JP6662661B2 - Seal structure and turbo machinery - Google Patents
Seal structure and turbo machinery Download PDFInfo
- Publication number
- JP6662661B2 JP6662661B2 JP2016038048A JP2016038048A JP6662661B2 JP 6662661 B2 JP6662661 B2 JP 6662661B2 JP 2016038048 A JP2016038048 A JP 2016038048A JP 2016038048 A JP2016038048 A JP 2016038048A JP 6662661 B2 JP6662661 B2 JP 6662661B2
- Authority
- JP
- Japan
- Prior art keywords
- seal
- guide plate
- seal structure
- fin
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
- Sealing Devices (AREA)
Description
本発明は、不安定振動を抑制するのに好適な、相対回転する二つ構造体の相互間から作動流体がリークすることを抑制するシール構造及びそれを使用したターボ機械に関する。 The present invention relates to a seal structure suitable for suppressing unstable vibration and for suppressing leakage of a working fluid from between two relatively rotating structures, and a turbo machine using the same.
蒸気タービン,ガスタービン及びターボ圧縮機などのターボ機械においては、静止構造体と回転構造体との間にできる隙間から蒸気などの作動流体が漏洩(リーク)すると、この作動流体のリークがタービンにおける効率の損失(リーク損失)を引き起こす。このため、ターボ機械では、作動流体のリークを防止するために、当該隙間にシール用フィンを設けてシール構造を形成する(例えば特許文献1参照)。 In a turbomachine such as a steam turbine, a gas turbine, and a turbo compressor, when a working fluid such as steam leaks from a gap formed between a stationary structure and a rotary structure, the leak of the working fluid is generated in the turbine. This causes a loss of efficiency (leakage loss). For this reason, in the turbomachine, in order to prevent leakage of the working fluid, a sealing fin is provided in the gap to form a seal structure (for example, see Patent Document 1).
ところで、ターボ機械においては、不安定振動と考えられる低周波振動が発生することがある。不安定振動が発生すると動作不良に繋がるおそれがあるためターボ機械を停止しなければならない。不安定振動が発生する大きな要因の一つとして考えられているのが、シール励振力である。何らかの原因により発生した回転構造体の微小振動に対して、シール励振力は、回転構造体の振れ回りを助長させるように回転構造体に作用し、ひいては不安定振動を引き起こす。
シール励振力についてさらに説明すると、シール部分(シール用フィンが設けられた部分)を流れる作動流体は、軸方向(流れ方向)速度成分だけでなく、周方向速度成分を持って流れており、(以下、この周方向に向かう流れを「旋回流」と呼ぶ)、シール励振力は、この旋回流が原因となり生じる。
つまり、回転構造体が径方向へ微小に変位すると(偏心すると)、回転構造体とシール用フィンとの間の流路が狭まって静圧が高くなる部分と、当該流路が広がって静圧が低くなる部分とが発生すると共に、リークした作動流体の旋回流に起因してシール用フィンの上流側と下流とで静圧分布に位相差が生じ、このような静圧の不均一性に起因した力が回転体に作用してシール励振力が生じる。
By the way, in a turbomachine, low-frequency vibration considered as unstable vibration may occur. Turbine must be stopped because unstable vibration may cause malfunction. One of the major factors that cause unstable vibration is the seal excitation force. In response to micro-vibration of the rotating structure caused by any cause, the seal excitation force acts on the rotating structure so as to promote whirling of the rotating structure, thereby causing unstable vibration.
To further explain the seal excitation force, the working fluid flowing through the seal portion (the portion provided with the sealing fins) flows not only with the axial (flow direction) velocity component but also with the circumferential velocity component. Hereinafter, the flow in the circumferential direction is referred to as a “swirl flow”), and the seal excitation force is caused by the swirl flow.
That is, when the rotating structure is slightly displaced (eccentric) in the radial direction, the flow path between the rotating structure and the sealing fin is narrowed to increase the static pressure, and the flow path is expanded to increase the static pressure. And a phase difference occurs in the static pressure distribution between the upstream and downstream of the sealing fin due to the swirling flow of the leaked working fluid. The resulting force acts on the rotating body to generate a seal excitation force.
このようなタービンの不安定振動を抑制する技術として、リークした作動流体の旋回流を遮るための遮蔽板を、シール用フィンの付近において、周方向に沿って複数並設した技術が種々提案されている(例えば特許文献2,3)。 As a technique for suppressing such an unstable vibration of the turbine, various techniques have been proposed in which a plurality of shielding plates for blocking the swirling flow of the leaked working fluid are arranged in the circumferential direction near the sealing fins. (For example, Patent Documents 2 and 3).
ところで、リークした作動流体の流れ(以下、「リーク流」と呼ぶ)は、回転構造体と同方向に旋回するだけでなく、子午面内(回転構造体の回転軸を含む断面内)における旋回成分も有しており、シールフィン周りの空間の形状によっては、シールフィンと回転構造体との隙間に向かっても旋回する。この隙間に向かって旋回する流れは、隙間を通過しようとするリーク流を押さえつけて縮流させ、リーク流を抑制する縮流効果を有している。
特許文献2,3に例示される技術では、リーク流に対して、回転構造体と同方向の旋回を抑制することができるが、同時にシールフィンと回転構造体との隙間に向かう旋回も抑制してしまうので、縮流効果が減少して、作動流体のリーク量ひいてはターボ機械のリーク損失の増大させてしまう。
By the way, the flow of the leaked working fluid (hereinafter referred to as “leak flow”) not only turns in the same direction as the rotating structure, but also turns in the meridional plane (in the cross section including the rotation axis of the rotating structure). It also has a component, and depending on the shape of the space around the seal fin, it also turns toward the gap between the seal fin and the rotating structure. The flow swirling toward the gap has a contraction effect of suppressing and leaking the leak flow that is going to pass through the gap.
In the techniques exemplified in
本発明は、上記のような課題に鑑み創案されたもので、作動流体の漏洩量を抑制しつつ不安定振動を抑制することができるようにした、シール構造及びターボ機械を提供することを目的とする。 The present invention has been made in view of the above-described problems, and has as its object to provide a seal structure and a turbomachine capable of suppressing unstable vibration while suppressing a leakage amount of a working fluid. And
(1)上記の目的を達成するために、本発明のシール構造は、軸心線周りに所定方向に回転する回転構造体と、前記回転構造体の外周側に隙間を空けて径方向に対向する静止構造体との間の前記隙間から、作動流体のリーク流の流れを抑制する、シール構造であって、 前記静止構造体から前記軸心線側に延在するシールフィンと、前記リーク流の軸線方向に関する流れ成分で前記シールフィンの上流側の面における前記軸心線寄りの先端側に取り付けられ、前記所定方向とは反対側に向く面の少なくとも内周部位を前記外周側に向ける傾斜姿勢として、前記リーク流を案内する案内プレートとを備えたことを特徴としている。 (1) In order to achieve the above object, a seal structure according to the present invention radially opposes a rotating structure that rotates in a predetermined direction around an axis with a gap provided on an outer peripheral side of the rotating structure. A seal fin extending from the stationary structure to the axial center line side, wherein the seal fin extends from the gap between the stationary structure and the stationary structure. A slope attached to the tip side of the seal fin near the axis line on the upstream surface of the seal fin with a flow component related to the axial direction, and at least an inner peripheral portion of a surface facing the opposite side to the predetermined direction is directed to the outer peripheral side. As a posture, a guide plate for guiding the leak flow is provided.
