.

即ち、本発明においては、インペラのディスクまたは(
および)カバーの外面とこれに対向するケーシング面と
の間の間隙内に該インペラの出口からラビリンスシール
の入口に至る漏れ流体の流れ方向を規制する植欽のフィ
ンを設けるとともに。
That is, in the present invention, the impeller disk or (
and) providing planting fins within the gap between the outer surface of the cover and the opposing casing surface for regulating the flow direction of leakage fluid from the outlet of the impeller to the inlet of the labyrinth seal.

これらフィンの外liと上記ゲージング面との間ニドゞ
−ナツ状の2J11i、1部を形成したので、これらフ
・インにより漏れθ′IL体の周方向流速またはその圧
力を減少させ、かつ、これらフィンの近辺で一亘流体の
密度を濃くする。そしてこの・−17度の濃淡ができた
流体を空胴部に導いて、ここでその密度の濃淡を柔らげ
る。かくして上記間隙内の漏れ流体の乱れを整流した状
態でラビリンスシールの入口に導びくことかできるので
余分な山:れを減少できると同時に2ビリンスシールに
おいて発生する励振力を制振し、この線流1本機械の高
圧、高速度および高密度化に応えることかできろ。
Since a nut-shaped 2J11i is formed between the outer li of these fins and the gauging surface, these fins reduce the flow velocity in the circumferential direction of the leakage θ'IL body or its pressure, and The density of the fluid is temporarily increased near these fins. Then, this fluid with a density of -17 degrees is led to the cavity, where the density is softened. In this way, the turbulence of the leaked fluid in the gap can be guided to the entrance of the labyrinth seal in a rectified state, reducing the excess ridges and at the same time damping the excitation force generated in the two labyrinth seals, thereby reducing the linear flow. Can one machine respond to high pressure, high speed, and high density?

以下、本発明を第5図46よ7J”m6図に示す実施例
を蚕照しブよがら具体的にl兄明才る。第5図は本発明
を適用した多段遠心圧耗・j磯の最終段をボず部分的断
面図、第6図は第5図のVl −Vl線に沿う断面図で
ある。第5図および第6図において、第1図に示す部品
と同様の部品には同じ符号が付されている。インペラ(
3)のカバーク旬の外面に対向するケーシング面(2z
との間の1iIJ隙uO)内に回転軸(1)の軸心と略
直角な面内において放射方向に伸びるフィンazが周方
向に沿って所属間隔を置いて複数個設け、られ、ディス
クC31)の外面とこれに対向するケ−シング面シ1)
との間の間隙(8)内に回転軸(1)の軸心と略直角な
面内において放射方向に伸びるフィン(13)が周方向
に沿って所定間隔を置いて複数個設けられている。
Hereinafter, the present invention will be explained in detail by referring to the embodiments shown in Figs. 6 is a sectional view taken along the line Vl-Vl in FIG. 5. In FIGS. 5 and 6, parts similar to those shown in FIG. Impeller (
3) The casing surface (2z
A plurality of fins az extending in the radial direction in a plane substantially perpendicular to the axis of the rotating shaft (1) are provided at intervals along the circumferential direction in the gap 1iIJ (uO) between the disk C31 and the disk C31. ) and the opposing casing surface 1)
A plurality of fins (13) extending radially in a plane substantially perpendicular to the axis of the rotating shaft (1) are provided at predetermined intervals along the circumferential direction in the gap (8) between the rotating shaft (1) and the rotating shaft (1). .

そして、フィン02)の外nJ緑とケーシング面(社)
との間に空胴部11.4)が形成され、フィン(13)
の外側縁とケーシング面(2υとの間に空胴部0■が形
成されている。空胴部t14)とラビリンスシール(7
)の入口との間には周方向に所定間隔をおいて複数個の
穴a01が設ケラれ、空胴部a乾うビリンスシール(6
)の入口との間には周方向に所定間隔をおいて複数個の
穴07)が設けられている。
And fin 02) outside nJ green and casing surface (sha)
A cavity 11.4) is formed between the fins (13) and
A cavity 0■ is formed between the outer edge of the casing surface and the casing surface (2υ. The cavity t14) and the labyrinth seal (7
) A plurality of holes a01 are provided at predetermined intervals in the circumferential direction between the inlet of the cavity a and the drying billinth seal (6
) A plurality of holes 07) are provided at predetermined intervals in the circumferential direction.

