JPS59225285A - Method of cooling inside of fire proofing wall - Google Patents

Method of cooling inside of fire proofing wall

Info

Publication number
JPS59225285A
JPS59225285A JP9989383A JP9989383A JPS59225285A JP S59225285 A JPS59225285 A JP S59225285A JP 9989383 A JP9989383 A JP 9989383A JP 9989383 A JP9989383 A JP 9989383A JP S59225285 A JPS59225285 A JP S59225285A
Authority
JP
Japan
Prior art keywords
cooling
cooling water
heat flow
fireproof wall
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9989383A
Other languages
Japanese (ja)
Inventor
西田 功
孝三 田中
高野 成
堀内 健文
川手 剛雄
信幸 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9989383A priority Critical patent/JPS59225285A/en
Publication of JPS59225285A publication Critical patent/JPS59225285A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Blast Furnaces (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は耐火壁内の冷却方法に関し、特に耐火壁自体の
内部冷却(以下単に炉体冷却と称する)に当たシ壁厚方
向の冷却効率と鉄皮側の熱流レベルの相対的関係を監視
することによシ冷却液量のコントロールを適切に行なう
ことができる様にした経済的な冷却方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling method within a refractory wall, and in particular to internal cooling of the refractory wall itself (hereinafter simply referred to as furnace body cooling), and to improve the cooling efficiency in the wall thickness direction and the heat flow on the shell side. The present invention relates to an economical cooling method in which the amount of cooling liquid can be appropriately controlled by monitoring the relative relationship between levels.

本発明は内部を直視できないあらゆる高温炉の炉体冷却
に適用可能であるが、以下の説明では高炉に適用される
場合を代表的にとシ挙げる。
Although the present invention is applicable to cooling the furnace body of any high-temperature furnace whose interior cannot be viewed directly, the following description will typically refer to the case where it is applied to a blast furnace.

高炉の寿命は炉体冷却の優劣によってほとんど決まると
いっても過言ではなく、その為炉体冷却の管理は一般的
にいって常に安全過剰気味の状態で行なわれる。即ち炉
体冷却に当っては、耐火壁内に複数且つ千鳥状に挿入・
配置された冷却水路内に水を供給・循環させる一方、排
出側で且つ耐火壁の外部に位置する冷却水路内の水温を
測定しあるいは炉壁内温度を測定し、これら温度に応じ
て供給側の水量を調節するという制御方式が採用されて
いる。そしてこの制御方式の実施に際しては、炉内の熱
負荷が最高のときでも炉体冷却の効果を十分発揮できる
だけの通水状態が確保できることを最低基準としている
。しかし実際の炉内熱負荷は絶えず変動しておシ、経時
的に見た場合、この熱負荷が局所的に弱くなる現象はか
なシ頻繁に生じるととが分かる。従ってこの様に炉内熱
負荷が減少している部位に相当する耐火壁内の冷却はよ
り一層の過剰状態となっておシ、冷却水がいたずらに浪
費されているのが実情である。このような観点から炉体
冷却に使用される冷却水についても省エネルギー化の要
請に沿ってその節約を図ることが強く要求される様に外
ってきた。
It is no exaggeration to say that the lifespan of a blast furnace is largely determined by the quality of the furnace body cooling, and for this reason, furnace body cooling is generally always managed in a state that is a little too safe. In other words, when cooling the furnace body, multiple units are inserted into the fireproof wall in a staggered manner.
While water is supplied and circulated in the cooling channels arranged, the temperature of the water in the cooling channels located on the discharge side and outside the fireproof wall is measured, or the temperature inside the furnace wall is measured, and the supply side A control method is adopted that adjusts the amount of water. When implementing this control system, the minimum standard is to ensure that water flow is sufficient to achieve a sufficient cooling effect even when the heat load inside the furnace is at its highest. However, the actual heat load in the furnace constantly fluctuates, and when viewed over time, it can be seen that the phenomenon of local weakening of this heat load occurs frequently. Therefore, the cooling inside the fireproof wall, which corresponds to the area where the heat load inside the furnace is reduced, becomes even more excessive, and the reality is that cooling water is wasted unnecessarily. From this point of view, there has been a strong demand to conserve the cooling water used for cooling the reactor body in line with the demand for energy conservation.