(2)前記静止構造体はタービンケーシングであり、前記回転構造体は、軸方向に沿って複数設置され、動翼の先端に取り付けられたチップシュラウドであって、前記シールフィン及び前記案内プレートは、前記チップシュラウドに対して前記径方向に対向して配置されることが好ましい。 (2) The stationary structure is a turbine casing, and the rotating structure is a tip shroud that is installed in a plurality in an axial direction and is attached to a tip of a moving blade, wherein the seal fin and the guide plate are Preferably, the tip shroud is disposed so as to face the radial direction.
(3)前記案内プレートの前記軸方向の寸法が、前記シールフィンの前記上流側の面と、前記チップシュラウドの前記軸方向を向く面であって前記シールフィンよりも前記上流側に位置する面との距離の半分よりも小さく設定されることが好ましい。 (3) The axial dimension of the guide plate is the surface of the seal fin on the upstream side and the surface of the tip shroud facing the axial direction, and the surface located on the upstream side of the seal fin. Is preferably set to be smaller than half of the distance to.
(4)前記案内プレートは、フラットなプレートであって、前記所定方向とは反対側に向く面を前記外周側に向ける傾斜姿勢とされることが好ましい。 (4) It is preferable that the guide plate is a flat plate and has an inclined posture in which a surface facing the opposite side to the predetermined direction is directed to the outer peripheral side.
(5)前記案内プレートは、前記径方向に対して所定の角度だけ傾斜し、前記所定の角度が5°〜30°の範囲に設定されることが好ましい。 (5) Preferably, the guide plate is inclined by a predetermined angle with respect to the radial direction, and the predetermined angle is set in a range of 5 ° to 30 °.
(6)前記案内プレートは、湾曲形状のプレートであり、前記湾曲形状の内側面を、前記回転構造体の回転方向である前記所定方向とは反対側に向けて前記シールフィンに取り付けられることが好ましい。 (6) The guide plate may be a plate having a curved shape, and may be attached to the seal fin such that an inner surface of the curved shape faces a direction opposite to the predetermined direction that is a rotation direction of the rotating structure. preferable.
(7)前記シールフィンは前記軸心線を中心としたリング形状であり、前記案内プレートは、前記シールフィンに周方向に沿って複数設けられ、前記案内プレートの相互間の距離が、内周側の端部において前記外周側よりも狭くなるように設定されることが好ましい。 (7) The seal fin has a ring shape centered on the axis, and a plurality of guide plates are provided on the seal fin along a circumferential direction, and a distance between the guide plates is an inner circumference. It is preferable that the side end is set to be narrower than the outer peripheral side.
(8)前記案内プレートは、少なくとも、前記外周側の端部が、前記軸心線を中心とした円の接線に対して所定の角度だけ傾斜し、前記所定の角度が5°〜30°の範囲に設定されることが好ましい。 (8) In the guide plate, at least an end on the outer peripheral side is inclined by a predetermined angle with respect to a tangent to a circle centered on the axis, and the predetermined angle is 5 ° to 30 °. It is preferable to set the range.
(9)前記案内プレートの前記上流側を塞ぐ閉塞プレートを備えることが好ましい。 (9) It is preferable to include a closing plate that closes the upstream side of the guide plate.
(10)上記の目的を達成するために、本発明のターボ機械は、軸心線周りに所定方向に回転する回転構造体と、前記回転構造体の外周側に隙間を空けて径方向に対向する静止構造体と、(1)〜(9)の何れかに記載のシール構造とを備えたことを特徴としている。 (10) In order to achieve the above object, a turbo machine of the present invention radially opposes a rotating structure that rotates in a predetermined direction around an axis with a gap provided on an outer peripheral side of the rotating structure. And a sealing structure according to any one of (1) to (9).
(11)前記回転構造体として、前記軸心線に沿って複数設けられたチップシュラウドを備えると共に、前記静止構造体として、前記複数のチップシュラウドを囲うタービンケーシングを備え、前記複数のチップシュラウドの内の、少なくとも一つのチップシュラウドに対し、前記シール構造を備えたタービンであることが好ましい。 (11) The rotating structure includes a plurality of chip shrouds provided along the axis, and the stationary structure includes a turbine casing surrounding the plurality of chip shrouds. Preferably, the turbine is provided with the seal structure for at least one of the chip shrouds.
(12)前記少なくとも一つのチップシュラウドが、前記作動流体の入口の最も近くに配置されたチップシュラウドであることが好ましい。 (12) It is preferable that the at least one tip shroud is a tip shroud arranged closest to an inlet of the working fluid.
(13)前記少なくとも一つのチップシュラウドが、軸方向中央に配置されたチップシュラウドであることが好ましい。 (13) It is preferable that the at least one tip shroud is a tip shroud arranged at the center in the axial direction.
本発明によれば、作動流体のリーク流は、回転構造体の回転方向(所定方向)と同方向の旋回成分を有するが、所定方向とは反対側に向く面の少なくとも内周部位を前記外周側に向ける傾斜姿勢とした案内プレートによって、作動流体のリーク流の所定方向への旋回成分が低減されるので、リーク流の旋回に起因した不安定振動を抑制することができる。
さらに、案内プレートをシールフィンの先端に設けているので、リーク流が、シールフィンと回転構造体とのクリアランスに向かって流れている最中に、このリーク流を、案内プレートにより案内することができる。これにより、前記クリアランスに向かう流れ成分を残しつつリーク流を案内プレートにより案内させることができるため、このクリアランスに向かう径方向の流れにより、このクリアランスを通過しようとする他のリーク流を押さえつけて縮流させる縮流効果が得られる。
したがって、縮流効果によって作動流体のリーク流量を抑制しつつ不安定振動を抑制することができる。
According to the present invention, the leak flow of the working fluid has a swirl component in the same direction as the rotation direction (predetermined direction) of the rotating structure, but at least the inner peripheral portion of the surface facing the opposite side to the predetermined direction is connected to the outer periphery. Since the swirling component of the leak flow of the working fluid in the predetermined direction is reduced by the guide plate having the inclined posture toward the side, unstable vibration caused by the swirl of the leak flow can be suppressed.
Further, since the guide plate is provided at the tip of the seal fin, the leak flow can be guided by the guide plate while the leak flow is flowing toward the clearance between the seal fin and the rotating structure. it can. Accordingly, the leak flow can be guided by the guide plate while leaving the flow component heading toward the clearance, and the radial flow heading toward the clearance suppresses and reduces other leak flow that is going to pass through the clearance. A flowing contraction effect is obtained.
Therefore, the unstable vibration can be suppressed while suppressing the leak flow rate of the working fluid by the contraction effect.
