JPS59226299A - Rotary fluid machine - Google Patents

Rotary fluid machine

Info

Publication number
JPS59226299A
JPS59226299A JP9945083A JP9945083A JPS59226299A JP S59226299 A JPS59226299 A JP S59226299A JP 9945083 A JP9945083 A JP 9945083A JP 9945083 A JP9945083 A JP 9945083A JP S59226299 A JPS59226299 A JP S59226299A
Authority
JP
Japan
Prior art keywords
impeller
gas
casing
disc
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9945083A
Other languages
Japanese (ja)
Inventor
Shigeki Morii
茂樹 森井
Koji Nishimoto
西本 興治
Tatsuya Ogawa
達也 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9945083A priority Critical patent/JPS59226299A/en
Publication of JPS59226299A publication Critical patent/JPS59226299A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To restrain an oscillating power generated in a labrinth seal and permit to respond the tendency of high pressure, high speed and high density of the rotary fluid machine by a method wherein a plurality of fins, regulating the flow direction of leaked fluid, are protruded on the surface of a casing, which is opposing to the disc or the cover of an impeller. CONSTITUTION:The fins 12, 13, positioned in surfaces vertical to the axial center of a rotary shaft 1 and extended into the radial directions respectively, are protruded shaft 1 and extended into the radial directions respectively, are protruded on the surface 22 of a casing opposing to the cove 33 of the impeller 3 as well as the surface 21 of the casing opposing to the disc 31 along the peripheral direction toward the cover 33 and the disc 31 with predetermined intervals. Gas, leaked from the outlet port 35 of th e impeller 3, flows into a clearance 10 between the surface 21 of the casing and the cover 33 as well as the clearance 8 between the surface 21 of the same and the disc 31 and tries to flow into the peripheral direction, however, it collides against the fins 12, 13 and the flow direction of the gas is changed into the radial direction orthogonal to the rotary shaft 1. Thereafter, the gas enters into the labyrinth seals 6, 7 without changing it's flow direction and reduces the oscillating power generated in the seals 6, 7.

Description

【発明の詳細な説明】 本発明は遠心圧X’lfi機、遠心ゾロ7、遠心ファン
、遠心ポンプ等のインペラを有する回転流体機械に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotary fluid machine having an impeller, such as a centrifugal X'lfi machine, a centrifugal Zorro 7, a centrifugal fan, or a centrifugal pump.

第1図は従来の多段遠心圧縮機の最終段を示す部分的縦
断1n珪ろで、(1)は回転軸、(3)は回転軸(1)
に固定されたインパラ、(2)はケーシング、(4)は
回転軸(1)とともに回転するスペーサ、(5)はイン
ペラ(3)の出口から吐出されたガスの動圧を静圧に変
換するプイフユー−!J、(6)(7)はケーシング(
2)に固定されたラビリンスシールを示す。回転!i′
liI (11”a: )A動・すると、回転軸(1)
とともにイン啄う(3)およびスペーサ(4)が回転し
、前段からのガスはインペラ(3)の入口(34)から
流入して、ディスク(31)、カバー(3:0およびこ
れらの間に架橋されたプレート” り3Zによって限界
される流路を流れる間に遠心力により付勢され、インペ
ラ(3)の出口(E5)から吐き出され、その大部分は
ディフューザ(5)に入ってここでその動圧が静圧に変
換された後、圧縮機から吐出される。
Figure 1 shows a partial longitudinal section of the final stage of a conventional multi-stage centrifugal compressor.
(2) is the casing, (4) is a spacer that rotates with the rotating shaft (1), and (5) converts the dynamic pressure of the gas discharged from the outlet of the impeller (3) into static pressure. Puifuyou! J, (6) (7) are casing (
2) shows the labyrinth seal fixed. rotate! i′
liI (11”a: ) A movement, then rotation axis (1)
At the same time, the impeller (3) and the spacer (4) rotate, and the gas from the previous stage flows in from the inlet (34) of the impeller (3) and passes through the disk (31), the cover (3:0), and the spacer (3:0) between them. While flowing through the flow path bounded by the cross-linked plates 3Z, it is biased by centrifugal force and is discharged from the outlet (E5) of the impeller (3), the majority of which enters the diffuser (5) where it is discharged. After the dynamic pressure is converted into static pressure, it is discharged from the compressor.