本発明は上記の事情に一着目してなされたもので、その
目的は、耐火壁内の冷却水路をブロック単位で捉え、各
ブロック毎に壁厚方向への熱の移動状況(即ち鉄皮への
貫流熱流と冷却水路への抜熱量)を直接測定し、得られ
る測定値を基にして各ブロック毎の水冷塵を制御し、炉
体冷却に使用される冷却水の供給量コントロールを適切
に行なうことができるような冷却方法を提供することに
ある。
The present invention was made with a focus on the above-mentioned circumstances, and its purpose is to grasp the cooling channels in the fireproof wall in units of blocks, and to analyze the state of heat transfer in the wall thickness direction for each block (i.e., to The heat flow through the reactor and the amount of heat removed into the cooling channel) are directly measured, and the water cooling dust in each block is controlled based on the measured values, and the supply amount of cooling water used for cooling the reactor body is appropriately controlled. The object of the present invention is to provide a cooling method that can be used.

しかしてとの様な目的を達成し得た本発明の冷却方法と
は、耐火壁内に冷却液通路を埋設して耐火壁を冷却する
に当シ、該冷却液通路近傍に、前記耐火壁の厚さ方向に
少なくとも3以上の感温部を有する検知センサーを埋設
し、該センサーが得られる熱流束情報を使用して壁厚方
向の冷却効率と鉄皮側の熱流レベルの相対的関係を監視
しつつ前記冷却液の供給量を調節する様にした点に要旨
を有するものである。
However, the cooling method of the present invention that has achieved the above object is that when cooling the fireproof wall by embedding the coolant passage in the fireproof wall, A detection sensor having at least three or more temperature-sensing parts is buried in the thickness direction of the wall, and the heat flux information obtained by the sensor is used to determine the relative relationship between the cooling efficiency in the wall thickness direction and the heat flow level on the skin side. The gist is that the supply amount of the cooling liquid is adjusted while being monitored.

以下図面を参照しつつ本発明の構成及び作用効果を説明
する。本発明は上述した様に耐火壁内部の熱の動き即ち
熱流束(以下単に熱流という)を直接捉えて、その程度
に応じて冷却水量のブロック別制御(あるいは分散制御
ともいえる)を行なおうとするものであシ、その為には
耐火壁内の熱流状況から検討する必要があった。即ち第
1図は耐火壁W内の熱流状況を示す要部模式図である。
The configuration and effects of the present invention will be explained below with reference to the drawings. As described above, the present invention aims to directly capture the movement of heat inside the fireproof wall, that is, the heat flux (hereinafter simply referred to as heat flow), and control the amount of cooling water for each block (or it can also be called distributed control) according to the degree of the movement. To do so, it was necessary to consider the heat flow situation within the fireproof wall. That is, FIG. 1 is a schematic diagram of the main part showing the heat flow situation within the fireproof wall W.

この図にも示される様に、隣接する冷却水通路1゜1間
における耐火壁W内の熱流は、各冷却水通路1へ向かう
もの(矢印Qa l Qb l・・・Qeの熱流)とこ
れらの通路1と平行に鉄皮3側へ向かうもの(矢印Q’
a+Q’b+・・・Q10の熱流)に大別される。
As shown in this figure, the heat flows within the fireproof wall W between adjacent cooling water passages 1.1 are those directed toward each cooling water passage 1 (heat flows indicated by arrows Qa l Qb l... (arrow Q'
a+Q'b+...Q10 heat flow).