以下、図面を参照して、本発明の実施の形態について説明する。
本発明の各実施形態では、本発明のシール構造及びターボ機械を蒸気タービンに適用した例を説明する。
なお、以下に示す各実施形態はあくまでも例示に過ぎず、以下の各実施形態で明示しない種々の変形や技術の適用を排除する意図はない。以下の各実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができると共に、必要に応じて取捨選択することができ、あるいは適宜組み合わせることが可能である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In each embodiment of the present invention, an example in which the seal structure and the turbo machine of the present invention are applied to a steam turbine will be described.
Note that each embodiment described below is merely an example, and there is no intention to exclude various modifications and application of technology that are not explicitly described in the following embodiments. Each configuration of the following embodiments can be variously modified and implemented without departing from the spirit thereof, and can be selectively used as needed or can be appropriately combined.
以下の説明では上流,下流と記載した場合は、特段の説明がない限り、リーク蒸気SLの軸方向Aに関する流れ成分(軸流成分)に対しての上流,下流を意味するものとする。すなわち、図1及び図2における左側を上流側、右側を下流側とする。
また、蒸気タービンのロータ軸心線(以下、「軸心線」とも呼ぶ)CLに向く方向を内周側又は内側とし、その反対側、軸心線CLから離れる方向を外周側又は外側として説明する。
また、以下の説明で周方向と記載した場合は、特段の説明がない限り、軸心線CLを中心とした周方向を意味するものとする。
In the following description, the terms “upstream” and “downstream” mean upstream and downstream of the flow component (axial flow component) of the leak steam SL in the axial direction A, unless otherwise specified. That is, the left side in FIGS. 1 and 2 is the upstream side, and the right side is the downstream side.
In addition, a direction toward a rotor axis line CL (hereinafter, also referred to as an “axis line”) CL of the steam turbine will be referred to as an inner side or an inner side, and a direction away from the axis line CL will be referred to as an outer side or an outer side. I do.
In the following description, the term “circumferential direction” means a circumferential direction centered on the axis CL unless otherwise specified.
[1.第1実施形態]
[1−1.蒸気タービンの全体構成]
本実施形態の蒸気タービン1について図1を参照して説明する。
本実施形態の蒸気タービン1は、図1に示すように、タービンケーシング(静止構造体、以下「ケーシング」とも呼ぶ)10と、ケーシング10の内部に回転自在に設けられ、動力を図示しない発電機等の機械に伝達するロータ軸30と、ケーシング10に設けられた静翼60と、ロータ軸30に設けられた動翼50と、軸心線CLを中心にロータ軸30を回転可能に支持する軸受部70とを備えて構成されている。静翼60及び動翼50はロータ軸30の径方向Rに延びるブレードである。
ケーシング10は静止しているのに対し、動翼50は軸心線CLを中心に回転する。つまり、ケーシング10と動翼50(後述のチップシュラウド4を含む)とは相対回転する。
[1. First Embodiment]
[1-1. Overall configuration of steam turbine]
The
As shown in FIG. 1, the
While the
蒸気(流体)Sは、図示しない蒸気供給源と接続された蒸気供給管20を介して、ケーシング10に形成された主流入口21から導入され、蒸気タービン1の下流側に接続された蒸気排出管22から排出される。
The steam (fluid) S is introduced from a
ケーシング10は、内部空間が気密に封止されていると共に、蒸気Sの流路とされている。このケーシング10の内壁面にはリング状の仕切板外輪11が強固に固定されている。
軸受部70は、ジャーナル軸受装置71及びスラスト軸受装置72を備えており、ロータ軸30を回転自在に支持している。
The
The bearing
静翼60は、ケーシング10から内周側に向かって伸び、ロータ軸30を囲繞するように放射状に多数配置される環状静翼群を構成しており、それぞれ上述した仕切板外輪11に保持されている。
The
これら複数の静翼60からなる環状静翼群は、ロータ軸30の軸方向Aに間隔を空けて複数形成されており、蒸気Sの圧力エネルギーを速度エネルギーに変換して、下流側に隣接する動翼50に流入させる。
A plurality of annular stationary blade groups each including the plurality of
動翼50は、ロータ軸30のロータ軸本体31の外周部に形成されたディスク32に強固に取り付けられ、各環状静翼群の下流側において、放射状に多数配置されて環状動翼群を構成している。
これら環状静翼群と環状動翼群とは、一組一段とされている。各動翼群を構成する複数の動翼50の先端部同士は、リング状のチップシュラウド(回転構造体)4により連結されている。
The moving
The group of annular stationary blades and the group of annular moving blades are arranged in one stage. The tips of the plurality of moving
[1−2.シール構造]
本実施形態のシール構造について、図2及び図3(a),(b)を参照して説明する。
複数の仕切板外輪11の各相互間には、図2に示すように、仕切板外輪11の内周面から窪んだキャビティ12が形成されている。キャビティ12は、軸心線CLを中心とする円環状の空間であり、ケーシング10の内周面(以下、「キャビティ底面13」とも表記する)13を底面とする。
キャビティ12には、チップシュラウド4が収容され、キャビティ底面13は、チップシュラウド4と隙間(以下、「空間」とも呼ぶ)Gdを介して径方向Rに対向している。
[1-2. Seal structure]
The seal structure according to the present embodiment will be described with reference to FIGS. 2 and 3A and 3B.
As shown in FIG. 2, a
The
蒸気Sのうち大部分の蒸気SMは、動翼50に流入し、そのエネルギーが回転エネルギーに変換され、この結果、ロータ軸30に回転が付与される。その一方、蒸気Sのうち一部(例えば、約数%)の蒸気の流れ(リーク流、以下「リーク蒸気」とも呼ぶ)SLは、動翼50に流入せずに隙間Gdにリークする。リーク蒸気SLのエネルギーは回転エネルギーに変換されないので、リーク蒸気SLは、蒸気タービン1の効率を低下させるリーク損失を招く。
Most of the steam SM out of the steam S flows into the
そこで、ケーシング10と各チップシュラウド4との間の各隙間Gdには、それぞれ、本発明の第1実施形態としてのシール構造2が設けられている。換言すれば、各チップシュラウド4に対して本発明の第1実施形態としてのシール構造2がそれぞれ設けられている。
以下、シール構造2について説明する。
チップシュラウド4は、上述したようにリング状のものであり、図2に示すように、軸方向Aの中央部分が突出したステップ状の横断面形状(周方向に垂直な断面の形状)を、全周に亘って一定に有している。つまり、シュラウド4の外周面は、ベース面41と、ベース面41よりも外周側に突出するステップ面42が形成されたステップ部3とを有している。以下、ベース面41においてステップ部3よりも上流側をベース面41A、ステップ部3よりも下流側をベース面41Bと呼ぶ。
Therefore, a seal structure 2 as the first embodiment of the present invention is provided in each gap Gd between the
Hereinafter, the seal structure 2 will be described.
