JPS59224725A - Sheathing work - Google Patents

Sheathing work

Info

Publication number
JPS59224725A
JPS59224725A JP9737683A JP9737683A JPS59224725A JP S59224725 A JPS59224725 A JP S59224725A JP 9737683 A JP9737683 A JP 9737683A JP 9737683 A JP9737683 A JP 9737683A JP S59224725 A JPS59224725 A JP S59224725A
Authority
JP
Japan
Prior art keywords
cement
casing
piles
pile
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9737683A
Other languages
Japanese (ja)
Inventor
Koji Kataoka
宏治 片岡
Toshiyoshi Gotou
後藤 年芳
Yasuo Nakajima
康夫 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Haseko Corp
Original Assignee
Osaka Cement Co Ltd
Hasegawa Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Cement Co Ltd, Hasegawa Komuten Co Ltd filed Critical Osaka Cement Co Ltd
Priority to JP9737683A priority Critical patent/JPS59224725A/en
Publication of JPS59224725A publication Critical patent/JPS59224725A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/18Bulkheads or similar walls made solely of concrete in situ

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

PURPOSE:To prevent the deformation of the ground by a method in which cement-based powdery granules are packed into a cylindrical casing penetrated into the ground, and the casing is pulled out while discharging the powdery granules downwards to form continuous piles in order. CONSTITUTION:While being turned, a cylindrical casing 1 is penetrated into the ground, and cement-based powdery granules 3 having water absorbability, expandability, and hydraulically setting property are packed into the casing 1. A screw 4 is turned or compressed air is supplied, and the casing 1 is pulled up to form a pile 6. Other piles 6 are orderly formed connectedly to the existing pile 6 to form a sheathing cut-off wall 7.

Description

【発明の詳細な説明】 本発明は、比較的小規模な地下構造物を構築する際の開
削工事にともなう土留工法に関するものであって、特に
近接地盤をゆるめることによる近接t7/を端物への影
響を完全に防止することを可能にする工法である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an earth retaining method for excavation work when constructing a relatively small-scale underground structure. This construction method makes it possible to completely prevent the effects of

従来、この種の土留工法としては、鋼矢板工法、柱列土
留壁工法、ソイルセメントパイル土留壁工法等が知られ
ている。
Conventionally, as this type of earth retaining method, steel sheet pile method, column row earth retaining wall method, soil cement pile earth retaining wall method, etc. are known.

ところで、鋼矢板工法は、゛直接鋼矢板を打設するとい
う方法では市街地においては騒音が問題となるので、通
常、鋼矢板を打設すべき場所をまずオーガーによって穿
孔しセメントミルクを流し込んでおいてから鋼矢板を打
設するという方法が採られている。
By the way, in the steel sheet pile construction method, ``directly driving the steel sheet piles causes noise problems in urban areas, so normally the area where the steel sheet piles are to be placed is first drilled with an auger and cement milk is poured in.'' The method used is to install steel sheet piles after the steel sheet piles have been removed.

ところが、このような工事方法では、流し込んだセメン
トミルクが硬化するまでの間は周辺地盤のゆるみが避け
られず、また、打設した鋼矢板を回収した後には周辺地
盤が不安定になるという不都合がある。
However, with this construction method, it is inevitable that the surrounding ground will loosen until the poured cement milk hardens, and the surrounding ground will become unstable after the poured steel sheet piles are recovered. There is.

同様に、柱列土留壁工法、ソイルセメントパイル壁工法
にも、施工時にセメントミルクが硬化するまでの間周辺
地盤のゆるみが避けられないという不都合がある。
Similarly, the pillar row earth retaining wall construction method and the soil cement pile wall construction method also have the disadvantage that the surrounding ground is unavoidably loosened until the cement milk hardens during construction.

