JPS59224007A - Composite superconductive conductor - Google Patents

Composite superconductive conductor

Info

Publication number
JPS59224007A
JPS59224007A JP58098598A JP9859883A JPS59224007A JP S59224007 A JPS59224007 A JP S59224007A JP 58098598 A JP58098598 A JP 58098598A JP 9859883 A JP9859883 A JP 9859883A JP S59224007 A JPS59224007 A JP S59224007A
Authority
JP
Japan
Prior art keywords
silver
oxygen
stabilizing material
free copper
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58098598A
Other languages
Japanese (ja)
Inventor
修二 酒井
石上 祐治
益子 良市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP58098598A priority Critical patent/JPS59224007A/en
Publication of JPS59224007A publication Critical patent/JPS59224007A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は超電導導体、特に安定化材を有する複合超電導
導体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to superconducting conductors, and in particular to composite superconducting conductors having stabilizing materials.

超高純度アルミニウム(99,99%以上)はその極低
温における電気抵抗が高純度銅(例えば無酸素銅)の約
10分の1であることから超電導導体の安定化材として
の使用が期待されまた広く普及される傾向にあることは
周知である。アルミニウムを安定化材として使用する場
合にはそれを単体として使用する方法があるが、半田等
のろう材により超電導導体と一体化されて複合導体とさ
れる場合には半田に対する濡れ性から銅被覆を与えられ
て使用する方法が一般的である。後者の場合においても
、アルミニウムを安定化材として使用する以上その強度
的な欠点が間頓となる。
Ultra-high purity aluminum (99.99% or higher) is expected to be used as a stabilizing material for superconducting conductors because its electrical resistance at extremely low temperatures is approximately one-tenth that of high-purity copper (e.g., oxygen-free copper). It is also well known that the technology is becoming more widespread. When aluminum is used as a stabilizing material, it can be used alone, but when it is integrated with a superconducting conductor using solder or other brazing material to form a composite conductor, copper coating is used due to its wettability with solder. The most common method is to use the Even in the latter case, as long as aluminum is used as a stabilizing material, its strength shortcomings are negligible.

まだアルミニウムの極低温下における電気抵抗は最終熱
処理温度が550℃以下であればその処理温度が高い程
低くなる傾向があるが、銅被覆を有する場合にはそのよ
うな温度で熱処理を行うと銅が軟化してしまいそれによ
る別の問題が生じる。
However, if the final heat treatment temperature is 550℃ or less, the electrical resistance of aluminum at extremely low temperatures tends to decrease as the treatment temperature increases; becomes soft, which causes another problem.

従って極低温下における電気抵抗を充分なものとするこ
とが困難である。
Therefore, it is difficult to provide sufficient electrical resistance at extremely low temperatures.

本発明の目的は機械的強度および耐熱性の高い安定化材
を有する複合超電導導体を提供することである。
An object of the present invention is to provide a composite superconducting conductor having a stabilizing material with high mechanical strength and heat resistance.

本発明によれば安定化材として銀を含む無酸素銅でアル
ミニウムを被覆したクラツド材により構成し、これを超
電導導体と複合化することにより上記目的を達成する。
According to the present invention, the above object is achieved by constructing a cladding material in which aluminum is coated with oxygen-free copper containing silver as a stabilizing material, and by combining this with a superconducting conductor.

以下図面に示す実施例にもとづき本発明を詳述する。The present invention will be described in detail below based on embodiments shown in the drawings.

第1図は無酸素銅に銀を含有させる場合、銀の含有量と
無酸素銅の半軟化温度および液体ヘリウム温度(4,2
°K)での電気抵抗の変化を示す図である。この図から
明らかなように銀の含有量が50 ppm以下では機械
的強度および耐熱性に及ぼす効果が充分でなく、また2
 000 ppm以上では機械的強度および耐熱性への
効果が飽和すると共に極低温での電気抵抗が大となりす
ぎる。従って銀の含有量は50〜20.00 ppmで
あるとよい。
Figure 1 shows the silver content, semi-softening temperature of oxygen-free copper, and liquid helium temperature (4,2
FIG. As is clear from this figure, if the silver content is less than 50 ppm, the effect on mechanical strength and heat resistance is insufficient;
000 ppm or more, the effect on mechanical strength and heat resistance is saturated and the electrical resistance at extremely low temperatures becomes too large. Therefore, the silver content is preferably 50 to 20.00 ppm.

