JPS59224150A - Glass mold type semiconductor device - Google Patents

Glass mold type semiconductor device

Info

Publication number
JPS59224150A
JPS59224150A JP9785283A JP9785283A JPS59224150A JP S59224150 A JPS59224150 A JP S59224150A JP 9785283 A JP9785283 A JP 9785283A JP 9785283 A JP9785283 A JP 9785283A JP S59224150 A JPS59224150 A JP S59224150A
Authority
JP
Japan
Prior art keywords
electrode
glass
core material
nickel
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9785283A
Other languages
Japanese (ja)
Inventor
Hirotoshi Toida
裕俊 戸井田
Toshiyuki Hidaka
日高 俊幸
Hisashi Sakamoto
久 坂本
Yutaka Misawa
三沢 豊
Hitoshi Onuki
仁 大貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9785283A priority Critical patent/JPS59224150A/en
Publication of JPS59224150A publication Critical patent/JPS59224150A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/492Bases or plates or solder therefor
    • H01L23/4924Bases or plates or solder therefor characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To solder a semiconductor pellet to the flat surface of an electrode, by using the electrode, which comprises a core material whose main component is copper and a tube material whose main component is an alloy of iron, nickel, and cobalt that is bonded to said core material metallurgically, thereby eliminating humidity resisting problem with respect to leads. CONSTITUTION:An electrode 6 comprises a core material 6a of copper including slight amount of zirconium and a tube material comprising 30wt% nickel, 14.5wt% cobalt, 0.45wt% manganese, and iron as a remainder material, which are metallurgically sintered. Since machining can be readily performed, an end surface, to which a silicon pellet is soldered, can be readily made flat. In order to prevent the diffusion of the copper component of the core material into the silicon pellet 1 by the heating at the time of soldering or burning of glass, or in order to prevent the deterioration of characteristics of the silicon pellet 1 caused by the formation of the alloy, it s recommended that a shielding film made of nickel or titanium is provided on the main surface of the silicon pellt, which is not shown in the Figure.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はガラスモールド型半導体装置、特にアキシャル
リード形ダイオードの電極構造に関するものでめる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a glass mold type semiconductor device, particularly to an electrode structure of an axial lead type diode.

〔発明の背景〕[Background of the invention]

一般にこの棟のダイオードは第1図に示す構造をしてい
る。即ち、p0接合Jが側面に露出したシリコンペレッ
トlの両生表面にアルミニウムを主成分とするろう材2
によジモリブデン或はタングステンの電極3を接着し、
周囲をガラス4で封止している。電極3には予じめ銅を
主成分とするり−ド5が設けられている。ガラス4はp
n接合Jの表面安定化と封止を兼ねたもので、シリコン
ペレット1が電極3に鑞付挾持された所謂サブアセンブ
リが用意されてから、ガラス粉末と水を混練したガラス
スラリーをこのサブアセンブリの周囲に塗布し焼成する
ことによって成型されたものである。
Generally, this ridge diode has the structure shown in FIG. That is, a brazing filler metal 2 mainly composed of aluminum is placed on the amphiphilic surface of the silicon pellet L with the p0 junction J exposed on the side surface.
Glue an electrode 3 of yodimolybdenum or tungsten,
The surrounding area is sealed with glass 4. The electrode 3 is preliminarily provided with a lead 5 whose main component is copper. Glass 4 is p
This subassembly is used to stabilize and seal the surface of the n-junction J, and after a so-called subassembly in which a silicon pellet 1 is brazed and clamped to an electrode 3 is prepared, a glass slurry made by kneading glass powder and water is poured into this subassembly. It is molded by coating the surrounding area and firing it.

モリブデン或はタングステンはシリコンやガラスの熱箒
張係数が近似しており1.接着部に熱応力を余シ生じな
いこと、熱伝導性、電気伝導性に優れている点で電極材
として有効でらるが、加工性が悪く、シリコンペレット
1を鑞付している平面の平坦性が低く、又、リード5と
の接着性が悪く特殊なパーカッション溶接を施しても溶
接部が水分で腐蝕されることがあり、耐湿性の点で充分
なものとは云えなかった。
Molybdenum or tungsten has a hot broom tensile coefficient similar to that of silicon or glass. It is effective as an electrode material because it does not generate excessive thermal stress at the bonded part and has excellent thermal conductivity and electrical conductivity, but it has poor workability and is difficult to use on the flat surface to which silicon pellets 1 are soldered. The flatness is low, and the adhesion to the lead 5 is poor, and even if special percussion welding is performed, the welded portion may be corroded by moisture, so it cannot be said to have sufficient moisture resistance.