本発明は、このような事11町に着目してなされたもの
で、その目的とするところは、周辺地盤がゆるむと)う
不都合を箱<ことなしに±f1j壁を設けることができ
、すべり破壊および土醒壁背面の土のゆるみによる変状
を確実に防止することができる土留工法を提供すること
にあ名。
The present invention was made with a focus on these 11 towns, and its purpose is to make it possible to install ±f1j walls without the inconvenience caused by loosening of the surrounding ground, and to prevent slippage. It is famous for providing an earth retaining method that can reliably prevent destruction and deformation due to loosening of the soil behind the earth wall.

以下、本発明につき説明する。The present invention will be explained below.

本発明に係る土留工法は、筒状のケーシングを所定の深
度まで圧入し、吸水性、膨張性および水硬性を有するセ
メント系粉粒体材料を前記ケーシング内に充填し、前記
セメント系粉粒体材料を下方へ放出しなか・ら])IJ
記ケーフケ−シンき抜いて該セメント系粉粒体材料によ
るパイルを形成するという手順により、所要数のパイル
を密接させてここで、セメント系粉粒体材料は、水和硬
化性を有するセメント系材料成分と、膨張性を有する膨
張相成分と、透水性を有する骨材成分とを有してなる。
The earth retaining method according to the present invention includes press-fitting a cylindrical casing to a predetermined depth, filling the casing with a cement-based granular material having water absorption, expandability, and hydraulic properties, and Do not release the material downward]) IJ
The required number of piles are brought into close contact with each other by punching out the cement casing and forming piles of the cementitious powder material. It comprises a material component, an expandable phase component having expandability, and an aggregate component having water permeability.

水和硬化性を有するセメント系材料成分としては、例え
ば、石膏と亮炉スラグと普通ポルトランドセメントとを
主月料とし、それらに硬化促進剤としてハロゲン化合物
または硫酸塩類を必要に応じて添加し良く混合してなる
固化剤があシ、大阪ESC! (商品名:大阪セメント
株式会社製)として市販されている。この同化剤は、前
記主材料となる石膏、高炉スラグおよび普通ポルトラン
ドセメントの混合割合を、石膏15〜60(重量%)、
高炉スラグ2o〜60(重量%)、普通ポルトランドセ
メント10〜5o(M、量%)とし、それらを比表面積
が4 、 5 o arm”7g、以下となるように粉
砕し調合するか、または、それらに硬化促進剤を5(重
量%)以下添加して粉砕、調合してなるもので、吸水性
、It脹性および水硬性を有している。また、前記膨張
性を有する膨張材成分としては、例えば、生石灰や膨張
セメントがある。この成分は膨張作用をさらに増大させ
るだめのものである。また、前記透水性を有する骨材成
分としては、例えば、高炉スラグ、乾燥スラグあるいは
乾燥砂がある。この成分はパイル中心部までの水利を助
ける作用を営むものであるが、乾燥砂より乾燥した高炉
スラグの方が長期強度発現に寄与し得る。まだ、このセ
メント系粉粒体材料における前記各成分の混合割合は、
セメント系材料成分を20〜50%、骨材成分を20〜
50%膨張材成分を0〜30%としである。
As cementitious material components having hydration hardening properties, for example, gypsum, Ryoro slag, and ordinary Portland cement may be used as main ingredients, and halogen compounds or sulfates may be added as hardening accelerators as necessary. A solidifying agent is mixed, Osaka ESC! (Product name: Osaka Cement Co., Ltd.). This assimilator has a mixing ratio of gypsum, blast furnace slag, and ordinary Portland cement, which are the main materials, to 15 to 60 (weight%) of gypsum,
Blast furnace slag 20 to 60 (weight%) and ordinary Portland cement 10 to 50 (M, weight %) are ground and mixed so that the specific surface area is 4,5 o arm"7 g or less, or, It is made by adding 5 (wt%) or less of a curing accelerator to these, pulverizing and blending them, and has water absorption, swelling properties, and hydraulic properties.In addition, as an expanding material component having swelling properties, For example, there are quicklime and expansive cement.This component serves to further increase the expansion effect.The water-permeable aggregate component includes, for example, blast furnace slag, dry slag, or dry sand. This component plays a role in assisting water utilization to reach the center of the pile, but dry blast furnace slag can contribute to long-term strength development more than dry sand. The mixing ratio of
20-50% cement-based material component, 20-50% aggregate component
50% expansion material component is 0 to 30%.