インはう(3)の出口09から吐出されたガスの1部は
ディスク((+1と対向するケーシング面シ1)との隙
間(8)を矢印(9)のように流れてラビリンスシール
(6)に至り、ここで減勢されるが、その若干h(はこ
のラビリンスシール(6)を流過して圧縮機のガス吸込
口に流入する。また、インペラ(3)の出口(3つから
吐出されたガスの他の1部はカバーぐ1勺と対向するケ
ーシング面(鍾どの隙間(10)を矢印+tUのように
流れてラビリンスシール(7)に至りここで減勢される
が、その若干一段はこのラビリンスシール(7)を流通
してインペラ(3)の入口(:+i>に流入する。
A part of the gas discharged from the outlet 09 of the inlet (3) flows through the gap (8) between the disk (casing surface 1 facing (+1)) as shown by the arrow (9), and flows into the labyrinth seal (6). ), and the energy is reduced here, but some of it (h) flows through this labyrinth seal (6) and flows into the gas suction port of the compressor. The other part of the discharged gas flows as shown by the arrow +tU through the gap (10) between the casing and the casing facing the cover, reaches the labyrinth seal (7), and is deenergized here. Some one stage flows through this labyrinth seal (7) and flows into the inlet (:+i>) of the impeller (3).

第2図にラビリンスシール(6)の、j’p、l’ll
+が示され、図の左方の高圧側から流入したガスはスト
リップ(61)の先端とスに一す(4)との隙間を通っ
て膨張室(62)に入る際に膨張して減勢減圧され、以
下これを縁返すことによってガスの流出をi[ilj限
するようになっているが、この膨張ff1(62)内の
ガスはスペーサ(4)の回転に伴って円周方向に流れる
Figure 2 shows the labyrinth seal (6), j'p, l'll.
+ is shown, and the gas flowing in from the high pressure side on the left side of the figure expands and decreases as it enters the expansion chamber (62) through the gap between the tip of the strip (61) and the strip (4). The pressure in the expanded ff1 (62) is reduced, and the outflow of the gas is limited by turning it over, but the gas in this expanded ff1 (62) expands in the circumferential direction as the spacer (4) rotates. flows.

第6図は第2図の1ト」線に沿う[(J1面図で、スペ
ーサ(4)即ち回転部の回転中心(0)が伺らかの原因
で距離(e)だけ偏心して(0′)になると、偏心した
方向の隙間(flは狭<ソヨウ、反対方向の隙間(ソ)
は広くなる。従って、膨1]良室(62)内を周方向に
流れるガスの流速は図の矢印の長さで示すように狭い隙
間(イ)で最も大ぎくなり、次第に大きくなって広い隙
間(り)で最も小さくなる。
Figure 6 is a view along line 1 of Figure 2, where the center of rotation (0) of the spacer (4), that is, the rotating part, is eccentric by a distance (e) (0) due to some reason. '), the gap in the eccentric direction (fl is narrow < so, and the gap in the opposite direction (so)
becomes wider. Therefore, the flow velocity of the gas flowing in the circumferential direction in the expansion 1] good chamber (62) is greatest in the narrow gap (a), as shown by the length of the arrow in the figure, and gradually increases until the wide gap (ri). becomes the smallest.