従って冷却水通路1内を流れる冷却水量をコントロール
する為には、本来、Qa−Qeの熱流の経時的変化を捉
えることが最も直接的といえる。しかしQa−Qeの熱
流の実際の向きは模式図に示される様外単−のものでな
く非常に複雑であるから、この様なQa−Qeの熱流を
直接的に捉えることは非常に困難であった。しかしQ’
 r樽’eの熱流は一軸熱流であるので熱的情報の収集
即ち測定が行ない易いという利点があシ、しかもQ′a
〜Q′eの熱流の減少量(−ΔQ’)は当然にQ a 
−QeO熱流の増加量(+ΔQ)に相当するはずである
から、この点について更に検討を行なった結果、下記(
1−1)〜(1−2)式で示される様な技術的因果関係
がほぼ成立することを確認した。
Therefore, in order to control the amount of cooling water flowing through the cooling water passage 1, it is essentially the most direct way to grasp the change in the Qa-Qe heat flow over time. However, the actual direction of the Qa-Qe heat flow is not as simple as shown in the schematic diagram, but is extremely complex, so it is extremely difficult to directly capture the Qa-Qe heat flow. there were. But Q'
Since the heat flow in r barrel 'e is a uniaxial heat flow, it has the advantage that it is easy to collect thermal information, that is, measure it.Moreover, Q'a
The amount of decrease in heat flow (-ΔQ') of ~Q'e is naturally Q a
-QeO It should correspond to the increase in heat flow (+ΔQ), so as a result of further investigation on this point, we found the following (
It was confirmed that the technical causal relationships shown in equations 1-1) and (1-2) almost hold true.

、5f(Q’e)f(ηq’)ζf(η9)・・・・・
・(1−2)但し、Δt :微小時間 Q10:鉄皮から放散する一軸熱流 ηQ”冷却水による間接的冷却効率を 意味し、 ηQ :冷却水による直接的冷却効率を意味し、 即ち(i=2)式は、間接的冷却効率即ち壁厚方向の冷
却効率η9Iと、軸方向の熱流における鉄皮側レベル(
以下鉄皮側熱流レベルという)Q’Hの相対的関係を同
時に把握することによって、冷却水通路1へ向かうQa
−Qeの熱流の経時的変化f(ηQ)として近似できる
ことを表わしている。
, 5f(Q'e)f(ηq')ζf(η9)...
・(1-2) However, Δt: minute time Q10: uniaxial heat flow ηQ dissipating from the steel shell means indirect cooling efficiency by cooling water, ηQ: means direct cooling efficiency by cooling water, that is, (i =2) Formula is the indirect cooling efficiency, that is, the cooling efficiency in the wall thickness direction η9I, and the skin side level (
By simultaneously grasping the relative relationship of Q'H (hereinafter referred to as the heat flow level on the shell side), Qa toward the cooling water passage 1
-Qe can be approximated as a change in heat flow over time f(ηQ).

そこで本発明者等は、上記の冷却効率ηQ/及び鉄皮側
熱流レベルQ/ eを確実に測定できる検知センサーを
用いてηQ/とQ’eの相対的関係を下記の如く監視し
つつ冷却水の供給量を調節するという方法の採用に到達
し得たものである。そしてこの監視及び冷却水供給量の
調節に当っては下記(イ)〜に)の基本的要領に従って
行なえばよい。
Therefore, the present inventors used a detection sensor that can reliably measure the above-mentioned cooling efficiency ηQ/ and shell side heat flow level Q/e, and conducted cooling while monitoring the relative relationship between ηQ/ and Q'e as shown below. They were able to adopt a method of adjusting the amount of water supplied. This monitoring and adjustment of the amount of cooling water supplied may be carried out according to the basic procedures (a) to (a) below.

(イ)ηQ′が高くてQ10も高いとき:冷却水量を適
当に増加する。
(a) When ηQ' is high and Q10 is also high: Increase the amount of cooling water appropriately.

(ロ)η91が高くてQ10が低いとき:冷却水量を大
巾に減少する。
(b) When η91 is high and Q10 is low: The amount of cooling water is significantly reduced.

(ハ)ηQ/が低くてQ10が高いとき:冷却水量を大
巾に増加する。
(c) When ηQ/ is low and Q10 is high: Largely increase the amount of cooling water.

に)ηQ/が低くてQ10も低いとき:冷却水量を現状
維持とする。
b) When ηQ/ is low and Q10 is also low: The amount of cooling water is maintained as it is.

この様な冷却水量調節の方法を1ブロツクで実施した場
合の総冷却水量供給範囲を従来方法における場合の同範
囲と比較すれば第4表の通電である。
Comparing the total cooling water supply range when this cooling water amount adjustment method is implemented in one block with the same range when using the conventional method, the energization results are as shown in Table 4.