そ1.で、このセメント系粉粒体材料の地盤への打込み
は、次の工法で行なわれる。すなわち、例えば、第1図
(a)に示すように、7400〜500 mWの筒状で
先端部が錐状のケーシングlを地盤2に回転させながら
圧入さぜ、第1図(b)に示す7Lう;に、このケーシ
ング1内に適切な割合で前記各成分を混合させてなるセ
メント系粉粒体材料3を投入して充填する。しかる後に
、第1図(C)に示すように前記セメント系粉粒体材料
3を、前記ケーシングlの軸心部に配したスクリュー4
を回転さぞ、あるいは該ケーシング1の頭部から1〜7
kg/’crllの圧縮空気5を供給して加圧して、下
方に押1〜つけつつ底部を開けた核ケーシング1を上方
に引上げることによって、第1図(d)K示すように一
木のパイ1v6を形成する。引き続き、同様の手順によ
って、100WII+以下の範囲において先のパイルに
重複させて順次所定方向ヘパイル6・・・を形成してい
き、これらパイル6・・・の群によって第1図(θ)に
示すように土留止水壁7補強する。ここで、H形鋼など
の鋼材とは、II前記ケーシング1内におさまる程度の
形状であって、H形鋼または鉄筋を油状に組んだ状態の
ものをいう。かかる鋼材の挿入方法は、あらかじめケー
シングlの中に鋼材をセット【2てから地盤2に圧入す
るかあるいはケーシングl圧入後に核ケーンング1内に
挿入するかした後にセメント系粉粒体材料3を充填し、
ケーシングのみを引抜くという方法によるものである。
Part 1. The cement-based granular material is driven into the ground using the following method. That is, for example, as shown in Fig. 1(a), a 7400 to 500 mW cylindrical casing l with a conical tip is press-fitted into the ground 2 while rotating, and 7L; into this casing 1, the cement-based granular material 3 made by mixing the above-mentioned components in appropriate proportions is charged and filled. Thereafter, as shown in FIG. 1(C), the cement-based granular material 3 is inserted into the screw 4 disposed at the axial center of the casing l.
1 to 7 from the head of the casing 1.
By supplying and pressurizing the compressed air 5 of kg/'crll, and pulling the nuclear casing 1 with its bottom open upward while pushing it downward, it is made into a single tree as shown in Fig. 1(d)K. form a pie 1v6. Subsequently, by the same procedure, piles 6... are sequentially formed in a predetermined direction by overlapping the previous pile in the range of 100 WII+ or less, and the piles 6... are formed as shown in FIG. 1 (θ) by a group of these piles 6... Reinforce the earth retaining water stop wall 7 as shown below. Here, the term "steel material such as H-beam steel" refers to a steel material having a shape that fits within the casing 1 described above, and in which H-beam steel or reinforcing bars are assembled in an oily manner. The method for inserting the steel material is to set the steel material in the casing 1 in advance [2] and then press it into the ground 2, or to insert the steel material into the core caning 1 after the casing 1 has been press-fitted, and then fill the cement-based granular material 3. death,
This method involves pulling out only the casing.

この場合のケーシング引抜方法は、スクリュ一方式は無
理であるため、前述した圧縮空気方式による。また、H
形鋼で長さが4m以下の場合は、パイル6を打設した後
に杭打機等圧より該パイル6内に押込んでもよい。これ
らの一連の施工工程は無振動、無騒音二[法で実施する
ものであり、市街地における施工も充分に可能である。
In this case, the method for pulling out the casing is the compressed air method described above since it is impossible to use one screw method. Also, H
If the length of the shaped steel is 4 m or less, the pile 6 may be driven into the pile 6 using equal pressure with a pile driver after the pile 6 is driven. These series of construction processes are carried out without vibration and noise, and construction in urban areas is fully possible.