そうすると、ガスの周方向流速が次第に大きくなる右半
部の隙間(/、、)を流れるガスの圧力は周方向流速が
次第に小さくなる左半分の隙間0)を流れるガスの圧力
より大きくなり、この圧力差によって回転部は(F)で
示す力を受ける8 この力(F)はガスの周方向平均流速が大きい程太きく
なり、また、隙間内のガスの平均圧力カー大きい程大き
くなる。
Then, the pressure of the gas flowing through the right half gap (/, ,) where the circumferential flow velocity of gas gradually increases becomes greater than the pressure of the gas flowing through the left half gap (0) where the circumferential flow velocity gradually decreases. Due to the pressure difference, the rotating part receives a force shown by (F)8. This force (F) increases as the circumferential average flow velocity of the gas increases, and also increases as the average pressure of the gas in the gap increases.

一方、第4図に示すようにラビリンスシール(6)の入
口で大きな周方向平均流速を持つガスは曲線(A)に示
されるように減速され、小さな周方向平均流速を持つガ
スは曲線(B)に示されるように増速されていずれも回
転部の周速より小さいある定常な速度(c)に収束する
On the other hand, as shown in Figure 4, the gas having a large circumferential average flow velocity at the entrance of the labyrinth seal (6) is decelerated as shown by curve (A), and the gas having a small circumferential average flow velocity is decelerated by curve (B). ), the speed increases and converges to a certain steady speed (c) which is smaller than the circumferential speed of the rotating part.

インペラ(3)の出口C(5)から出たガスは出口0(
ト)の周速とほぼ同じ周速を持っており、この周速を持
ったまま隙間(8)および(10)を通ってラビリンス
シール(6)または(7)の入口に達するので、このガ
スの周速度はラビリンス(6バ7)の回転部の周速より
大きくなり、従ッてラビリンスシール(6)(7)にお
いて発生−f−るロータの励振力(F)は;へ外に大き
くなり、また、ラビリンスシール(6)(7)内のガス
圧力が所定値以上に太き(なるとこの励伽力(Flは回
転軸(11の軸受等の減衰では吸収できなくなる。
The gas coming out from the outlet C (5) of the impeller (3) is the outlet 0 (
The gas has a circumferential speed that is almost the same as the circumferential speed of the labyrinth seal (6) or (7). The circumferential speed of is greater than the circumferential speed of the rotating part of the labyrinth (6 bar 7), so the excitation force (F) of the rotor generated at the labyrinth seals (6) and (7) is significantly larger than that of the rotor. Also, if the gas pressure in the labyrinth seals (6) and (7) increases beyond a predetermined value, this excitation force (Fl) cannot be absorbed by the damping of the rotating shaft (11 bearings, etc.).

本発明は上記問題点に対処するため、インはうのディス
クまたは(および)カバーに対向するケーシング面に該
インペラのの出口からラビリンスシールの入口に至る漏
れ流体の流れ方向を規制する複数のフィンを突設したこ
とを特徴とするインペラを有する回転流体機械に係り、
その目的とするところは、ラビリンスシールにおいて発
生する励振力を簡単な構造によって制振しようとするも
のである。
In order to address the above-mentioned problems, the present invention provides a plurality of fins on the casing surface facing the inner disk or/and cover for regulating the direction of flow of leakage fluid from the outlet of the impeller to the inlet of the labyrinth seal. This invention relates to a rotary fluid machine having an impeller characterized by protruding from the
The purpose is to dampen the excitation force generated in the labyrinth seal with a simple structure.