そこで、このモリブデン或はタングステンに代わる材料
が開発されつつあるが、いずれも、モリブデン或はタン
グステンよりも熱膨張係数は大きくなっている。
Therefore, materials to replace molybdenum or tungsten are being developed, but all of them have a larger coefficient of thermal expansion than molybdenum or tungsten.

例えば、電極とガラスの間の接着部に働く熱応力σは下
式で示される。
For example, the thermal stress σ acting on the bond between the electrode and the glass is expressed by the following formula.

σ=ΔT(αG−α、)       ・・・(1)Δ
Tニガラス焼成時の温度変化 αGニガラスの熱膨張係数 α・:電極の熱膨張係数 熱応力σを低減するためには電極の熱膨張係数α。を低
減できないとなると、ガラス焼成時の温度変化ΔTを低
減する。即ち、転位温度の低いガラスを用いれば良いと
云うことになるが、現実には、熱膨張係数αGや表面安
定化機能との兼合いから、転位温度の十分低いガラスは
得られていない。
σ=ΔT(αG−α,) ...(1)Δ
T Temperature change during firing α G Coefficient of thermal expansion of Ni glass α・: Coefficient of thermal expansion of electrode In order to reduce thermal stress σ, coefficient of thermal expansion α of the electrode. If it cannot be reduced, the temperature change ΔT during glass firing is reduced. In other words, it would be sufficient to use a glass with a low transposition temperature, but in reality, glass with a sufficiently low transposition temperature has not been obtained due to considerations such as the coefficient of thermal expansion αG and the surface stabilization function.

従って、今日までにモリブデン或はタングステンに代る
電極材として開発されたものは、ガラスとの関係から、
充分なものと云えなかった。
Therefore, the electrode materials that have been developed to date to replace molybdenum or tungsten are
I couldn't say it was sufficient.

〔発明の目的〕[Purpose of the invention]

それゆえ、本発明の目的はモリブデン或はタングステン
の電極を用いることによって生じていた問題点が解決さ
れ、しかも、量産性のあるガラスモールド型半導体装置
を提供するにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a glass mold type semiconductor device which can solve the problems caused by using molybdenum or tungsten electrodes and which can be mass-produced.

〔発明の概要〕[Summary of the invention]

上記目的を達成する本発明の特徴とするところは、銅を
主成分とする芯材とこの芯材に冶)金的に結合された鉄
−ニッケルーコバルト合金を主成分とする筒材からなる
電極を用いることにある゛。半導体べVットはこの電極
の横断面と平行な方向の端面に鑞付され、リードは芯材
に接着される。
The present invention, which achieves the above object, is characterized by comprising a core material mainly composed of copper and a cylindrical material mainly composed of an iron-nickel-cobalt alloy metallurgically bonded to the core material. It consists in using electrodes. The semiconductor slab is brazed to the end face parallel to the cross section of this electrode, and the leads are bonded to the core material.

〔発明の実施例〕[Embodiments of the invention]

以下第2図に示した実施例に基いて本発明を説明する。 The present invention will be explained below based on the embodiment shown in FIG.

第2図において第1図に示したものと同一物、相当物に
は同一符号を付けである。
In FIG. 2, the same or equivalent parts as shown in FIG. 1 are given the same reference numerals.

6は本発明になる電極で、ジルコンをわずかに含有する
銅の芯材6aと30wt%のニッケル、14.5Wtl
 のコバルト、0.45wt%のマンガン及び残シ鉄か
らなる筒材6bからなる。
6 is an electrode according to the present invention, which is made of a copper core material 6a containing a small amount of zircon, 30 wt% nickel, and 14.5 Wtl.
The tube material 6b is made of cobalt of 0.45 wt%, manganese of 0.45 wt%, and the balance iron.

芯材6aと筒材6bは冶金的結合をしている。The core material 6a and the cylinder material 6b are metallurgically bonded.

即ち、所HW線引加工によって得られたものを所定寸法
に切断することによって電極6の形に為されたもので、
横断面と平行な端面にシリコンペレット1が鑞付されて
いる。切断、加工は容易に行うことができるので、シリ
コンベレットが鑞付される端面は容易に平坦化できる。
That is, the shape of the electrode 6 is obtained by cutting the material obtained by HW wire drawing into a predetermined size.
A silicon pellet 1 is brazed to the end face parallel to the cross section. Since cutting and processing can be easily performed, the end face to which the silicon pellet is to be brazed can be easily flattened.