しか1−で、このよりな土留工法によれば、吸水性、膨
張性および水硬性を有するセメント系粉粒゛体材料によ
シバイルを形成するものであるので従来のようなセメン
トミルクを使用してなるものKおける周辺地盤のゆるみ
という不都合が生じない。したがって、この工法によっ
て土留壁を構成すれば、地盤のゆるみKよる土留壁背面
の地盤変状を確実に防止することができる。
However, according to this more advanced earth retaining method, cement milk is not used as in the conventional method because the soil is formed from cement-based granular material that has water absorbency, expandability, and hydraulic properties. There is no inconvenience caused by the loosening of the surrounding ground, which would otherwise occur. Therefore, if the earth retaining wall is constructed using this construction method, it is possible to reliably prevent ground deformation on the back side of the earth retaining wall due to loosening K of the ground.

なお、施工条件は、地盤の土質条件および掘削条件によ
り種々の変形が考えられるが、概していえば、高含水比
で軟弱な土質条件の場合には、高強度を発押する材料を
選定し、さらに掘削深度が大きい場合には前述したよう
に必要に応じて鋼材の補強を行なう。また、土留壁の止
水性を確実にしたい場合には、膨張性の大きい材料を選
定しさらにパイルの重なり部分を大きく取るのが望まし
い。なお、補強用の鋼材として前述したもの以外に、ア
ンボンドPC鋼棒等を使用し硬化後に緊張し補強する工
法もある。
The construction conditions may vary depending on the soil conditions of the ground and excavation conditions, but generally speaking, in the case of soft soil conditions with a high water content ratio, a material with high strength is selected, Furthermore, if the excavation depth is large, the steel material will be reinforced as necessary, as described above. In addition, if you want to ensure the water-tightness of the earth retaining wall, it is desirable to select a material with high expansibility and to increase the overlap of the piles. In addition to the above-mentioned reinforcing steel materials, there is also a construction method in which unbonded PC steel rods or the like are used and tensioned and reinforced after hardening.

以下、本発明の実施例につき説明する。Examples of the present invention will be described below.

実施例1 軟弱な沖積粘土層地盤に対し、深度10mまで本発明に
係る工法で、f;I 400 yytのセメント系粉粒
体材料により形成したパイルをtJ設[7た。この打設
は、A、B、Cの三工区においてそれぞれ行なった。A
、B両工区処は、前述した大阪ESCからなるセメント
系材料成分45%、高炉スラグからなる骨材成分45%
、生石灰からなる膨張相成分10%という配合割合で配
合したセメント系粉粒体材料により形成したパイルを打
設し、C工区には、大阪EESCからなるセメント系材
料成分40%、高炉スラグからなる骨材[成分40%、
生石灰からなる膨j1長拐成分20%と、膨張材成分の
配合割合を2倍にしてなるセメント系粉粒体材料により
形成したパイルを打設置−た(第1表)。そして、前記
各工区A、B%Cそれぞれにおいてパイル縁から1.5
m離れたらγ置で傾斜計による地盤の横方向の変位を4
([j定した。そのA’i果は、第2図に示すように、
変位ViC工区が最も大きく、A、B工区がこれに次ぐ
が、いずれの工区も、パイルが膨張して周辺地盤を圧密
し、地盤のゆるみを防いでいることが示されている。な
お、C′は、C工区のパイル縁からO,85m離ねた位
置における変位量の測定値である。
Example 1 Piles made of cement-based granular material of f; This pouring was carried out in three construction zones A, B, and C. A
, B and B construction areas have a cement-based material component of 45% consisting of the aforementioned Osaka ESC and an aggregate component of 45% consisting of blast furnace slag.
, piles made of cement-based granular material mixed with a 10% expansion phase component consisting of quicklime were installed, and in section C, a pile was constructed using a cement-based material component consisting of 40% Osaka EESC and blast furnace slag. Aggregate [component 40%,
A pile formed of a cement-based granular material containing 20% of the expansion j1 long-wall component made of quicklime and twice the mixing ratio of the expansion agent component was installed (Table 1). Then, in each of the above-mentioned sections A and B%C, 1.5% from the pile edge.
When the distance is 4 m, measure the lateral displacement of the ground using the inclinometer at the γ position.
([j was determined. The A'i result is, as shown in Figure 2,
The displacement ViC section was the largest, followed by sections A and B, but in both sections, the piles expanded and consolidated the surrounding ground, preventing the ground from loosening. Note that C' is the measured value of the amount of displacement at a position 0.85 m away from the pile edge in section C.