即ち、本発明においては、インはうのディスクまたは(
および)カバーに対向するケーシング面に該インはうの
出口からラビリンスシールの入口に至る温れ流体の流れ
方向を規制′4−るイヌ截のフィンを突設するという極
めて簡単な措造によりラビリンスの入口におげろ流体の
周方向流速またはその圧力を減少させることができ、こ
れによって、ラビリンスシールにおいて発生する励振力
を制振し、この種流体機械の高圧、高速度および高密度
化に応えることができる1、 以下、本発明を第5図以下に示す実施例を参照しながら
具体的に説明する。第5図は不発明を適用した多段遠心
圧縮機の最終段を示す部分的断面図、第6図は第5図の
vt −vr 糾に沿う断面図である。第5図および第
6図において、第1図に示す部品と同様の部品には同じ
符号が付されている。
That is, in the present invention, an in-cover disk or (
and) A labyrinth is created by an extremely simple structure in which dog-shaped fins are protruded from the casing surface facing the cover to regulate the flow direction of the warm fluid from the outlet of the inner cavity to the inlet of the labyrinth seal. It is possible to reduce the circumferential flow velocity of the fluid or its pressure at the inlet of the labyrinth seal, thereby suppressing the excitation force generated in the labyrinth seal, and responding to the high pressure, high speed, and high density of this type of fluid machine. 1. Hereinafter, the present invention will be specifically explained with reference to the embodiments shown in FIG. 5 and below. FIG. 5 is a partial sectional view showing the final stage of a multi-stage centrifugal compressor to which the invention is applied, and FIG. 6 is a sectional view taken along the vt-vr line in FIG. In FIGS. 5 and 6, parts similar to those shown in FIG. 1 are given the same reference numerals.

インペラ(3)のカバーC33+に対向するケーシング
面(わ及びディスク(31)に対向するケーシング面(
21)にそれぞれ回転軸(1)の軸心と略直角な面内に
おいて放射方向に伸びるフィン+t2′l、o3が周方
向に沿って所定間隔を置いてカバー(ト)、ディスク(
31)に向って突設されている。
The casing surface facing the cover C33+ of the impeller (3) and the casing surface facing the disc (31)
21), fins +t2'l and o3 extending in the radial direction in a plane substantially perpendicular to the axis of the rotating shaft (1) are arranged at predetermined intervals along the circumferential direction to cover (g), disk (
31).

インSう(3)の出口(3[F]から漏れるガスはイン
ペラ(3)の出口(39の周速と略同−の周方向速度を
もってケーシング面21)とカバー433)との隙間(
10)及びケーシング面CJI)とディスク(31)と
の隙j1旧8)に流入し、周方向に流れようとするが、
フィン(12)!1.3+にぶつかり回転軸(1)と直
角な半径方向の流÷1に変更され、そのままラビリンス
シール(6)(7)に入る。
The gas leaking from the outlet (3 [F] of the inlet S (3) is leaked from the gap between the outlet of the impeller (3) (the casing surface 21 at a circumferential speed approximately the same as the circumferential speed of the impeller (39) and the cover 433) (
10) and the gap j1 old 8) between the casing surface CJI) and the disk (31) and tries to flow in the circumferential direction,
Finn (12)! 1.3+, the flow is changed to radial direction perpendicular to the rotation axis (1) divided by 1, and enters the labyrinth seals (6) and (7).

よってラビリンスシール(6)(7)内の周方向の流速
は第4図の(B)のような形になり、ラビリンスシール
f6)(7)に発生する励振力(F)は低減される。
Therefore, the flow velocity in the circumferential direction in the labyrinth seals (6) and (7) becomes as shown in FIG. 4 (B), and the excitation force (F) generated in the labyrinth seals f6 and (7) is reduced.

故に、ロータの振動に関する安定度が増大され、高圧、
高速度、高密度比に対する振動の許容度が大きくなる。
Therefore, the stability with respect to rotor vibration is increased, and the high pressure,
Greater vibration tolerance for higher speeds and higher density ratios.

このようなフィンを設けて最も効果がある個所は高圧で
圧力比が大きいラビリンスパツキン(6)への漏れ液体
流路、即ち最終段のディスク(3I)側のケーシング面
QDとの隙間であり、またこの個所だけに設けても効果
がある。
The location where such fins are most effective is the leakage liquid flow path to the labyrinth packing (6) where the pressure is high and the pressure ratio is large, that is, the gap between the casing surface QD on the final stage disk (3I) side, Moreover, it is effective even if it is provided only at this location.