鑞付時或はガラス焼成時の加熱によって芯材の銅成分が
シリコンベレットlに拡散し又は合金化することによっ
て生ずるシリコンベレット1の特性劣化を阻止するため
に、図示していないがシリコンベレット1の主表面にニ
ッケル或はチタン等の遮蔽膜を設けると良い。
Although not shown, in order to prevent the properties of the silicon pellet 1 from deteriorating due to diffusion or alloying of the copper component of the core material into the silicon pellet 1 due to heating during brazing or glass firing, the silicon pellet 1 is It is preferable to provide a shielding film of nickel, titanium, etc. on the main surface.

リード5は芯材6aに予じめ溶接させておく。The lead 5 is welded to the core material 6a in advance.

両者は同種金属であるので溶接強度は高く、耐湿性に優
れた結合となっている。
Since both are of the same type of metal, the welding strength is high and the bond has excellent moisture resistance.

30〜6001T の温度範囲における芯材6aの熱膨
張係数は20X10−’/lrであり、前記組成の筒材
6bのそれは7.6xto−’/cである。筒材6bの
焼きはめ効果によシミ極6の横断面方向での熱膨張係数
は筒材6bのそれにほぼ等しい。一方、軸方向について
は筒材6bの焼きばめ効果が働かず、両者の合成熱膨張
係数となる。
The thermal expansion coefficient of the core material 6a in the temperature range of 30 to 6001 T is 20X10-'/lr, and that of the cylindrical material 6b having the above composition is 7.6xto-'/c. Due to the shrink-fitting effect of the cylindrical material 6b, the coefficient of thermal expansion of the stain pole 6 in the cross-sectional direction is approximately equal to that of the cylindrical material 6b. On the other hand, in the axial direction, the shrink fit effect of the cylindrical member 6b does not work, and the coefficient of thermal expansion is a composite of both.

第3図はその一例を示している。同図は熱膨張係数を各
温度まで加熱I−た時の熱膨張率として曲線で示してい
る。図中の実線は本発明なる前記組成のもので、パラメ
ータは電極6の横断面積に対する芯材6aの横断面積を
φ表示したものである。
FIG. 3 shows an example. The figure shows the coefficient of thermal expansion as a curve when heated to each temperature. The solid line in the figure is for the composition according to the present invention, and the parameters are the cross-sectional area of the core material 6a relative to the cross-sectional area of the electrode 6 expressed in φ.

点線は比較のために、60wt%の鉄と40Wtq6の
ニッケルからなる合金を筒材として用いた芯材の面積率
を48チとした類似構造の電極の熱膨張率を示す。
For comparison, the dotted line indicates the coefficient of thermal expansion of an electrode having a similar structure in which an alloy consisting of 60 wt% iron and 40 Wtq6 nickel is used as the cylindrical material and the area ratio of the core material is 48 inches.

第3図によれば、鉄−ニッケルーコバルトを主成分とす
る筒材を有した電極は軸方向の熱膨張係数が鉄−fツケ
ルを主成分とする筒材を有した電極より同一温度でみる
と随分小さいことが明らかである。また、300C付近
を越えると、芯材面積率の小さいものほど熱膨張係数は
小さいことも明らかである。
According to Figure 3, the axial coefficient of thermal expansion of the electrode with the tube material mainly composed of iron-nickel-cobalt is lower than that of the electrode with the tube material mainly composed of iron-nickel-cobalt at the same temperature. It is clear that it is quite small. It is also clear that when the temperature exceeds around 300C, the smaller the core area ratio, the smaller the thermal expansion coefficient.

第4図は前1己組成の筒材を用いた時の芯拐面積率に対
する電極の30〜600Cにおける平均熱膨張係数の関
係を示している。
FIG. 4 shows the relationship between the average coefficient of thermal expansion of the electrode at 30 to 600 C and the core area ratio when a tube material having a self-composition of 1 is used.

第4図によれば、芯材面積率が増すほどイ均熱+y張係
数は大きくなることが明らかである。
According to FIG. 4, it is clear that as the core material area ratio increases, the uniform heating + y tensile coefficient increases.

面積率が20%以下の領域では熱膨張係数の変化が小さ
く、熱伝導率の点でモリブデンに劣り、電極としての機
能を果さなくなる。又、60%を越えると熱膨張係数は
急激に増加し、銅の熱膨張係数(=zoxto−’ /
C)に近付くので20〜60チの面積率が有効でめる。
In a region where the area ratio is 20% or less, the change in the coefficient of thermal expansion is small, the thermal conductivity is inferior to molybdenum, and it no longer functions as an electrode. Moreover, when it exceeds 60%, the thermal expansion coefficient increases rapidly, and the thermal expansion coefficient of copper (=zoxto-' /
Since it approaches C), an area ratio of 20 to 60 inches is effective.