インペラ(3)の出口C3ωから漏れるガスはインペラ
(3)の出口05)の風速と略同−の周方向速度をもっ
てケーシング面(2zとカバー例とのnJJ 隙(10
)及びケーシング面圓とディスク丙)との間隙(8)に
流入し、周方向に流れようとするが、フィン(12(1
3)にぶつがり回転軸(1)と直角な半径方向の流れに
変更される。そして、これらフィンα21(t3+の近
辺で一亘漏れガスの密度が濃くなり、この密度の濃淡が
できた漏れガスを空胴部04)0ω内に導いて、こごで
その密度の濃淡を柔らげ整流した後人(1G)θDを経
て、ラビリンスシール(61(71の入口に導びく。間
隙(8)(10)K流入した漏れガスをフィンa2)θ
〜によって、その流れ方向を規制するので、ラビリンス
シール(6)(力内の周方向の流速は第4図の(B)の
ような形になり、ラビリンスシール(6)(7)に発生
する励振力(Flは低減される。
The gas leaking from the outlet C3ω of the impeller (3) has a circumferential velocity that is approximately the same as the wind speed at the outlet 05 of the impeller (3), and the gas leaks from the nJJ gap (10
) and the gap (8) between the casing surface and the disk C), and tries to flow in the circumferential direction, but the fin (12 (1)
3) The flow is changed to a radial direction perpendicular to the axis of rotation (1). Then, the density of the leaking gas increases in the vicinity of these fins α21 (t3+), and the leaking gas with this density density is guided into the cavity 04) 0ω, and the density is softened by the fin α21 (t3+). After rectifying the flow, the gas is guided to the entrance of the labyrinth seal (61 (71) through the gap (1G) θD.
Since the flow direction is regulated by ~, the flow velocity in the circumferential direction within the labyrinth seal (6) (force) becomes as shown in Figure 4 (B), and occurs at the labyrinth seals (6) and (7). The excitation force (Fl) is reduced.

故に、ロータの振動に関する安定度が増大され、高圧、
高速度、高密度化に対する振動の許容度が大きくなる。
Therefore, the stability with respect to rotor vibration is increased, and the high pressure,
Vibration tolerance increases for high speeds and high densities.

そして、フィン(12+031で流れ方向を規制すると
同時にそのガスを空胴部04)(15)に導いて、その
乱れを整流できるので、余分な漏れも減少できる。
The flow direction is regulated by the fins (12+031) and at the same time the gas is guided to the cavity 04) (15) to rectify the turbulence, thereby reducing excess leakage.

このようなフィンを設けて最も効果が))る個所は高圧
で圧力比が大ぎいンビリンスパッキン(6)への漏れ流
体流路、即ち最終段のディスクC1υ側のケーシング面
シDとの隙間であり、またこの個所だけに設けても効果
がある。
The location where such fins are most effective is the leakage fluid flow path to the ambilin packing (6) where the pressure is high and the pressure ratio is large, that is, the gap between the final stage disc C1υ side and the casing surface D. , and it is also effective even if it is provided only in this location.

第7図は本発明の第2の実施例を示す第6図に相当する
1υi面図である。フィンQ31は回転軸(1)の回転
方向にス・ξイラル状に伸長せしめられていて、インペ
ラ(3)の回転との相乗効果によって隙間(8)内の洩
れガスをディフューザ(5)の方へ戻そうとする。
FIG. 7 is a 1υi plane view corresponding to FIG. 6 showing a second embodiment of the present invention. The fins Q31 extend in a spiral shape in the direction of rotation of the rotating shaft (1), and by a synergistic effect with the rotation of the impeller (3), leak gas in the gap (8) is directed toward the diffuser (5). trying to return to.

従って、ラビリンスシール(6)の入口でのガスの周方
向の流速が小さくなり、がっ、漏れ量も小さくすること
かできる。
Therefore, the flow velocity of the gas in the circumferential direction at the entrance of the labyrinth seal (6) is reduced, and the amount of leakage can also be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の多段遠心H:、縮俄の最終段を示す部分
的縦断面図、第2図は同上のラビリンスシールの断面図
、第6図イま第2図の]1ト1線に沿う断面図、第4図
はラビリンスシール内の周方向の平均流速の変化を示す
線図である。第5図は本発明を多1i遠心圧縮機に適用
した1実施例の最終段を示−4゛部分的縦断面図、第6
図は第5図のVl −VT線に沿う断面図である6第7
図は本発明の他の実施例を示す第6図に対応す′Z)図
である。 インペラ・・・(3)、 ディスク・・・c(1)、 
カバー・・匂、ケーシング面・・・(2i1(22)、
 インペラの出口10.(ト)、ラビリンスシール・・
・(G)(7)、  フィン・・・f12)03)、空
胴部・・・tl 4)IJ51 鬼2図
Figure 1 is a partial vertical sectional view showing the final stage of the conventional multi-stage centrifugal H:, Figure 2 is a cross-sectional view of the same labyrinth seal as above, Figure 6 is the line shown in Figure 2. FIG. 4 is a diagram showing changes in average flow velocity in the circumferential direction within the labyrinth seal. Fig. 5 shows the final stage of an embodiment in which the present invention is applied to a multi-I centrifugal compressor.
The figure is a cross-sectional view taken along the Vl-VT line in Figure 5.
The figure is a 'Z) diagram corresponding to FIG. 6 showing another embodiment of the present invention. Impeller...(3), Disc...c(1),
Cover...Odor, Casing surface...(2i1(22),
Impeller outlet 10. (G), Labyrinth Seal...
・(G)(7), Fin...f12)03), Cavity...tl 4) IJ51 Demon 2 figure