第7図は本発明の第2の実施例を示す第6図に相当する
断面図である。フィン(13)は回転軸(1)の回転方
向にスノξイラル状に伸長せしめられていて、インペラ
(3)の回転との相乗効果によって隙間(8)内の洩れ
ガスをディフューザ(5)の方へ戻そうとする。
FIG. 7 is a sectional view corresponding to FIG. 6 showing a second embodiment of the present invention. The fins (13) are extended in the rotational direction of the rotating shaft (1) in a sno-irial shape, and the synergistic effect with the rotation of the impeller (3) allows leakage gas in the gap (8) to be directed to the diffuser (5). Trying to get it back.

従って、ラビリンスシール(6)の入口でのガスの周方
向の流速が小さくなり、かつ、漏れ量も小さくすること
ができる。
Therefore, the flow velocity of the gas in the circumferential direction at the entrance of the labyrinth seal (6) is reduced, and the amount of leakage can also be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の多段遠心圧縮機の最終段を示す部分的縦
断面図、第2図は同上のラビリンスシールの断面図、第
6図は第2図の■−■線に沿う断面図、第4図はラビリ
ンスシール内の周方向の平均流速の変化を示す線図であ
る。第5図は本発明を多段遠心圧縮機に適用した1実施
例の最終段を示す部分的縦断面図、第6図は第5図のV
I−VI線に沿う断面図である。第7図は本発明の他の
実施例を示す第6図に対応する図である。 イン<−i・・・(3)、 ディスク・・・C31)、
  カッz−・・・(ハ)、ケーシング面・・・t2+
)(2″IJ、 インペラの出口・・・(ハ)、ラビリ
ンスシール・・・(Gl(71、フィン・・・(12)
(131復代理人 弁理士 岡 本 重 窯 外2名 第2図 L■ 第5図
Fig. 1 is a partial longitudinal cross-sectional view showing the final stage of a conventional multi-stage centrifugal compressor, Fig. 2 is a cross-sectional view of the same labyrinth seal as above, Fig. 6 is a cross-sectional view taken along the line ■-■ in Fig. 2, FIG. 4 is a diagram showing changes in average flow velocity in the circumferential direction within the labyrinth seal. FIG. 5 is a partial vertical sectional view showing the final stage of an embodiment in which the present invention is applied to a multistage centrifugal compressor, and FIG.
It is a sectional view along the I-VI line. FIG. 7 is a diagram corresponding to FIG. 6 showing another embodiment of the present invention. In<-i...(3), Disk...C31),
Kaz-...(c), casing surface...t2+
) (2″IJ, Impeller outlet...(c), Labyrinth seal...(Gl(71, Fin...(12)
(131 Sub-agent Patent attorney Shige Okamoto 2 people outside the kiln Figure 2 L ■ Figure 5

Claims (1)

【特許請求の範囲】[Claims] インペラのディスクまたは(および)カバーに対向する
ケーシング面に該インペラのの出口からラビリンスシー
ルの入口に至る漏れ流体の流れ方向を規制する代数のフ
・インを突設したことを特徴とするインペラを有する回
転流体機械。
The impeller is characterized in that a casing surface facing the impeller disk or (and) cover is provided with an algebraic fin protruding from the impeller's outlet to the labyrinth seal's inlet for regulating the direction of flow of leakage fluid. Rotating fluid machine with.
JP9945083A 1983-06-06 1983-06-06 Rotary fluid machine Pending JPS59226299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9945083A JPS59226299A (en) 1983-06-06 1983-06-06 Rotary fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9945083A JPS59226299A (en) 1983-06-06 1983-06-06 Rotary fluid machine

Publications (1)

Publication Number Publication Date
JPS59226299A true JPS59226299A (en) 1984-12-19

Family

ID=14247680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9945083A Pending JPS59226299A (en) 1983-06-06 1983-06-06 Rotary fluid machine

Country Status (1)