The
キャビティ底面13には、チップシュラウド4に向かって内周側に延在するシールフィン6A,6B,6Cが設けられている(図1では省略)。以下、シールフィン6A,6B,6Cを区別しない場合には、シールフィン6と表記する。シールフィン6は、軸線CLを中心とした径方向Rに幅を有する環状をしており、図2に示す横断面形状を全周に亘って一定に有する。
上流のシールフィン6Aは、ステップ部3よりも上流側のベース面41Aに向けて突出し、中間のシールフィン6Bは、ステップ部3のステップ面42に向けて突出し、下流側のシールフィン6Cは、ステップ部3よりも下流側のベース面41Bに向けて突出している。中間のシールフィン6Bは、上流側のシールフィン6A及び下流側のシールフィン6Cよりも幅(径方向Rの長さ)が短くなるように形成されている。
これらシールフィン6は、シュラウド4との間に微小間隙(以下、クリアランスともいう)mを径方向Rに形成している。これら微小間隙mの各寸法は、ケーシング10や動翼50の熱伸び量や動翼50の遠心伸び量等を考慮して、シールフィン6と動翼50とが接触することがない範囲で設定されている。
The
These
そして、本発明の大きな特徴であるが、各シールフィン6A,6B,6Cにはそれぞれ案内プレート7A,7B,7Cが設置されている。以下、案内プレート7A,7B,7Cを区別しない場合には、案内プレート7と表記する。
案内プレート7は、図2及び図3(a),(b)に示すように、シールフィン6の上流面6aの先端(軸心線CL側の端部)側に設けられている(異なる表現をすればフィン先端6bから所定の範囲Mに設けられている)。また、案内プレート7は、周方向に沿って所定の間隔をあけて複数設けられている。本実施形態では、案内プレート7を、その先端(以下、「プレート先端」とも呼ぶ)7aを、シールフィン6の先端(内周端、以下「フィン先端」とも呼ぶ)6bに一致させてシールフィン6に設置しているが、プレート先端7aとフィン先端6bとのは必ずしも一致させる必要はない。
各案内プレート7は、矩形のフラットな板状体であり、周方向に沿って延びるように配置されているが、ロータ軸の回転方向(以下、「ロータ回転方向」と呼ぶ)Cとは反対側に向く面7bを、外周側に向ける傾斜姿勢とされている。
As a major feature of the present invention,
As shown in FIGS. 2 and 3A and 3B, the
Each
ここで、案内プレート7A,7B,7Cの軸方向Aに関する寸法(以下、「幅寸法」とも呼ぶ)WA,WB,WCに関して図2を参照して説明する。
案内プレート7Aの幅寸法WAは、後述の距離LAの半分よりも小さく設定されている(WA<LA/2)。同様に、案内プレート7Bの幅寸法WBは、後述の距離LBの半分よりも小さく設定され(WB<LB/2)、案内プレート7Cの幅寸法WCは、後述の距離LCの半分よりも小さく設定されている(WC<LC/2)。
距離LAは、案内プレート7Aの直ぐ上流側のシュラウド上流面(軸方向Aに向く面)43Aと、案内プレート7Aが取り付けられるシールフィン6Aの上流面6aとの軸方向距離(軸方向Aに関する距離)である。同様に、距離LBは、案内プレート7Bの直ぐ上流側のシュラウド上流面(軸方向Aに向く面)43Bと、案内プレート7Bが取り付けられるシールフィン6Bの上流面6aとの軸方向距離であり、距離LCは、案内プレート7Cの直ぐ上流側のシュラウド下流面(軸方向Aに向く面)43Cと、案内プレート7Cが取り付けられるシールフィン6Bの上流面6aとの距離である。
Here, dimensions WA, WB and WC of the
The width dimension WA of the
The distance LA is an axial distance (a distance in the axial direction A) between a shroud upstream surface (a surface facing the axial direction A) 43A immediately upstream of the
以下、各案内プレート7を設ける理由、各案内プレート7をフィン先端6bに設けている理由、及び、案内プレート7A,7B,7Cの幅寸法WA,WB,WCの上記の設定の理由を説明する。
図2に示すように、空間Gdは、シールフィン6A,BC,6Cによって3つの小空間121,122,123に区画されている。
静翼60を通過して軸方向Aに流れる蒸気Sは、上述したように、その一部がリーク蒸気SLとして、動翼50に衝突することなく最上流側の小空間121に流入する。小空間121に流入したリーク蒸気SLの一部は、チップシュラウド4の上流面43Aに衝突することにより、上流面43Aの上流側で、子午面内(ロータ軸心線CLを含む断面内)で一方向に旋回する(図2では反時計回りとなる)主渦SU1を形成する。そして、この主渦SU1の一部は、上流面43Aの角部44にて主渦SU1から剥離して、上流面43Aとシールフィン6Aの上流面6aとの間の空間(以下、「剥離渦形成空間」とも呼ぶ)121aで、主渦SU1と逆回り、すなわち子午面内で他方向に旋回する(図2では時計回りとなる)剥離渦HU1を形成する。
この剥離渦HU1を上流側(図2中左側)と下流側(図2中右側)とに二分して考えた場合、上流側では外周側(図2中上側)に流れ、下流側つまりシールフィン6A側では内周側(図2中下側)に流れる。したがって、剥離渦HU1は、シールフィン6A側において、クリアランスmに向かって流れるリーク蒸気SLをシュラウドベース面41Aに押さえつけてその流れを抑制する縮流効果を発揮する。
Hereinafter, the reason why each
As shown in FIG. 2, the space Gd is divided into three
As described above, a part of the steam S flowing in the axial direction A through the
When the separation vortex HU1 is divided into an upstream side (left side in FIG. 2) and a downstream side (right side in FIG. 2), the separation vortex HU1 flows to the outer peripheral side (upper side in FIG. 2) on the upstream side, and the downstream side, ie, the seal fins. On the 6A side, it flows toward the inner circumference (lower side in FIG. 2). Therefore, on the
リーク蒸気SLは、静翼60の作用によって、軸心線CLを中心とし且つチップシュラウド4と同方向(つまりロータ回転方向C)に旋回する流れ成分(図2において紙面に垂直となる成分、以下「スワール成分」とも呼ぶ)を有している。このため、リーク蒸気SLによって形成される主渦SU1及び剥離渦HU1も同様に周方向のスワール成分を有する。したがって、主渦SU1及び剥離渦HU1は図2に矢印で示すように渦を巻きつつ、さらに周方向にも旋回する旋回流となる。この周方向の旋回流が、「発明が解決しようとする課題」の欄にも記載したように、蒸気タービン1に不安定振動を引き起こす要因の一つとなっている。そこで案内プレート7Aを設けて、この案内プレート7Aにより、剥離渦HU1の周方向の旋回を抑制するようにリーク蒸気SLの流れを案内するようにしている。
Due to the action of the
ここで、案内プレート7Aによって、剥離渦HU1を上流側(図2中左側)で止めてしまうと、剥離渦HU1を形成するリーク蒸気SLの周方向の旋回流を止めることができるが、同時に、縮流効果を有する剥離渦HU1の下流側の流れ(図2中右側の内周へ向かう流れ)も失われてしまう。
このため、剥離渦HU1の流れを上流側で抑制せず、確実に下流側で抑制できるように、案内プレート7Aの幅寸法WAを設定している。具体的には、案内プレート7Aの設置範囲が、剥離渦形成空間121aの下流側半分に収まるように、シールフィン6Aの上流面6aに設置される案内プレート7Aの幅寸法WAを、剥離渦形成空間121aの軸方向寸法である距離LAの半分よりも小さく設定している。
Here, if the separation vortex HU1 is stopped on the upstream side (left side in FIG. 2) by the
For this reason, the width dimension WA of the
同様に、小空間122,123にも主渦SU2,SU3が発生すると共に、小空間122,123の下流側を構成する剥離渦形成空間122a,123aにも剥離渦HU2,HU3が発生するので、案内プレート7Aと同じ理由により、案内プレート7B,7Cを上記の設定としている。
Similarly, the main vortices SU2 and SU3 are generated in the