比較のためモリブデンの熱膨張係数が第4図に示されて
いるが、モリブデンに較べれば本発明になる電極の熱膨
張係数は太きいものである。
For comparison, the thermal expansion coefficient of molybdenum is shown in FIG. 4, and compared to molybdenum, the thermal expansion coefficient of the electrode according to the present invention is large.

一方、ガラス材料についてみると、転位温度が500C
付近めるいはそれ以下のガラスが市販されているので、
第3図と合わせて考えると明らかなように、本発明にな
る電極はガラスを焼成しても、ガラスとの間に生ずる熱
応力は小さく、実用できるものである。
On the other hand, when looking at glass materials, the dislocation temperature is 500C.
There are glasses on the market that are smaller than that, so
As is clear when considered in conjunction with FIG. 3, the electrode according to the present invention generates little thermal stress between the electrode and the glass even when the glass is fired, and can be put to practical use.

即ち、ガラスにおける温度特性の評価は軟化点、転位点
、屈伏点の3種の温度で行われる。これらはいずれも粘
度ηの自然対数値でその温度は定量的に把握できる。転
位温度はtogη=13.3となる温度で規定されるも
のでかつ、最も低い温度であり、ガラスの流動が開始さ
れる温度である。一般にガラス焼成は転位温度よシ12
0〜180C高い温度で行ない、ガラスの粘度を充分下
げてシリコンペレット1や電極6とのぬれ性を良くする
工夫がなされている。ガラス焼成後の冷却工程では転位
温度以上の領域ではガラスの粘度が小さく液体に近い状
態にメジガラス内部に応力が残留しない。
That is, evaluation of the temperature characteristics of glass is performed at three temperatures: softening point, dislocation point, and yield point. These are all natural logarithmic values of the viscosity η, and the temperature can be quantitatively determined. The transposition temperature is defined by the temperature at which togη=13.3, is the lowest temperature, and is the temperature at which glass starts to flow. In general, glass firing is performed at a temperature lower than the transition temperature12.
Efforts have been made to carry out the process at a high temperature of 0 to 180C to sufficiently lower the viscosity of the glass and improve its wettability with the silicon pellets 1 and electrodes 6. In the cooling process after firing the glass, the viscosity of the glass is low in the region above the transposition temperature, and no stress remains inside the glass because it is close to a liquid state.

従って、市販されている500′c付近あるいはそれよ
り低い転位温度のガラスは本発明になる電極の熱膨張係
数がこの温度範囲では小さいから、モールド材として利
用できるのである。
Therefore, commercially available glass having a transition temperature of around 500'c or lower can be used as a molding material since the coefficient of thermal expansion of the electrode of the present invention is small in this temperature range.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明によれば、モリブデン或はタン
グステンに代る電極を用いているので、リードとの耐湿
性の問題はなく、半導体ベレットは電極の平坦面に鑞付
されている。この電極は容易に得ることができるので量
産性も良い。
As explained above, according to the present invention, since an electrode is used instead of molybdenum or tungsten, there is no problem of moisture resistance with the lead, and the semiconductor pellet is brazed to the flat surface of the electrode. Since this electrode can be easily obtained, it is also suitable for mass production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のアキシャルリード形ソJラスモールドダ
イオードを示す断面図、第2図は本発明の一実施例を示
すアキシャルリード形ガラスモ〜ルドダイオードの断面
図、第3図は本発明で用いられる電極の温度と熱膨張率
の関係を示す図、第4図は本発明で用いられる電極の芯
材面積率と平均熱膨張係数の関係を示す図である。 l・・・シリコンペレット、2・・・ろう材、4・・・
ガラス、訃・・リード、6・・・電極、6a・・・芯材
、6b・・・筒材。 代理人 弁理士 高橋明夫 y a r5on−1〔z〕
Fig. 1 is a cross-sectional view showing a conventional axial lead type SOJ lath molded diode, Fig. 2 is a cross-sectional view of an axial lead type glass molded diode showing an embodiment of the present invention, and Fig. 3 is a cross-sectional view showing an axial lead type glass molded diode used in the present invention. FIG. 4 is a diagram showing the relationship between the core area ratio and the average coefficient of thermal expansion of the electrode used in the present invention. l... Silicon pellet, 2... Brazing filler metal, 4...
Glass, lead...lead, 6...electrode, 6a...core material, 6b...tube material. Agent Patent Attorney Akio Takahashi y a r5on-1 [z]