尚(+)は普通程度の増加1 (千十)→(+千十十)
は増加の程度が更に著しくなることを示す。
(+) is a normal increase 1 (1000) → (+110)
indicates that the degree of increase is even more significant.

(→は  I の減少、 <−−>は減少の程度が大き
くなることを示す。
(→ indicates a decrease in I, and <--> indicates a greater degree of decrease.

(0)は現状維持、を夫々示す。(0) indicates that the status quo will be maintained.

第1表の結果から明らかな様に、本発明方法の実施によ
ってブロック単位で従来よシも25〜75係、平均にし
て約50%の冷却水量を節約できることが分かる。従っ
て本発明ではブロック単位の冷却水制御の数を多くすれ
ばするほど制御コスト分の増加を差し引いても冷却水量
の大巾な節約によるランニングコストの低減を図ること
ができることが明らかである。
As is clear from the results in Table 1, it can be seen that by implementing the method of the present invention, the amount of cooling water can be saved on a block basis by 25 to 75 times compared to the conventional method, and on average about 50%. Therefore, in the present invention, it is clear that the more the number of cooling water controls for each block is increased, the more the running cost can be reduced by significantly saving the amount of cooling water even after subtracting the increase in control cost.

ところで上記のηQ’及びQ’eを測定する為の検知セ
ンサーとしては、少なくともQ′aとQ10が測定でき
る検知センサーであればどの様な型式、構造のセンサー
でもよいが、壁厚方向に少なくとも3以上の感温部を有
するものでなければならないととは勿論である。とれは
感温部が2つでは1つの熱流しか把握できないからであ
る。
By the way, the detection sensor for measuring ηQ' and Q'e mentioned above may be of any type or structure as long as it can measure at least Q'a and Q10. Of course, it must have three or more temperature sensing parts. This is because two temperature-sensing parts can detect only one heat sink.

この様な検知センサーの好ましい一例とその適用例につ
いて以下説明する。即ち第2図は好適なセンサー(温度
検知センサー)20の一部破断斜視図を示し、又第3図
は第2図の展開断面相当図を示している。これらの図に
おいて21は外套シース管で温度検知センサ−2o全体
の保護としての役割を果す。22aはシース型熱電対で
、更に該熱電対22aには熱電効果を示す1対の金属線
24 、24’が挿通され、その先端はシース内におい
て測定接点即ち感温部PI、P2.・・・P6(以下代
表的に言うときはPと表記する)を構成する。
A preferred example of such a detection sensor and an example of its application will be described below. That is, FIG. 2 shows a partially cutaway perspective view of a preferred sensor (temperature detection sensor) 20, and FIG. 3 shows a developed cross-sectional view corresponding to FIG. 2. In these figures, reference numeral 21 denotes an outer sheath tube which serves as a protector for the entire temperature detection sensor 2o. 22a is a sheath type thermocouple, and a pair of metal wires 24, 24' exhibiting a thermoelectric effect are inserted through the thermocouple 22a, and the tips of the metal wires 24, 24' are located within the sheath as measurement contacts, that is, temperature sensing portions PI, P2. . . . constitutes P6 (hereinafter referred to as P when speaking representatively).

そしてこれらの感温部Pは長さ方向に異なる位置を占め
る様に構成され、図では炉内側(A側)から鉄皮側(B
側)へかけてほぼ等ピッチで長さ方向の位置を変更して
PL 、 P2 、・・・P6を設けている。更に感温
部Pの先端には、シース型熱電対22aと全く同一素材
からなるシース型熱電対22dをダミーとして接続する
(図中の26は接続部を示す)。又23は外套シース管
21内に充填されてなる耐火性の絶縁材であって、熱し
よう乱の影響をできるだけ抑えるために耐火壁特性に合
った熱伝導率を有するものを使用する。従ってこの様な
温度検知センサー2oにおける各感温部Pでの測温性能
は精度的にも耐久度的にも十分信頼のおけるもの表いえ
る。
These temperature sensing parts P are configured to occupy different positions in the length direction, and in the figure, from the inside of the furnace (side A) to the side of the steel shell (side B).
PL, P2, . . . P6 are provided by changing the positions in the length direction at approximately equal pitches toward the side). Further, a sheathed thermocouple 22d made of the same material as the sheathed thermocouple 22a is connected as a dummy to the tip of the temperature sensitive part P (26 in the figure indicates a connection part). Reference numeral 23 denotes a fire-resistant insulating material filled in the outer sheath tube 21, which has a thermal conductivity suitable for the fire-resistant wall characteristics in order to suppress the influence of thermal disturbances as much as possible. Therefore, it can be said that the temperature measurement performance of each temperature sensing part P in such a temperature detection sensor 2o is sufficiently reliable in terms of accuracy and durability.