さらに、案内プレート7の径方向Rに対する傾斜角度θは、5°〜30°の範囲に設定されている。詳しくは、案内プレート7の基準線L0(図3(a),(b)参照)に対する傾斜角度θは5°〜30°の範囲に設定されている。基準線L0は、プレート先端7aから径方向R外周側に向かう直線である。傾斜角度θを5°〜30°の範囲に設定しているのは以下の理由による。
図2を参照して説明すると、蒸気タービン1では、静翼70により蒸気SMに旋回力を付与して、この蒸気SMによって動翼60ひいてはロータ軸30を回転させるようにしている。静翼70の傾斜角度は、動翼60やロータ軸30を効率よく回転駆動できるように設計されており、その範囲は蒸気タービンの種類や運用条件など種々の条件によって相違はあるものの一定の範囲に収束している。リーク蒸気SLの周方向の旋回流も静翼70によって付与されるものであるから、旋回流の流線や速度なども一定の範囲に収束し、リーク蒸気SLの旋回流を効果的に抑制するための好ましい傾斜角度θも一定の範囲に収束する。この傾斜角度θの一定の範囲(好ましい範囲)を、シミュレーションや実験により解析した結果、5°〜30°であることを発見した。
Further, the inclination angle θ of the
Referring to FIG. 2, in the
[1−3.作用・効果]
本発明の第1実施形態としてのシール構造2の作用・効果を、図2及び図3(a),(b)を参照して説明する。
図3(b)に二点鎖線で示すように、リーク蒸気SLは、案内プレート7が無ければ矢印F4,F5のように渦を巻きつつロータ回転方向Cと同じ方向に旋回する。本実施形態のシール構造2では、案内プレート7が設けられているので、図3(a)に示すように、矢印F1,F2,F3のように流れるリーク蒸気SLは、案内プレート7に案内されて、矢印F1′,F2′,F3′のようにロータ回転方向Cと反対方向に流れるように案内される。なお、案内プレート7による案内は、リーク蒸気SLを相対的にロータ回転方向Cと反対方向に向かって案内(転向)するものであればよい(ロータ回転方向Cへのスワール成分が低減されればよい)。
[1-3. Action / Effect]
The operation and effect of the seal structure 2 as the first embodiment of the present invention will be described with reference to FIGS. 2 and 3A and 3B.
As shown by the two-dot chain line in FIG. 3B, the leak steam SL swirls in the same direction as the rotor rotation direction C while swirling as indicated by arrows F4 and F5 without the
したがって、一部のリーク蒸気SLがロータ回転方向Cと反対方向に流れるように案内されるので、リーク蒸気SLの流れのロータ回転方向Cへのスワール成分がキャンセルされる〔スワール成分が完全にキャンセル(相殺される)だけでなく、部分的にキャンセルされてスワール成分が低減される場合も含む〕。これにより、リーク蒸気SLの旋回に起因した蒸気タービン1の不安定振動を抑制することができる。
Therefore, since a part of the leak steam SL is guided so as to flow in the direction opposite to the rotor rotation direction C, the swirl component of the flow of the leak steam SL in the rotor rotation direction C is canceled [the swirl component is completely canceled. Not only (cancelled) but also partially canceled to reduce the swirl component]. Thereby, unstable vibration of the
さらに、案内プレート7を、シールフィン6の先端側(フィン先端6bから所定の範囲M)に設け、加えて、案内プレート7A,7B,7Cの幅寸法WA,WB,WCを、剥離渦形成空間121a,122a,123aの軸方向寸法である距離LA,LB,LCの半分よりも小さく設定しているので、剥離流HU1,HU2,HU3(リーク蒸気SL)がクリアランスmに向かって流れている最中に、リーク蒸気SLを案内プレート7により案内することができる。
これにより、図3(a)に矢印F1′,F2′,F3′で示すように、リーク蒸気SLのクリアランスmに向かう流れ成分を残しつつリーク蒸気SLをロータ回転方向Cに転向させることができる。したがって、剥離流HU1,HU2,HU3(リーク蒸気SL)による縮流効果が得られる。
よって、縮流効果によってリーク蒸気SLの流量を抑制しつつ蒸気タービン1の不安定振動を抑制することができる。
Further, the
Thereby, as shown by arrows F1 ', F2', and F3 'in FIG. 3A, the leak steam SL can be turned in the rotor rotation direction C while leaving the flow component of the leak steam SL toward the clearance m. . Therefore, a contraction effect by the separation flows HU1, HU2, and HU3 (leak steam SL) is obtained.
Therefore, the unstable vibration of the
さらに、案内プレート7は基準線L0に対する傾斜角度θを5°〜30°の範囲に設定することで、リーク蒸気SLの旋回流の抑制、ひいては、蒸気タービン1の不安定振動を効果的に抑制できる。
Further, the
[2.第2実施形態]
以下、図4を参照して本発明の第2実施形態について説明する。なお、第1実施形態と同一要素については同一の符号を付し、その説明を省略する。
[2. Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described with reference to FIG. The same elements as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[2−1.シール構造]
本発明の第2実施形態のシール構造2Aは、図2及び図3(a),(b)に示す第1実施形態のシール構造2に対して、各案内プレート7に替えて、図4(a),(b)に示す案内プレート17を使用したものである。
案内プレート17は、シールフィン6の上流面6aに、周方向に沿って所定の間隔をあけて複数設けられている。本実施形態では、案内プレート17は、その先端(以下、「プレート先端」とも呼ぶ)17dを、フィン先端6bに一致させてシールフィン6に設置しているが、プレート先端17dとフィン先端6bとの間にスペースをあけてもよい。
各案内プレート17は、湾曲形状をしており、その湾曲内側面17cを、ロータ回転方向Cとは反対側に向けてシールフィン6の上流側面6aに取り付けられている。つまり、案内プレート17は、その外周部位[図4(a),(b)で上側の部位]17aが、内周側になるほどロータ回転方向C側となるように傾斜し、その内周部位[図4(a),(b)で下側の部位]17bが、内周側になるほどロータ回転方向Cとは反対側となるように傾斜している。換言すれば、湾曲内側面17c(つまりロータ回転方向Cとは反対側に向く面)の内周部位17bを、外周側に向ける傾斜姿勢とされている。
[2-1. Seal structure]
The
A plurality of
Each
案内プレート17の湾曲形状は、リーク流SLを、湾曲内側面17cに滑らかに案内入れるような形状とするのが好ましい。例えば、案内プレート17の外周端17eの傾斜角度θ′は5°〜30°の範囲が好ましい。この傾斜角度θ′は基準線L0′に対する角度であり、基準線L0′は、外周端17eを通る直線であって、軸心線CLを中心とした仮想的な円の接線である。傾斜角度θ′を5°〜30°の範囲に設定するのが好ましい理由は、第1実施形態における、案内プレート7の傾斜角度θを5°〜30°の範囲に設定するのが好ましい理由と同じである。
その他の点は第1実施形態のシール構造2と同様であるので説明を省略する。
Preferably, the curved shape of the
The other points are the same as those of the seal structure 2 of the first embodiment, and the description is omitted.