第2図は無酸素銅および銀の含有量を300 pPmと
した無酸素銅を用いて種々の体積率でアルミニウムを被
覆してなる銅被アルミニウム、7ラツP材についての加
熱温度と0.2%耐力およびアルミニウム部分の4.2
°Kにおける電気抵抗を示す図である。同図から明らか
なように銀を添加することにより0.2係耐力および耐
熱性が向上する。
Figure 2 shows the heating temperature and 0.2 % proof stress and 4.2 of aluminum parts
FIG. 3 is a diagram showing electrical resistance at °K. As is clear from the figure, the addition of silver improves the 0.2 proof stress and heat resistance.

第3図はこのようにして銀を含有する無酸素銅によりア
ルミニウムを被覆しだクラツド材を安定化材としだもの
を用いた複合超電導導体の実施例を断面で示している。
FIG. 3 shows, in cross section, an embodiment of a composite superconducting conductor in which aluminum is coated with oxygen-free copper containing silver and the cladding material is used as a stabilizing material.

第3図aは無酸素銅からなる略U字溝5内に超電導体3
を配置して半田4により複合材とし更に銀を含有する無
酸素銅被覆2を有するアルミニウム1で溝5を閉じて半
田4により一体化させた構造であり、第3図すは第3図
aの無酸素銅部分の代りに銀含有無酸素銅被覆を有する
アルミニウムを用いた例であり、第3図Cは同様の安定
化材の周囲に超電導線3を配置し半田4により複合化し
た例であり、第3図dは安定化材に対して複数の・J 超電導線を半田により複合化したものを複数用い。
Figure 3a shows a superconductor 3 in a substantially U-shaped groove 5 made of oxygen-free copper.
The groove 5 is closed with an aluminum 1 having an oxygen-free copper coating 2 containing silver, which is made into a composite material with solder 4, and is integrated with solder 4. This is an example in which aluminum having a silver-containing oxygen-free copper coating is used in place of the oxygen-free copper part of the structure, and FIG. In Fig. 3d, a plurality of .J superconducting wires combined by soldering are used as the stabilizing material.

それをオーステナイト系のステンレス鋼の外被6内に納
めた例である。いずれの例においても銀を無酸素銅に含
有させたことによる安定化材の特性向上に伴って極めて
安定な超電導導体が得られる。
This is an example in which it is housed in an outer sheath 6 made of austenitic stainless steel. In either example, extremely stable superconducting conductors can be obtained due to the improved properties of the stabilizing material due to the inclusion of silver in oxygen-free copper.

すなわち銀白体が電気抵抗の小さい元素でありその原子
半径が銅に近いため銀を含有させても原子構造に乱れが
生せず均一な固溶体となる。従って極低温下での電気抵
抗を増大させることなく安定化材の機械的強度および耐
熱性を向上させることが出来る。
That is, since silver white is an element with low electrical resistance and its atomic radius is close to that of copper, even when silver is included, the atomic structure is not disturbed and a uniform solid solution is formed. Therefore, the mechanical strength and heat resistance of the stabilizing material can be improved without increasing the electrical resistance at extremely low temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は銀含有無酸素銅の銀の含有量と無酸素銅の半軟
化温度および電気抵抗の変化を示す図、第2図は銀を含
有させた無酸素銅を被覆として有するアルミニウム安定
化材の特性における銀の効果を示す図、第3図C2第3
図す、第3図C2第3図dは銀含有無酸素銅被覆アルミ
ニウム安定化材と複合された超電導導体の実施例を夫々
示す断面図である。  5− 1・・・アルミニウム  2・・・無酸素銅被覆3・・
・超電導体  4・・・半田 5・・・U字溝  6・・・外被 6− 犀3 ローa 犀3 日−C 晃3J−b 晃3図−l
Figure 1 shows changes in the silver content of silver-containing oxygen-free copper, half-softening temperature of oxygen-free copper, and electrical resistance. Figure 2 shows aluminum stabilized with silver-containing oxygen-free copper as a coating. Diagram showing the effect of silver on the properties of the material, Figure 3 C2 No. 3
3C and 3D are cross-sectional views showing examples of superconducting conductors composited with a silver-containing oxygen-free copper coated aluminum stabilizing material. 5- 1... Aluminum 2... Oxygen-free copper coating 3...
・Superconductor 4...Solder 5...U-shaped groove 6...Sheath 6- Sai 3 Roa Sai 3 Day-C Akira 3J-b Akira 3 Figure-l

Claims (1)