この温度検知センサー20を耐火壁に取付るに当っては
、第4図(本発明方法を最小ブロック単位で行なうとき
の断面模式説明図)及び第5図(その正面模式説明図)
に示す様にして行なえばよい。
When installing this temperature detection sensor 20 on a fireproof wall, please refer to Fig. 4 (schematic sectional view when the method of the present invention is carried out in units of minimum blocks) and Fig. 5 (schematic front view thereof).
This can be done as shown in.

即ちxa*xb+tc++a(以下代表的に言うときは
単に1と表記する)は冷却水通路を示し、耐火壁Wの内
部に複数且つ略千鳥状に配設された(図では略対角位置
に配設された)状態を示している。そして図に示される
3個の冷却水通路1a〜1dで最小単位の冷却ブロック
を構成している。
That is, xa*xb+tc++a (hereinafter simply referred to as 1 when speaking representatively) indicates cooling water passages, which are arranged in plurality in a substantially staggered manner inside the fireproof wall W (in the figure, they are arranged at substantially diagonal positions). (installed) state. The three cooling water passages 1a to 1d shown in the figure constitute a minimum unit cooling block.

そして温度検知センサー20はその冷却ブロックの略中
央部に、鉄皮3及びスタンプ層4を貫いて耐火壁Wの奥
深くまで各冷却水通路1と略平行となる様に埋設すれば
よい。又5は高炉の外部に設けられた熱流演算指示器で
、該指示器5内では下記(2)式の設定演算式に従って
Q10(炉内側熱流レベル)lQ’5(鉄皮側熱流レベ
ル)及びηQ/ (冷却効率)が夫々(3)〜(5)式
に示す様に算出される。
The temperature detection sensor 20 may be buried approximately in the center of the cooling block so as to penetrate through the iron skin 3 and the stamp layer 4 deep into the fireproof wall W so as to be approximately parallel to each cooling water passage 1. Reference numeral 5 denotes a heat flow calculation indicator provided outside the blast furnace, and within the indicator 5, Q10 (furnace heat flow level) lQ'5 (shell side heat flow level) and ηQ/ (cooling efficiency) is calculated as shown in equations (3) to (5), respectively.

λ Q’ i −一(Ti −T j)   ・・・・・・
・・・(2)i 但し添字量、jは炉内側から数えて夫々i番目及びj番
目であることを意味し、又 Q’lji番目感温部とj番目感温部間の熱流軸Vm2
・h) Ti: i番目感温部での測温値(℃)Tj:i番目感
温部での測温値(℃) DI i番目感温部とj番目感温部間の距離(ハ)λ:
センサー20の熱伝導率(kal/m−h r ・’C
)こうして算出されたηQ/とQ10は比較設定指示器
6へ送られる。該設定指示器6内ではηQ/とQ’5の
相対的関係が前述した様な(イ)〜に)の基準によって
監視されると共に所定の制御量が設定指示され、一定の
信号として冷却水供給系統(図中の矢付夷線ラインL)
の根元側パルプ8に伝えられる。その結果、該パルプ8
は指示に応じて開閉する。こうして最小単位の冷却ブロ
ックだけをとシ挙げても、耐火壁内の熱負荷に応じて冷
却水を必要十分な量だけ供給することができ、非常に経
済的であシ、省エネルギー化の実現に大きく寄与するこ
とかできる。
λ Q' i −1(Ti −T j) ・・・・・・
...(2) i However, the subscript j means the i-th and j-th parts counting from the inside of the furnace, and the heat flow axis Vm2 between the Q'lji-th temperature sensing part and the j-th temperature sensing part
・h) Ti: Temperature measurement value at the i-th temperature sensing part (°C) Tj: Temperature measurement value at the i-th temperature sensing part (°C) DI Distance between the i-th temperature sensing part and the j-th temperature sensing part (h) )λ:
Thermal conductivity of the sensor 20 (kal/m-hr ・'C
) The thus calculated ηQ/ and Q10 are sent to the comparison setting indicator 6. In the setting indicator 6, the relative relationship between ηQ/ and Q'5 is monitored according to the criteria (a) to (a) as described above, and a predetermined control amount is set and instructed, and the cooling water is output as a constant signal. Supply system (arrow line L in the diagram)
It is transmitted to the pulp 8 on the root side. As a result, the pulp 8
opens and closes according to instructions. In this way, even if only the smallest cooling block is used, it is possible to supply the necessary and sufficient amount of cooling water according to the heat load inside the fireproof wall, which is extremely economical and contributes to energy savings. You can make a big contribution.