第1表 実施例2 深度13mまで埋設した鋼矢板(SPW型)から90c
m1iilUれた位1なに、深度13mまで本発明にか
かる工法でセメント系粉粒体材料によシ形成したパイル
をtJ設した。この打設に使用1−7たセメント糸粉粒
体杓料は、大阪ESCからなるセメント系材料成分20
%、靜炉スラグからなる骨材成分50%、生石灰からな
る膨張性材料成分30%の割合で配合してなるものであ
る。そして、前記鋼矢板の横方向の変位を傾斜計により
測定した。
Table 1 Example 2 90c from steel sheet pile (SPW type) buried to a depth of 13m
In order to reach a depth of 13 m, piles were constructed of cement-based granular material using the construction method according to the present invention. The cement thread granule ladle used in this casting was made of Osaka ESC with a cementitious material component of 20
%, 50% of the aggregate component made of silent furnace slag, and 30% of the expandable material component made of quicklime. Then, the lateral displacement of the steel sheet pile was measured using an inclinometer.

その結果は第3図に示すとおりである。すなわちケーシ
ング圧入後(第3図(a))、セメント糸粉粒体材料打
設完了後(第3図(b) ’l 、打設から13日経過
後(第3図の(c) )、の三時点のいずれにおりでも
、鋼矢板はパイルの膨lI長圧力を受けてパイルの反対
側へ変位ニー、周辺地盤をrIE密してゆるみを防止し
ているのがわかる。
The results are shown in Figure 3. That is, after the casing is press-fitted (Fig. 3(a)), after the completion of casting of the cement thread powder and granular material (Fig. 3(b)), and after 13 days have passed since casting (Fig. 3(c)). It can be seen that at any of the three points in time, the steel sheet pile is displaced to the opposite side of the pile due to the expansion pressure of the pile, and the surrounding ground is tightly packed to prevent loosening.

以上のように、本発明は、掘削工事等において、周辺地
盤のすべり破壊やゆるみによる変状を従来のものに比べ
てけるかに確実に防止することができる土留工法を提供
できるものである。
As described above, the present invention can provide an earth retaining method that can more reliably prevent deformation due to sliding failure or loosening of the surrounding ground during excavation work etc. compared to conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1[YI(a)、(b)、(c)、(d)、(e)は
本フ15明の施工順序を示中工杓i +f+”、明図、
第2図は本発明の一実施例を示すη!度と変位置の4目
間図、第3図(a)、(b)、(c)は本発明のrlf
J。 の実施例を示す深度と2位量のa関口である。 l・・・・・・ケーシング 3・・・・・・セメント系
粉粒体材料6・・・・・・パイル  7・・・・・・土
留止水壁代理人 弁理士 赤澤−博 第1図 (Q)  (b)  (C) (d)      (e) 第2図 、51イ■(。。 第3図 (a)     (b) +wq44f!(mm)tp+死+*l(mm)(C) 止中フ依髪(mm)
1st [YI (a), (b), (c), (d), (e) shows the construction order of the 15th year of this book.
FIG. 2 shows an embodiment of the present invention. The four-eye diagram of the degree and displacement position, Figure 3 (a), (b), and (c) is the rlf of the present invention.
J. It is a Sekiguchi of the depth and the second place quantity which shows the example of. l... Casing 3... Cement-based powder material 6... Pile 7... Earth retaining water stop wall agent Patent attorney Hiroshi Akazawa Figure 1 (Q) (b) (C) (d) (e) Fig. 2, 51i ■(... Fig. 3 (a) (b) +wq44f! (mm) tp+death+*l (mm) (C) Stopping length (mm)

Claims (1)