Claims (1)

【特許請求の範囲】[Claims] インペラのグイスフまたは(および)カバーの外面とこ
れに対向するケーシング面との間の間隙内に該インペラ
のの出口からラビリンスシールの入口に至る。届れ流体
の流れ方向を規制する複数のフィンを設けるとともに、
これらフィンの外画縁と上記ケーシング面との間にド−
ナツ状の空胴部を形成したことを特徴とするインペラを
有する回転流体機械。
The outlet of the impeller leads to the inlet of the labyrinth seal in the gap between the outer surface of the impeller or cover and the opposing casing surface. In addition to providing multiple fins to regulate the flow direction of the delivered fluid,
There is a dot between the outer edge of these fins and the casing surface.
A rotary fluid machine having an impeller characterized by forming a nut-shaped cavity.
JP9945183A 1983-06-06 1983-06-06 Rotary fluid machine Pending JPS59226300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9945183A JPS59226300A (en) 1983-06-06 1983-06-06 Rotary fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9945183A JPS59226300A (en) 1983-06-06 1983-06-06 Rotary fluid machine

Publications (1)

Publication Number Publication Date
JPS59226300A true JPS59226300A (en) 1984-12-19

Family

ID=14247703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9945183A Pending JPS59226300A (en) 1983-06-06 1983-06-06 Rotary fluid machine

Country Status (1)

Country Link
JP (1) JPS59226300A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5520507A (en) * 1994-05-06 1996-05-28 Ingersoll-Rand Company Method and apparatus to achieve passive damping of flow disturbances in a centrifugal compressor to control compressor surge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5520507A (en) * 1994-05-06 1996-05-28 Ingersoll-Rand Company Method and apparatus to achieve passive damping of flow disturbances in a centrifugal compressor to control compressor surge
US5536141A (en) * 1994-05-06 1996-07-16 Ingersoll-Rand Company Method and apparatus to achieve passive damping of flow disturbances in a centrifugal compressor to control compressor surge

Similar Documents

Publication Publication Date Title
US3251601A (en) Labyrinth seal
US6129507A (en) Method and device for reducing axial thrust in rotary machines and a centrifugal pump using same
US4767266A (en) Sealing ring for an axial compressor
RU2616428C2 (en) Labyrinth seal of spiral and mixed spiral cylindrical configuration with high damping capacity
US3575523A (en) Labyrinth seal for axial flow fluid machines
US8444379B2 (en) Sealing device for rotary fluid machine, and rotary fluid machine
US20120163742A1 (en) Axial gas thrust bearing for rotors in rotating machinery
JPH0424523B2 (en)
US20180291928A1 (en) Methods and devices for reducing circumferential pressure imbalances in an impeller side cavity of rotary machines
JP2003314496A (en) Centrifugal compressor
WO2018061651A1 (en) Seal mechanism and rotary machine
US2806645A (en) Radial diffusion compressors
JP5067928B2 (en) Axial flow turbomachine
JPS59226300A (en) Rotary fluid machine
JPS59226299A (en) Rotary fluid machine
JP3103213B2 (en) Turbine expander and its hydrostatic thrust gas bearing
JPH0719005A (en) Labyrinth seal device
JP2756118B2 (en) Single shaft multi-stage centrifugal compressor
JP3136737B2 (en) Multi-plate laminar flow fan
JP2015135083A (en) Sealing device and rotary machine
JP6662661B2 (en) Seal structure and turbo machinery
JP3225197B2 (en) Rotating stall suppression device for fluid machinery
JPS6316938Y2 (en)
JPH0913905A (en) Turbine
SU579439A1 (en) Method of throttling working fluid in the labyrinth seal of a turbine