[2−2.作用・効果]
図4(a)に矢印F6で示すように、ロータ回転方向Cに向かいながら流れるリーク蒸気SLが、その流通方向と略同じ向きに傾斜した案内プレート17の外周部位17aによって案内される。そして、リーク蒸気SLは、案内プレート17に湾曲形状に滑らかに転向して、案内プレート17の内周部位17bの案内により、ロータ回転方向Cとは反対方向へと流れるようになる。
本発明の第2実施形態によれば、リーク蒸気SLのロータ回転方向Cとは反対方向への転向が滑らかに行われるようになる。したがって、転向する際にリーク蒸気SLの速さが低下してしまうことが抑制されるようになるので、リーク蒸気SLのロータ回転方向Cへのスワール成分を第1実施形態よりも効果的にキャンセルすることができ、ひいては不安定振動を第1実施形態よりも効果的に抑制することができる。
[2-2. Action / Effect]
As shown by an arrow F6 in FIG. 4A, the leak steam SL flowing in the rotor rotation direction C is guided by the outer
According to the second embodiment of the present invention, the leakage steam SL is smoothly turned in the direction opposite to the rotor rotation direction C. Therefore, a decrease in the speed of the leak steam SL during turning is suppressed, so that the swirl component of the leak steam SL in the rotor rotation direction C is more effectively canceled than in the first embodiment. Therefore, unstable vibration can be more effectively suppressed than in the first embodiment.
[3.第3実施形態]
以下、図5を参照して本発明の第3実施形態について説明する。なお、第1実施形態と同一要素については同一の符号を付し、その説明を省略する。
[3. Third Embodiment]
Hereinafter, a third embodiment of the present invention will be described with reference to FIG. The same elements as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[3−1.シール構造]
本発明の第3実施形態のシール構造2Bは、図2及び図3(a),(b)に示す第1実施形態のシール構造2に対して、各案内プレート7に替えて、図5(a),(b)に示す案内プレート27をそれぞれ使用したものである。
案内プレート27は、シールフィン6の上流面6aに、周方向に沿って所定の間隔をあけて複数設けられている。本実施形態では、案内プレート27は、その先端(以下、「プレート先端」とも呼ぶ)27aを、フィン先端6bに一致させてシールフィン6に設置しているが、プレート先端27aとフィン先端6bとの間にスペースをあけてもよい。
各案内プレート27は、湾曲し且つ概ね内周側に向かって先細りとなる翼形状であり、湾曲内側面27bをロータ回転方向Cとは反対方向に向けた姿勢とされる。また、湾曲内側面27b(つまりロータ回転方向Cとは反対側に向く面)の内周部位27b′を、外周側に向ける傾斜姿勢とされている。
そして、隣接する案内プレート27の互いに対向する面(すなわち一方の案内プレート27の湾曲内側面27bと、他方の案内プレート27の湾曲外側面27cとの相互間距離Lnがプレート先端27aにおいて外周側よりも狭くなるように設定されている。換言すれば、案内プレート27の相互間として規定されるリーク蒸気の流路SLは、出口で絞られたノズル形状とされている。
[3-1. Seal structure]
The
A plurality of
Each
Then, the mutual distance Ln between the opposing surfaces of the adjacent guide plates 27 (that is, the curved
案内プレート27の湾曲形状は、リーク流SLを、湾曲内側面27bに滑らかに案内入れるような形状とするのが好ましく、第2実施形態の案内プレート17と同じく、外周端27eの傾斜角度θ′は5°〜30°の範囲が好ましい。ここで、外周端27eとは、湾曲内側面27bと湾曲外側面27cとの中心線L1上における案内プレート27の外周端であり、外周端27eの傾斜角度θ′とは、外周端27eにおける中心線L1の基準線L0′に対する傾斜角度θ′である。
その他の点は第1実施形態のシール構造2と同様であるので説明を省略する。
Preferably, the curved shape of the
The other points are the same as those of the seal structure 2 of the first embodiment, and the description is omitted.
[3−2.作用・効果]
本発明の第3実施形態によれば、案内プレート27の相互間として規定されるリーク蒸気SLの流路は、出口で絞られたノズル形状とされているので、案内プレート27により回転方向Cとは反対方向に案内されたリーク蒸気の流れが速くなり、リーク蒸気SLのロータ回転方向Cへのスワール成分を第1実施形態よりも効果的にキャンセルすることができ、ひいては不安定振動を第1実施形態よりも効果的に抑制することができる。
[3-2. Action / Effect]
According to the third embodiment of the present invention, the flow path of the leak steam SL defined between the
[4.第4実施形態]
以下、図6を参照して本発明の第4実施形態について説明する。なお、第1実施形態及び第3実施形態と同一要素については同一の符号を付し、その説明を省略する。
[4. Fourth embodiment]
Hereinafter, a fourth embodiment of the present invention will be described with reference to FIG. The same elements as those in the first and third embodiments are denoted by the same reference numerals, and description thereof will be omitted.