尚上記実施例はあくまでも代表例であって本発明を限定
する性質のものではなく、前述の趣旨に沿う範囲内で適
当に変更して実施することも本発明の技術的範囲に含ま
れることは言うまでもない。
The above-mentioned embodiments are merely representative examples and do not limit the present invention, and it is within the technical scope of the present invention to implement the invention with appropriate modifications within the scope of the above-mentioned spirit. Needless to say.

例えば冷却水通路として冷却箱方式といわゆるステーブ
方式が考えられるが、そのどちらにも適用可能であシ、
又冷却ブロックの区切シ方も自由であシ、温度検知セン
サーはその冷却ブロック毎に配設すればよい。又該セン
サーは埋設型に限らず、炉内側へ突出する型のものであ
ってもよい。
For example, a cooling box system and a so-called stave system can be considered as cooling water passages, but it is possible to apply to both.
Furthermore, the cooling blocks can be divided freely, and a temperature detection sensor may be provided for each cooling block. Further, the sensor is not limited to a buried type, but may be a type that protrudes into the furnace.

更に上述の説明では高炉の耐火壁内の冷却に主眼をおい
たが、これに限定されないととは言うまでもなく、冒頭
にも記した様に要するに内部を直視できないあらゆる高
温炉の炉体冷却に良好に適用され得るものであシ、冷却
液としても水に限定されないことは勿論である。
Furthermore, in the above explanation, the main focus was on cooling inside the refractory wall of a blast furnace, but it goes without saying that this is not limited to this, but as stated at the beginning, in short, it is suitable for cooling the furnace body of any high-temperature furnace where the inside cannot be seen directly. Of course, the cooling liquid is not limited to water.

本発明は以上の様に構成されるので、耐火壁内の熱の移
動状況をブロック的に直接測定し、得られる測定値を基
にして各フ頴ツク毎の冷却制御が行なえることとなった
。その結果、炉内熱負荷の局部的な増加、減少に応じて
その位置に相当する耐火壁内の冷却に必要十分な程度に
冷却液の供給コア)o−ルを行なうことができ、ランニ
ングコストの低減及び省エネルギーの実現に寄与できる
様になった。
Since the present invention is configured as described above, it is possible to directly measure the state of heat transfer within the fireproof wall in blocks, and to perform cooling control for each hook based on the obtained measurement values. Ta. As a result, in response to a local increase or decrease in the heat load in the furnace, the supply core of the coolant can be adjusted to the extent necessary and sufficient to cool the refractory wall corresponding to that location, which reduces running costs. It has become possible to contribute to the reduction of energy consumption and the realization of energy conservation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は耐火壁内の熱流状況を示す要部模式図、第2図
は本発明方法の実施に好適な検知センサーの一部破断斜
視図、第3図は第2図の展開断面相当図、第4図は本発
明方法を最小ブロック単位で行なうときの断面模式説明
図、第5図は同正面模式説明図である。 W・・・耐火壁 1(1allblIC116) ・・・冷却液通路20
・・・検知センサー 出願人  株式会社神戸製鋼所 21S1 口 1 第3図
Fig. 1 is a schematic diagram of the main parts showing the heat flow situation within the fireproof wall, Fig. 2 is a partially cutaway perspective view of a detection sensor suitable for carrying out the method of the present invention, and Fig. 3 is an exploded cross-sectional view equivalent to Fig. 2. , FIG. 4 is a schematic cross-sectional explanatory view when the method of the present invention is carried out in units of minimum blocks, and FIG. 5 is a schematic explanatory front view of the same. W...Fireproof wall 1 (1allblIC116)...Cooling liquid passage 20
...Detection sensor applicant Kobe Steel, Ltd. 21S1 Port 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 耐火壁内に冷却液通路を埋設して耐火壁を冷却するに当
ル、該冷却液通路近傍に、前記耐火壁の厚さ方向に3以
上の感温部を有する検知センサーを埋設し、該検知セン
サーから得られる熱流束情報を利用して前記冷却液の強
制循環量を調節する仁とを特徴とする耐火壁内の冷却方
法。
When cooling the fireproof wall by embedding a cooling liquid passage in the fireproof wall, a detection sensor having three or more temperature sensing parts is buried in the vicinity of the cooling liquid passage in the thickness direction of the fireproof wall, A method for cooling inside a fireproof wall, comprising: adjusting the amount of forced circulation of the coolant using heat flux information obtained from a detection sensor.
JP9989383A 1983-06-03 1983-06-03 Method of cooling inside of fire proofing wall Pending JPS59225285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9989383A JPS59225285A (en) 1983-06-03 1983-06-03 Method of cooling inside of fire proofing wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9989383A JPS59225285A (en) 1983-06-03 1983-06-03 Method of cooling inside of fire proofing wall