【特許請求の範囲】[Claims] 筒状のケーシングを所定の深度まで圧入し、吸水性、膨
張性および水硬性を有するセメント系粉粒体材料を前記
ケーシング内に充填し、前記セメント粉粒体材料を下方
へ放出しながら前記ケーシングを引き抜いて該セメント
系粉粒体材料によるパイルを形成するという手順によシ
、所要数のパイルを密接させて一定方向へ順次形成し、
該パイルの群によって土留止水壁を構成するようにした
ことを特徴とする土留工法。
A cylindrical casing is press-fitted to a predetermined depth, a cement-based granular material having water absorption, expandability, and hydraulic properties is filled into the casing, and the cement granular material is discharged downward while the casing is closed. According to the procedure of pulling out the cement-based granular material to form a pile, the required number of piles are closely spaced and formed sequentially in a certain direction,
An earth retaining method characterized in that the group of piles constitutes an earth retaining water cutoff wall.
JP9737683A 1983-05-31 1983-05-31 Sheathing work Pending JPS59224725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9737683A JPS59224725A (en) 1983-05-31 1983-05-31 Sheathing work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9737683A JPS59224725A (en) 1983-05-31 1983-05-31 Sheathing work

Publications (1)

Publication Number Publication Date
JPS59224725A true JPS59224725A (en) 1984-12-17

Family

ID=14190790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9737683A Pending JPS59224725A (en) 1983-05-31 1983-05-31 Sheathing work

Country Status (1)

Country Link
JP (1) JPS59224725A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4835776A (en) * 1971-09-10 1973-05-26
JPS5293110A (en) * 1976-02-02 1977-08-05 Takenaka Komuten Co Method of improving subsoil
JPS53125312A (en) * 1977-04-07 1978-11-01 Kajima Corp Method of placing underground wall
JPS5641914A (en) * 1979-09-13 1981-04-18 Kawasaki Steel Corp Preparation of reinforced slag pile made mainly of converter slag

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4835776A (en) * 1971-09-10 1973-05-26
JPS5293110A (en) * 1976-02-02 1977-08-05 Takenaka Komuten Co Method of improving subsoil
JPS53125312A (en) * 1977-04-07 1978-11-01 Kajima Corp Method of placing underground wall
JPS5641914A (en) * 1979-09-13 1981-04-18 Kawasaki Steel Corp Preparation of reinforced slag pile made mainly of converter slag

Similar Documents

Publication Publication Date Title
JPS5991214A (en) Head treatment work of on-site pile
JP2000309919A (en) Construction method of soil cement underground continuous wall
JP3144321B2 (en) Fluidization method
JP3676441B2 (en) Pit and construction method of basement using it
JP6665129B2 (en) Premix composition used for ground strengthening compaction material, ground strengthening compaction material, method for producing the same, and ground strengthening method using the same
JPS59224725A (en) Sheathing work
JPS5932621B2 (en) Continuous underground wall construction method
JP2001241288A (en) Composition for grout composition and auxiliary construction method of mountain tunnel construction method using grout composition
JP3380861B1 (en) Pile construction method
JP5809369B2 (en) Cast-in-place concrete pile method
JP4057873B2 (en) Foundation pile structure on support ground and construction method of foundation pile
JP2003221828A (en) Burying method for prefabricated pile
JPH0571730B2 (en)
CN105839642A (en) Method for preparing riprap grouted concrete
JP3007940B2 (en) Lightweight ground to be cast on soft ground and construction method thereof
JPS6035488B2 (en) How to increase the bearing capacity of friction piles
JP2000290635A (en) Delayed expansive composition and its expansive material, and crushing material
JPS626049B2 (en)
JPH01318615A (en) Method of construction for after treatment temporary work using steel sheet pile
JP2009149522A5 (en)
JPS5843528B2 (en) cement grout method
JPH10140555A (en) Execution structural body formed of fluidization treated soil
JPH01308856A (en) Filler composition
JPH047777B2 (en)
JP2744578B2 (en) Fluidizing backfill solidifying agent and method of using the same