Country Link
JP (1) JPS59226299A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336048A (en) * 1992-12-22 1994-08-09 Goulds Pumps, Incorporated Fluid directing device for seal chamber
WO2008149704A1 (en) * 2007-06-06 2008-12-11 Mitsubishi Heavy Industries, Ltd. Seal device for rotary fluid machine and rotary fluid machine
WO2008149773A1 (en) * 2007-06-06 2008-12-11 Mitsubishi Heavy Industries, Ltd. Seal device for rotary fluid machine and rotary fluid machine
JP2013117225A (en) * 2011-12-05 2013-06-13 Nuovo Pignone Spa Turbo machine
WO2016097563A1 (en) * 2014-12-19 2016-06-23 Valeo Systemes De Controle Moteur Compressor having a sealing system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336048A (en) * 1992-12-22 1994-08-09 Goulds Pumps, Incorporated Fluid directing device for seal chamber
WO2008149704A1 (en) * 2007-06-06 2008-12-11 Mitsubishi Heavy Industries, Ltd. Seal device for rotary fluid machine and rotary fluid machine
WO2008149773A1 (en) * 2007-06-06 2008-12-11 Mitsubishi Heavy Industries, Ltd. Seal device for rotary fluid machine and rotary fluid machine
JP2008303766A (en) * 2007-06-06 2008-12-18 Mitsubishi Heavy Ind Ltd Rotary fluid machine and seal device for rotary fluid machine
JP2008303767A (en) * 2007-06-06 2008-12-18 Mitsubishi Heavy Ind Ltd Rotary fluid machine and seal device therefor
US8328510B2 (en) 2007-06-06 2012-12-11 Mitsubishi Heavy Industries, Ltd. Sealing device for rotary fluid machine, and rotary fluid machine
US8444379B2 (en) 2007-06-06 2013-05-21 Mitsubishi Heavy Industries, Ltd. Sealing device for rotary fluid machine, and rotary fluid machine
JP2013117225A (en) * 2011-12-05 2013-06-13 Nuovo Pignone Spa Turbo machine
WO2016097563A1 (en) * 2014-12-19 2016-06-23 Valeo Systemes De Controle Moteur Compressor having a sealing system
FR3030648A1 (en) * 2014-12-19 2016-06-24 Valeo Systemes De Controle Moteur COMPRESSOR WITH SEALING SYSTEM

Similar Documents

Publication Publication Date Title
US3251601A (en) Labyrinth seal
US6129507A (en) Method and device for reducing axial thrust in rotary machines and a centrifugal pump using same
JP4295611B2 (en) Flow stabilizer
JP5314256B2 (en) SEALING DEVICE FOR ROTARY FLUID MACHINE AND ROTARY FLUID MACHINE
JP2003013898A (en) Axial-flow type fluid machine
JPS63134802A (en) Idler-disk
JPH0424523B2 (en)
US20180291928A1 (en) Methods and devices for reducing circumferential pressure imbalances in an impeller side cavity of rotary machines
KR970006929A (en) Hot water circulation pump with forced circulation of cooling water
EP2154380B1 (en) Seal device for rotary fluid machine and rotary fluid machine
WO2018061651A1 (en) Seal mechanism and rotary machine
US4927327A (en) Contactless centrifugal seal device for a rotating machine part
JPS59226299A (en) Rotary fluid machine
JP5067928B2 (en) Axial flow turbomachine
JP6071644B2 (en) Multistage centrifugal fluid machine
JPH05195999A (en) Dynamic stabilizer for radial-flow compressor rotor
WO2018110695A1 (en) Shaft seal device and rotating machine
JP6775379B2 (en) Impeller and rotating machine
JPH09100797A (en) Impeller of centrifugal compressor
JPS59226300A (en) Rotary fluid machine
JP2015135083A (en) Sealing device and rotary machine
JP3225197B2 (en) Rotating stall suppression device for fluid machinery
JP2006170112A (en) Unstable flow suppression device for fluid machine
JP6986426B2 (en) Turbine
JPH0138369Y2 (en)