【特許請求の範囲】 1、 超電導導体および安定化材から成り、上記安定化
材は、少なくともその一部として銀を含有する無酸素銅
でアルミニウムを被覆しだクラツド材から成ることを特
徴とする複合超電導導体。 2、 前記安定化材は無酸素中の銀の含有量が50〜2
000 ppmであることを特徴とする特許請求の範囲
第1項記載の複合超電導導体。 3、 前記安定化材が前記超電導導体を並置されるごと
く配置されたこれを特徴とする特許請求の範囲第1項ま
だは第2項記載の複合超電導導体。 4、 前記安定化材が前記超電導導体を囲むごとくに配
置されたことを特徴とする特許請求の範囲第1項または
第2項記載の複合超電導導体。
[Claims] 1. A superconducting conductor and a stabilizing material, characterized in that the stabilizing material is made of a cladding material in which aluminum is coated with oxygen-free copper containing at least a part of silver. Composite superconducting conductor. 2. The stabilizing material has a silver content of 50 to 2 in the absence of oxygen.
000 ppm, the composite superconducting conductor according to claim 1. 3. The composite superconducting conductor according to claim 1 or 2, characterized in that the stabilizing material is arranged so that the superconducting conductor is juxtaposed. 4. The composite superconducting conductor according to claim 1 or 2, wherein the stabilizing material is arranged so as to surround the superconducting conductor.
JP58098598A 1983-06-02 1983-06-02 Composite superconductive conductor Pending JPS59224007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58098598A JPS59224007A (en) 1983-06-02 1983-06-02 Composite superconductive conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58098598A JPS59224007A (en) 1983-06-02 1983-06-02 Composite superconductive conductor

Publications (1)

Publication Number Publication Date
JPS59224007A true JPS59224007A (en) 1984-12-15

Family

ID=14224059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58098598A Pending JPS59224007A (en) 1983-06-02 1983-06-02 Composite superconductive conductor

Country Status (1)

Country Link
JP (1) JPS59224007A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61224213A (en) * 1985-03-28 1986-10-04 住友電気工業株式会社 Stabilizing material for superconducting composite body
JPS6251113A (en) * 1985-08-29 1987-03-05 住友電気工業株式会社 Copper stabilized nb-ti superconductor
US8319105B2 (en) * 2006-07-14 2012-11-27 Siemens Plc Wire-in-channel superconductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61224213A (en) * 1985-03-28 1986-10-04 住友電気工業株式会社 Stabilizing material for superconducting composite body
JPH0568805B2 (en) * 1985-03-28 1993-09-29 Sumitomo Electric Industries
JPS6251113A (en) * 1985-08-29 1987-03-05 住友電気工業株式会社 Copper stabilized nb-ti superconductor
US8319105B2 (en) * 2006-07-14 2012-11-27 Siemens Plc Wire-in-channel superconductor

Similar Documents

Publication Publication Date Title
US3429032A (en) Method of making superconductors containing flux traps
US3333331A (en) Method for producing a superconductive solenoid disc
JPH0768605B2 (en) Nb (bottom 3) Method for manufacturing Sn-based superconducting wire
JPS59224007A (en) Composite superconductive conductor
US3258828A (en) Method of producing a superconductive solenoid disc
US4586012A (en) Soldered superconductive coils for a pulse magnet
AU642681B2 (en) Method of using oxide superconducting conducter
JPS6062009A (en) Composite superconductor stabilized by ag-filled oxygenless copper
US5164361A (en) Method to produce ceramic superconducting filaments bonded to metals
CA1042640A (en) Method for stabilizing a superconductor
US3763553A (en) Method of fabricating intermetallic type superconductors
JPH06150993A (en) Nbti alloy superconducting wire with connection section
JPS5827605B2 (en) 100% of the population
JPS6340003B2 (en)
JPS60107213A (en) Aluminum stabilized superconductive wire
JPS61264609A (en) Manufacture externally reinforced compound superconductor
JPS62262312A (en) Nb-ti alloy system superconductor wire material
JP3257703B2 (en) Pulse or AC current lead and method for connecting A15 type compound superconducting stranded wire to said current lead
JPH06283056A (en) Oxide superconductive wire
JPS5855193A (en) Solder for superconductor
JPS6271113A (en) Nb3sn compound superconducting wire
JPS61224214A (en) Aluminum stabilization superconductor
JPS63245819A (en) Superconductive wire
JPS6086704A (en) Method of producing nb3sn superconductive wire material using sn-iva group element alloy
JPS59191209A (en) Method of producing nb3sn superconductive conductor