Claims (1)

【特許請求の範囲】 111.半導体ベレットの両生表面にリードが設けられ
た電極を鑞付し、周囲をガラスでモールドしたガラスモ
ールド型半導体装置において、電極は銅を主成分とする
芯材と冶金的結合が施された鉄−ニッケルーコバルトを
主成分とする筒材からなるものであることを特徴とする
ガラスモールド型半導体装置。 2、上記第1項において、筒材は30wt%のニッケル
と14.5wt%のコバルトとQ、45wt%のマンガ
ンと残シ鉄からなる合金よシなシ、芯材の電極に対する
横断面での面積率は20〜60%であることを特徴とす
るガラスモーぶド型半導体装置。 3、上記第1項において、ガラスは転位温度が500C
付近或いはそれ以下のものであることを特徴とするガラ
スモールド型半導体装置。
[Claims] 111. In a glass-molded semiconductor device in which an electrode with leads is brazed on the bidirectional surface of a semiconductor pellet and the surrounding area is molded with glass, the electrode is made of iron metal that has been metallurgically bonded to a core material whose main component is copper. A glass mold type semiconductor device characterized in that it is made of a cylindrical material whose main components are nickel-cobalt. 2. In item 1 above, the tube material is an alloy consisting of 30 wt% nickel, 14.5 wt% cobalt, Q, 45 wt% manganese, and the remainder iron, and the core material has a cross section with respect to the electrode. A glass mode semiconductor device characterized in that the area ratio is 20 to 60%. 3. In the above item 1, the glass has a transition temperature of 500C.
A glass-molded semiconductor device characterized in that it is close to or lower than that.
JP9785283A 1983-06-03 1983-06-03 Glass mold type semiconductor device Pending JPS59224150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9785283A JPS59224150A (en) 1983-06-03 1983-06-03 Glass mold type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9785283A JPS59224150A (en) 1983-06-03 1983-06-03 Glass mold type semiconductor device

Publications (1)

Publication Number Publication Date
JPS59224150A true JPS59224150A (en) 1984-12-17

Family

ID=14203266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9785283A Pending JPS59224150A (en) 1983-06-03 1983-06-03 Glass mold type semiconductor device

Country Status (1)

Country Link
JP (1) JPS59224150A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760482A (en) * 1995-03-20 1998-06-02 U.S. Philips Corporation Semiconductor device of the type sealed in glass comprising a semiconductor body connected to slugs by means of a silver-aluminum bonding layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760482A (en) * 1995-03-20 1998-06-02 U.S. Philips Corporation Semiconductor device of the type sealed in glass comprising a semiconductor body connected to slugs by means of a silver-aluminum bonding layer

Similar Documents

Publication Publication Date Title
JP3957302B2 (en) Glass article to which metal fittings are bonded, and bonding structure using the same
US4147669A (en) Conductive adhesive for providing electrical and thermal conductivity
JPS62192295A (en) Soft solder alloy for mutual bonding of ceramic part or bonding with part consisting of metal
CN104023902A (en) Sn-Cu-based lead-free solder alloy
JP2002270339A (en) Ceramic heater
EP0222004B1 (en) Copper-zinc-manganese-nickel alloys
GB2426251A (en) Sn-Sb-Ge solder alloy
JPS60121063A (en) Production of lead pin with spherical brazing filler metal
JPS594008A (en) Ceramic condenser filled in sealed glass capsule
JPS59224150A (en) Glass mold type semiconductor device
US4430664A (en) Glass-moulded type semiconductor device
JPH0133278B2 (en)
JPH0635077B2 (en) Brazing material for ceramics
JP2563293B2 (en) Brazing method for composite brazing material
JPS60248861A (en) Aluminum alloy for bonding wire
JPH035665B2 (en)
JP2002324880A (en) Heat sink
JP3147601B2 (en) Pb alloy solder for semiconductor device assembly with excellent high temperature strength
JPS6126745A (en) Bonding wire
JPS6333282B2 (en)
JPH02251155A (en) Gold alloy thin wire for semiconductor elements and bonding method thereof
JPS60218865A (en) Electronic parts
JPS5816615B2 (en) Manufacturing method of semiconductor device
JPH04305072A (en) Ceramic bonding brazer
JPH06342620A (en) Thermal fuse