[4−1.シール構造]
本発明の第4実施形態のシール構造2Cは、図5(a),(b)に示す第3実施形態のシール構造2Bに対して、案内プレート27の上流側を塞ぐ閉塞プレート28を追加したものである。閉塞プレート28は、軸心線CL(図1参照)を中心として径方向Rに幅を有するリング形状のプレートであり、全ての案内プレート27の上流側を塞いでいる。また、各案内プレート27の上流側の端面(以下、「上流端」と呼ぶ)27dの全体を覆うようにその径方向Rの幅寸法が設定されている。
その他の点は第3実施形態のシール構造27と同様であるので説明を省略する。
[4−2.作用・効果]
閉塞プレート28を設けない場合には、案内プレート27により案内されるリーク蒸気SLの一部は、途中で、図6(a)に二点鎖線の矢印F7で示すように上流側(図6(a)における左側)に反れてしまう。この案内プレート27から反れたリーク蒸気SLは、ロータ回転方向Cの反対方向への転向が十分に行われないため、スワール成分をキャンセルする効果が低減してしまう。
本発明の第4実施形態によれば、閉塞プレート28により案内プレート27の上流側を塞いでいるので、リーク蒸気SLが案内プレート27から反れてしまうことを防止することができ、リーク蒸気SLのロータ回転方向Cへのスワール成分を第3実施形態よりも効果的にキャンセルすることができ、ひいては不安定振動を第3実施形態よりも効果的に抑制することができる。
[4-1. Seal structure]
In the seal structure 2C of the fourth embodiment of the present invention, a
The other points are the same as those of the
[4-2. Action / Effect]
When the blocking
According to the fourth embodiment of the present invention, since the upstream side of the
[4−3.その他]
閉塞プレート28は、全ての案内プレート27の上流側を塞ぐようにするのが好ましいが、一部の案内プレート27の上流側を塞ぐようにしてもよい。また、閉塞プレート28は、各案内プレート27の上流端27dの全体を覆うのが好ましいが、図6(b)に二点鎖線で示すように、各案内プレート27の上流端27dを部分的に覆うようにしてもよい。
[4-3. Others]
The closing
[5.その他] [5. Others]
(1)上記各実施形態の蒸気タービンでは、各チップシュラウド4に対し本発明のシール構造を適用したが、一部の(少なくとも一つの)チップシュラウド4に対し本発明のシール構造を適用するだけでもよい。
一部のチップシュラウド4に本発明のシール構造を適用する場合には、静圧の不均一性が最大となることから、蒸気Sの入口である主流入口21に最も近い(換言すれば最も高圧側)のチップシュラウド4A(図1参照)に本発明のシール構造を適用するのが好ましい。
または、ロータ軸30の一次モードでの不安定振動が発生した場合、振幅は、軸方向Aで中央において最大になるので、軸方向Aで中央のチップシュラウド4B(図1参照)に本発明のシール構造を適用するのが好ましい。
蒸気タービンが、軸方向Aで中央から蒸気が供給される場合には、軸方向Aで中央のチップシュラウドが主流入口21に最も近いチップシュラウドになるので、この軸方向Aで中央且つ主流入口21に最も近いチップシュラウドに本発明のシール構造を適用すると相乗的な効果が得られる。
(1) In the steam turbine of each of the above embodiments, the seal structure of the present invention is applied to each
When the seal structure of the present invention is applied to some of the tip shrouds 4, the non-uniformity of the static pressure is maximized, and therefore, the
Alternatively, when unstable vibration occurs in the primary mode of the
When the steam turbine is supplied with steam from the center in the axial direction A, the chip shroud in the center in the axial direction A becomes the chip shroud closest to the
(2)上記各実施形態の蒸気タービンでは、単一のチップシュラウド4に設けられた複数のシールフィン6の各々に対し案内プレート7,17,27を設置した例を説明したが、一部の(少なくとも一つの)シールフィン6に対し案内プレート7,17,27を設けるようにしてもよい。
一部のシールフィン6に案内プレート7,17,27を設置する場合には、静圧の不均一性が最大となることから、最上流側(最も換言すれば高圧側)のシールフィン6に案内プレート7,17,27を設置するのが好ましい。
(2) In the steam turbine of each of the above-described embodiments, examples in which the
When the
(3)案内プレートの形状は、ロータ回転方向Cとは反対側に向く面の少なくとも内周部位を、外周側に向ける傾斜姿勢とされているものであれば、リーク蒸気SLをロータ回転方向Cと反対方向に向かって案内することができるので、その形状は何ら限定されない。 (3) If the shape of the guide plate is such that at least the inner peripheral portion of the surface facing the opposite side to the rotor rotation direction C is inclined toward the outer periphery, the leak steam SL is transferred to the rotor rotation direction C. Can be guided in the opposite direction, so that the shape is not limited at all.
(4)上記実施形態では、蒸気タービンに本発明を適用した例を説明したが、本発明は、ガスタービンやターボ圧縮機など、蒸気タービン以外のターボ機械のシールにも適用することができる。 (4) In the above embodiment, an example in which the present invention is applied to a steam turbine has been described. However, the present invention can also be applied to a seal of a turbomachine other than a steam turbine such as a gas turbine or a turbo compressor.
1 蒸気タービン(ターボ機械)
2,2A,2B シール構造
4 チップシュラウド(回転構造体)
4A 最も上流側に配置されたチップシュラウド
4B リーク蒸気SLの流れ方向で中央に配置されたチップシュラウド
6,6A,6B,6C シールフィン
6a シールフィンの上流側の面
6b シールフィンの先端
7,7A,7B,7C 案内プレート
7a 案内プレート7,7A,7B,7Cの先端
10 タービンケーシング(静止構造体)
12 キャビティ
13 キャビティ底面(内周面)
17 案内プレート
17a 案内プレート17の外周部位
17b 案内プレート17の内周部位
17c 案内プレート17の湾曲内側面
17d 案内プレート17の先端
17e 案内プレート17の外周端
20 蒸気供給管
21 主流入口
27 案内プレート
27a 案内プレート27のプレート先端
27b 案内プレート27の湾曲内側面
27b′ 案内プレート27の内周部位
27c 案内プレート27の湾曲外側面
27d 案内プレート27の上流端
27e 案内プレート27の外周端
28 閉塞プレート
41,41A,41B シュラウド4のベース面
42 シュラウド4のステップ面
43A,43B,43C 案内プレートの直ぐ上流側に位置するシュラウド4の軸方向Aに向く面
44 シュラウド4の角部44
50 動翼
60 静翼
121,122,123 小空間
121a,122a,123a 剥離渦形成空間
A 軸方向
C ロータ回転方向
CL ロータ軸心線(軸心線)
Gd 隙間
F1〜F7,F1′〜F3′ リーク蒸気SLの流れ
SU1,SU2,SU3 主渦
HU1,HU2,HU3 剥離渦
L0,L0′ 基準線
L1 案内プレート27の中心線
LA,LB,LC 案内プレートと、その直ぐ上流側のシュラウド4の軸方向Aに向く面との距離
Ln 隣接する案内プレート27の相互間距離
R 径方向
M 案内プレートを設置する所定の範囲
m 微小隙間
S 蒸気(作動流体)
SL リーク蒸気(リーク流)
WA,WB,WC 案内プレートの幅寸法
傾斜角度 θ,θ′
1 steam turbine (turbo machinery)
2, 2A,
4A Chip shroud arranged at the most
12
50 moving
Gd Gap F1 to F7, F1 'to F3' Flow of leak steam SL SU1, SU2, SU3 Main vortex HU1, HU2, HU3 Separation vortex L0, L0 'Reference line L1 Center line of
SL Leak steam (leak flow)
WA, WB, WC Guide plate width dimensions Tilt angles θ, θ '
Claims (13)
前記静止構造体から前記軸心線側に延在するシールフィンと、
前記リーク流の軸線方向に関する流れ成分で前記シールフィンの上流側の面における前記軸心線寄りの先端側に取り付けられ、前記所定方向とは反対側に向く面の少なくとも内周部位を前記外周側に向ける傾斜姿勢として、前記リーク流を案内する案内プレートとを備えた
ことを特徴とするシール構造。 The leak flow of the working fluid flows from the gap between the rotating structure that rotates in a predetermined direction around the axis and the stationary structure that radially opposes the rotating structure with a gap on the outer peripheral side of the rotating structure. A seal structure,
Seal fins extending from the stationary structure toward the axis line;
At least an inner peripheral portion of a surface facing the opposite side to the predetermined direction is attached to the upstream side surface of the seal fin with a flow component in the axial direction of the leak flow, the surface facing the axis direction. A seal plate having a guide plate for guiding the leak flow as an inclined attitude toward the seal.