Publications (1)

Publication Number Publication Date
JPS59225285A true JPS59225285A (en) 1984-12-18

Family

ID=14259450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9989383A Pending JPS59225285A (en) 1983-06-03 1983-06-03 Method of cooling inside of fire proofing wall

Country Status (1)

Country Link
JP (1) JPS59225285A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249394A (en) * 1988-08-09 1990-02-19 Fuji Electric Co Ltd Method and device for cooling induction furnace refractory
CN103215397A (en) * 2013-04-03 2013-07-24 武汉钢铁(集团)公司 Regulable blast furnace cooling system and blast furnace cooling method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249394A (en) * 1988-08-09 1990-02-19 Fuji Electric Co Ltd Method and device for cooling induction furnace refractory
CN103215397A (en) * 2013-04-03 2013-07-24 武汉钢铁(集团)公司 Regulable blast furnace cooling system and blast furnace cooling method

Similar Documents

Publication Publication Date Title
JPH0244186Y2 (en)
US4722610A (en) Monitor for deposition on heat transfer surfaces
JPS59225285A (en) Method of cooling inside of fire proofing wall
JPS58148061A (en) Method for predicting breakout in continuous casting
KR900005780B1 (en) Heat measuring apparatus of lnner tube
CN110029198A (en) A kind of computer scaling method of the cooling effect of blast furnace cooling system
US6698388B2 (en) Internal combustion engine cooling system
JPS58148063A (en) Method for predicting cracking of ingot in continuous casting
CN215517504U (en) Blast furnace iron runner
CN206132251U (en) Silicon nitride thermocouple protection tube
WO2019164654A3 (en) Nuclear fuel failure protection method
CN202171513U (en) High temperature rapid response thermocouple
CN102899433A (en) Steel outer wall of blast furnace tapping channel with water cooling and monitoring functions and method
CN202898440U (en) Steel outer wall of iron tap channel of blast-furnace with water cooling and monitoring function
JPS6099467A (en) Detection of shell rupture in continuous casting
JPS61219456A (en) Casting temperature measuring instrument
KR200457915Y1 (en) System for Cooling with Transformer
KR20030050868A (en) Estimation method for blast furnace hearth refractory thickness
JPS58145344A (en) Method for controlling taper quantity on short side of casting mold in continuous casting
JPS6314809A (en) Temperature measuring method for bottom of blast furnace
RU2044058C1 (en) Method for control of erosion of blast-furnace well
JPH0233085B2 (en)
CN207741856U (en) A kind of kiln temperature measuring equipment
JP4634660B2 (en) Management method for the bottom of the blast furnace
JP2530059Y2 (en) Wall electrode of DC arc furnace