前記回転構造体は、軸方向に沿って複数設置され、動翼の先端に取り付けられたチップシュラウドであって、
前記シールフィン及び前記案内プレートは、前記チップシュラウドに対して前記径方向に対向して配置された
ことを特徴とする、請求項1に記載のシール構造。 The stationary structure is a turbine casing;
The rotating structure is a plurality of tip shrouds installed along the axial direction, attached to the tip of the moving blade,
2. The seal structure according to claim 1, wherein the seal fin and the guide plate are arranged to face the tip shroud in the radial direction. 3.
ことを特徴とする、請求項2に記載のシール構造。 The axial dimension of the guide plate is the distance between the upstream surface of the seal fin and the surface of the tip shroud that faces the axial direction and is located upstream of the seal fin. 3. The seal structure according to claim 2, wherein the seal structure is set to be smaller than half of the seal structure.
ことを特徴とする、請求項1〜3の何れか一項に記載のシール構造。 The guide plate according to any one of claims 1 to 3, wherein the guide plate is a flat plate, and has a tilted posture in which a surface facing a side opposite to the predetermined direction is directed to the outer peripheral side. The described seal structure.
ことを特徴とする、請求項4に記載のシール構造。 The seal structure according to claim 4, wherein the guide plate is inclined by a predetermined angle with respect to the radial direction, and the predetermined angle is set in a range of 5 ° to 30 °.
ことを特徴とする、請求項1〜3の何れか一項に記載のシール構造。 The guide plate is a curved plate, and is attached to the seal fin such that an inner surface of the curved shape faces a side opposite to the predetermined direction that is a rotation direction of the rotating structure. The seal structure according to claim 1.
ことを特徴とする、請求項6に記載のシール構造。 The seal fin has a ring shape centered on the axis, and the guide plate is provided in a plurality on the seal fin along a circumferential direction, and a distance between the guide plates is an inner circumferential end. The seal structure according to claim 6, wherein the portion is set to be narrower than the outer peripheral side.
ことを特徴とする、請求項6又は7に記載のシール構造。 In the guide plate, at least an end on the outer peripheral side is inclined by a predetermined angle with respect to a tangent of a circle centered on the axis, and the predetermined angle is set in a range of 5 ° to 30 °. The seal structure according to claim 6, wherein the seal structure is performed.
ことを特徴とする、請求項7、又は、請求項7を引用する場合の請求項8に記載のシール構造。 The sealing structure according to claim 7, further comprising a closing plate that closes the upstream side of the guide plate. 9.
ことを特徴とする、ターボ機械。 The rotating structure which rotates in a predetermined direction around an axis, and a stationary structure which radially opposes the rotating structure with a gap provided on the outer peripheral side of the rotating structure, according to any one of claims 1 to 9. A turbomachine comprising a seal structure.
前記複数のチップシュラウドの内の、少なくとも一つのチップシュラウドに対し、前記シール構造を備えたタービンであることを特徴とする、請求項10に記載のターボ機械。 The rotating structure includes a plurality of chip shrouds provided along the axis, and the stationary structure includes a turbine casing surrounding the plurality of chip shrouds,
The turbomachine according to claim 10, wherein the turbine is provided with the seal structure for at least one of the plurality of chip shrouds.
ことを特徴とする、請求項11に記載のターボ機械。 The turbomachine according to claim 11, wherein the at least one tip shroud is a tip shroud located closest to an inlet of the working fluid.
ことを特徴とする、請求項11又は請求項12に記載のターボ機械。 The turbomachine according to claim 11, wherein the at least one tip shroud is a tip shroud arranged at an axial center.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016038048A JP6662661B2 (en) | 2016-02-29 | 2016-02-29 | Seal structure and turbo machinery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016038048A JP6662661B2 (en) | 2016-02-29 | 2016-02-29 | Seal structure and turbo machinery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017155626A JP2017155626A (en) | 2017-09-07 |
JP6662661B2 true JP6662661B2 (en) | 2020-03-11 |
Family
ID=59809352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016038048A Active JP6662661B2 (en) | 2016-02-29 | 2016-02-29 | Seal structure and turbo machinery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6662661B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7054582B2 (en) * | 2018-08-03 | 2022-04-14 | 株式会社東芝 | Sealing device and turbomachinery |
CN115704321A (en) * | 2021-08-03 | 2023-02-17 | 中国航发商用航空发动机有限责任公司 | Sealing structure and sealing labyrinth thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS476263U (en) * | 1971-02-12 | 1972-09-21 | ||
JP2003201806A (en) * | 2001-12-27 | 2003-07-18 | Toshiba Corp | Turbomachinery |
US7004475B2 (en) * | 2003-09-26 | 2006-02-28 | Siemens Westinghouse Power Corporation | Flow dam design for labyrinth seals to promote rotor stability |
JP2008184974A (en) * | 2007-01-30 | 2008-08-14 | Toshiba Corp | Seal device for fluid machine and steam turbine |
JP5484990B2 (en) * | 2010-03-30 | 2014-05-07 | 三菱重工業株式会社 | Turbine |
US8591181B2 (en) * | 2010-10-18 | 2013-11-26 | General Electric Company | Turbomachine seal assembly |
JP5725848B2 (en) * | 2010-12-27 | 2015-05-27 | 三菱日立パワーシステムズ株式会社 | Turbine |
JP2014141955A (en) * | 2013-01-25 | 2014-08-07 | Mitsubishi Heavy Ind Ltd | Rotary machine |
JP5951890B2 (en) * | 2013-04-03 | 2016-07-13 | 三菱重工業株式会社 | Rotating machine |
JP6296649B2 (en) * | 2014-03-04 | 2018-03-20 | 三菱日立パワーシステムズ株式会社 | Seal structure and rotating machine |
-
2016
- 2016-02-29 JP JP2016038048A patent/JP6662661B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017155626A (en) | 2017-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10385714B2 (en) | Seal structure and rotary machine | |
JP2007321721A (en) | Axial flow turbine stage and axial flow turbine | |
WO2017098960A1 (en) | Step seal, seal structure, turbomachine, and method for producing step seal | |
WO2014010052A1 (en) | Axial flow fluid machine | |
JP2011106474A (en) | Axial flow turbine stage and axial flow turbine | |
JP6227572B2 (en) | Turbine | |
JP6712873B2 (en) | Seal structure and turbo machine | |
JP6662661B2 (en) | Seal structure and turbo machinery | |
US10982719B2 (en) | Seal fin, seal structure, and turbo machine | |
US11136897B2 (en) | Seal device and turbomachine | |
US11519287B2 (en) | Rotating machine | |
WO2021220950A1 (en) | Sealing device and dynamo-electric machine | |
WO2021039811A1 (en) | Swirl breaker assembly and rotating machine | |
JP5852191B2 (en) | End wall member and gas turbine | |
JP2018105221A (en) | Diffuser, turbine and gas turbine | |
JP6584617B2 (en) | Rotating machine | |
JP6986426B2 (en) | Turbine | |
JP6577400B2 (en) | Turbine blade | |
JP6930896B2 (en) | Turbines and blades | |
JP5852190B2 (en) | End wall member and gas turbine | |
JP5591986B2 (en) | End wall member and gas turbine | |
JP2015102236A (en) | Seal structure and rotary machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A625 | Written request for application examination (by other person) |
Free format text: JAPANESE INTERMEDIATE CODE: A625 Effective date: 20190214 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200129 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200213 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6662661 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |