JPS5922396B2 - Printed wiring board manufacturing method - Google Patents

Printed wiring board manufacturing method

Info

Publication number
JPS5922396B2
JPS5922396B2 JP1394381A JP1394381A JPS5922396B2 JP S5922396 B2 JPS5922396 B2 JP S5922396B2 JP 1394381 A JP1394381 A JP 1394381A JP 1394381 A JP1394381 A JP 1394381A JP S5922396 B2 JPS5922396 B2 JP S5922396B2
Authority
JP
Japan
Prior art keywords
film
oxide film
organometallic compound
micropores
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1394381A
Other languages
Japanese (ja)
Other versions
JPS57128998A (en
Inventor
清造 村山
和夫 石禾
正受 前嶋
光一 猿渡
隆吉 臼杵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1394381A priority Critical patent/JPS5922396B2/en
Priority to CA000395127A priority patent/CA1212073A/en
Priority to DE8282300465T priority patent/DE3270926D1/en
Priority to EP82300465A priority patent/EP0058023B1/en
Priority to US06/344,711 priority patent/US4483751A/en
Publication of JPS57128998A publication Critical patent/JPS57128998A/en
Publication of JPS5922396B2 publication Critical patent/JPS5922396B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)

Description

【発明の詳細な説明】 この発明は高い放熱性、耐熱性、電気絶縁性を有する印
刷配線基板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a printed wiring board having high heat dissipation, heat resistance, and electrical insulation.

近年、IC、LSIを始めプリント配線板等の電子部品
が高密度化されるに伴い、消費電力が増大し、多量の熱
を発生するようになつた。
In recent years, as electronic components such as ICs, LSIs, and printed wiring boards have become more dense, power consumption has increased and a large amount of heat has been generated.

このような温度れ昇は回路部品の信頼性や寿命を低下さ
せる原因となる。これを解決するために種々の放熱方法
が考案されているが、なかでもアルミニウムなどのよう
な熱伝導性の高い金属を基板としこの金属の陽極酸化皮
膜を絶縁物として利用する方法が基板強度が高い利点も
あV)極めて有効な方法として注目されている。この方
法は、例えばアルマイト皮膜に封孔処理を施した後、ア
ルマイト皮膜表面に数10μmの厚みの接着剤を用いて
銅箔などの配線用導体を貼わつけるものであるが、接着
剤が有機物であるため、金属基板の最大の利点である放
熱性と耐熱性を充分に生かしていない欠点があつた。と
ころで、電子部品などからの熱を速みやかに基板金属に
伝えて放熱を行うには、陽極酸化皮膜上に有機物層を極
力形成しないことが望ましい。
Such a temperature rise causes a reduction in the reliability and lifespan of circuit components. Various heat dissipation methods have been devised to solve this problem, but among them, a method that uses a highly thermally conductive metal such as aluminum as a substrate and uses the anodic oxide film of this metal as an insulator is a method that increases the substrate strength. V) It is attracting attention as an extremely effective method. In this method, for example, after sealing the alumite film, a wiring conductor such as copper foil is attached to the surface of the alumite film using an adhesive several tens of micrometers thick. Therefore, the biggest advantage of metal substrates, heat dissipation and heat resistance, was not fully utilized. By the way, in order to quickly conduct heat from electronic components and the like to the substrate metal for heat dissipation, it is desirable to form an organic layer on the anodic oxide film as little as possible.

しかし、陽極酸化皮膜には皮膜の厚さ方向に多数の微細
孔が存在するため、これに直接配線用導体を形成しても
充分な電気絶縁性を得ることができない。これは配線用
導体を湿式化学メッキで酸化皮膜上に形成する時に、メ
ッキ液が微細孔中に侵入し、素地金属と導通状態になる
ためである。従つて、基板の放熱性と絶縁性を同時に満
足するためには、酸化皮膜中の微細孔を閉塞することが
考えられる。この方法には、まず封孔処理が挙げられる
。封孔処理は高圧水蒸気や沸とう水で処理し、酸化皮膜
を水和変質させその体積膨脹により微細孔を閉塞するも
のであるが、微細孔の入口付近が先に体積膨脹を起すた
め孔の奥部は閉塞されにくく、孔の周囲から体積膨脹が
起るので微細孔の中心に微少な空隙が残り、メッキ液の
侵入を完全に防止することは不可能である。さらに、こ
の封孔処理を行うと陽極酸化皮膜はわずかの加熱により
クラックが入りやすくなると云う重大な欠点を伴うよう
になる。次の方法としては樹脂の微細孔への含浸が考え
られるが、微細孔は直径数百Aと極めて小径で且つ深さ
が数10μ程度であるため、樹脂の粘性等の問題で充分
に孔の最奥部まで含浸することは事実上不可能である。
この発明は上記事情に鑑みてなされたもので、放熱性、
耐熱性、電気絶縁性の優れた印刷配線基板の製造法を提
供することを目的とし、その要旨は、部品取付穴、スル
ーホール等をあらかじめ穿設した陽極酸化可能な金属板
の表面に陽極酸化皮膜を形成し、ついでこの陽極酸化皮
膜の表面、微細孔中やスルーホール等に重合性有機金属
化合物を付着、含浸し、ついで重合させたのち、この陽
極酸化皮膜表面に直接配線用導体を形成することを特徴
とするものである。
However, since a large number of micropores exist in the anodic oxide film in the thickness direction of the film, sufficient electrical insulation cannot be obtained even if a wiring conductor is directly formed therein. This is because when a wiring conductor is formed on an oxide film by wet chemical plating, the plating solution enters into the micropores and becomes electrically conductive with the base metal. Therefore, in order to simultaneously satisfy the heat dissipation and insulation properties of the substrate, it is conceivable to close the micropores in the oxide film. This method first includes pore sealing treatment. The pore sealing process uses high-pressure steam or boiling water to hydrate and alter the oxide film, causing it to expand in volume and close the micropores. Since the deep part is difficult to be blocked and volumetric expansion occurs from the periphery of the hole, a minute void remains at the center of the fine hole, making it impossible to completely prevent the plating solution from entering. Furthermore, when this pore sealing treatment is carried out, the anodic oxide film has a serious drawback in that it is susceptible to cracking due to slight heating. The next method could be to impregnate the micropores with resin, but since the micropores are extremely small, a few hundred amps in diameter, and several tens of microns deep, it is difficult to completely fill the pores due to problems such as the viscosity of the resin. It is virtually impossible to impregnate the deepest part.
This invention was made in view of the above circumstances, and has heat dissipation,
The purpose is to provide a method for manufacturing printed wiring boards with excellent heat resistance and electrical insulation, and the gist is to anodize the surface of a metal plate that can be anodized, with holes for mounting parts, through holes, etc. drilled in advance. A film is formed, and then a polymerizable organometallic compound is attached and impregnated on the surface of this anodic oxide film, in the micropores, through holes, etc., and after polymerization, a wiring conductor is formed directly on the surface of this anodic oxide film. It is characterized by:

以下、この発明を詳しく説明する。This invention will be explained in detail below.

この発明に用いられる金属板は、アルミニウム、チタン
、タンタル、マグネシウムなどのように陽極酸化可能な
金属あるいはこれら金属の合金で、陽極酸化されて、そ
の表面にそれら金属の酸化物からなる陽極酸化皮膜を形
成できるものである。
The metal plate used in this invention is anodized with metals that can be anodized such as aluminum, titanium, tantalum, magnesium, etc. or alloys of these metals, and an anodized film made of oxides of these metals is formed on the surface of the metal plate. can be formed.

この金属板には電子部品や電気部品を取り付ける部品取
付穴、電子回路形成用スルーホールなどの穴があらかじ
め穿設される。ついで、これ等の金属板は陽極酸化処理
される。陽極酸化処理は通常の蓚酸、硫酸などの電解浴
を用いて一般に行われるもので、厚み5〜200μmの
陽極酸化皮膜が形成される。ついで陽極酸化皮膜が形成
された金属板は重合性有機金属化合物で処理される。さ
らに必要によつては高圧水蒸気、沸とう水などを用いた
封孔処理が施こされた後、前記処理を行なうこともでき
る。この重合性有機金属化合物としては、金属原子に加
水分解基、ハロゲン基、有機官能基が結合したもので、
重合性を有するものである。このような一般式XnMR
m M:SixTixAl,,ZrsGe,.B,.P,.
Snなどの金属原子。
This metal plate is pre-drilled with holes such as component mounting holes for attaching electronic and electrical components and through holes for forming electronic circuits. These metal plates are then anodized. The anodic oxidation treatment is generally performed using an ordinary electrolytic bath such as oxalic acid or sulfuric acid, and an anodic oxide film having a thickness of 5 to 200 μm is formed. The metal plate on which the anodic oxide film has been formed is then treated with a polymerizable organometallic compound. Furthermore, if necessary, the above-mentioned treatment can be performed after a sealing treatment using high-pressure steam, boiling water, etc. is performed. This polymerizable organometallic compound is one in which a hydrolyzable group, a halogen group, or an organic functional group is bonded to a metal atom.
It has polymerizability. Such a general formula XnMR
m M: SixTixAl, , ZrsGe, . B.. P.
Metal atoms such as Sn.

X:ビニル基、アミノ基、メルカプト基、エポキシ基な
どの有機官能基。
X: Organic functional group such as vinyl group, amino group, mercapto group, epoxy group, etc.

R:アルコオキシ基、アセトオキシ基などの加水分解し
うる有機基。
R: Hydrolyzable organic group such as an alkoxy group or an acetoxy group.

n+m=3,4,5あるいは6 で表わされる有機金属化合物としては、例えばフエニル
トリエトキシシラン、メチルトリエトキシシラン、ビニ
ルトリス(β−メトキシエトキシ)シラン、β一(3,
4−エポキシ−シクロヘキシル)エチルトリメトキシシ
ラン、r−グリシドオキシプロピルトリメトキシシラン
などの有機ケイ素化合物、テトライソプロピルビス(ジ
オクチルフオスフアイト)チタネート、テトラオクチル
ビス(ジトリデシルフオスフアイト)チタネート、チタ
ンアセチルアセトネート、チタンオクチレングリコレー
ト、ジヒドロキシビス(ラクタト)チタン、テトラステ
アロキシチタンなどの有機チタン化合物アルミニウムト
リn−ブトキシド、メチルアルミニウムセスキクロライ
ド、アルミニウムトリプロポキシドなどの有機アルミニ
ウム化合物、テトラ(n−ブトキシ)ジルコニウム、ジ
ルコニウムテトライソプロポキシドなどの有機ジルコニ
ウム化合物さらに、リン酸トリn・ブチルエステル、亜
リン酸ジエチルエステルなどの有機リン化合物、ホウ酸
トリ(n・ブチルエステル)、ホウ酸トリイソプロピル
エステルなどの有機ホウ素化合物、ジメチルオキシジメ
チルゲルマニウム、メチルゲルマニウムトリメトキシド
等の有機ゲルマニウム化合物、さらにジメチルオキシエ
チル錫、などの有機金属化合物、訃よびこれら化合物の
誘導体、低重合体(オリゴマ一)が用いることができる
が、有機官能基中にメチル基}よび/またはフエニル基
を有するものが、耐熱性の向上がより大きいので好まし
い。
Examples of organometallic compounds represented by n+m=3,4,5 or 6 include phenyltriethoxysilane, methyltriethoxysilane, vinyltris(β-methoxyethoxy)silane, β-(3,
Organosilicon compounds such as 4-epoxy-cyclohexyl)ethyltrimethoxysilane, r-glycidoxypropyltrimethoxysilane, tetraisopropyl bis(dioctyl phosphite) titanate, tetraoctyl bis(ditridecyl phosphite) titanate, titanium acetylacetate Organic titanium compounds such as aluminum tri-n-butoxide, methylaluminum sesquichloride, aluminum tripropoxide, tetra(n-butoxy ) Organic zirconium compounds such as zirconium and zirconium tetraisopropoxide, organic phosphorus compounds such as tri-n-butyl phosphate and diethyl phosphite, tri-(n-butyl) borate, triisopropyl borate, etc. Organic boron compounds, organic germanium compounds such as dimethyloxydimethylgermanium and methylgermanium trimethoxide, and organometallic compounds such as dimethyloxyethyltin, derivatives of these compounds, and low polymers (oligomers) can be used. However, those having a methyl group and/or phenyl group in the organic functional group are preferable because they have a greater improvement in heat resistance.

また、加水分解が徐々に起るものの方がよシ好ましい。
これら重合性有機金属化合物はメタノール、エタノール
、アセトン、酢酸エチル、メチルエチルケトンなどの有
機溶剤、もしくは水、もしくは水と水溶性有機溶剤との
混合液に溶解される。この水溶性有機溶剤としては、メ
タノール、エタノール、イソプロパノール、アセトン、
ジオキサン、エチレングリコール、酢酸メチル、メチル
エチルケトン、蟻酸エチル、ジアセトンアルコール、ジ
メチルホルムアミドなどが用いられ、これに必要に応じ
て界面活性剤などの添加剤を加えることができる。つづ
いて、前記陽極酸化皮膜はこの重合性有機金属化合物溶
液によつて処理される。
Further, it is more preferable that hydrolysis occurs gradually.
These polymerizable organometallic compounds are dissolved in an organic solvent such as methanol, ethanol, acetone, ethyl acetate, or methyl ethyl ketone, water, or a mixture of water and a water-soluble organic solvent. Examples of this water-soluble organic solvent include methanol, ethanol, isopropanol, acetone,
Dioxane, ethylene glycol, methyl acetate, methyl ethyl ketone, ethyl formate, diacetone alcohol, dimethyl formamide, etc. are used, and additives such as surfactants can be added thereto as necessary. Subsequently, the anodic oxide film is treated with this polymerizable organometallic compound solution.

この処理は、陽極酸化皮膜を前記溶液中に浸漬して、微
細孔等に重合性有機金属化合物を拡散、浸透させたB,
前記溶液を酸化皮膜表面に塗布して酸化皮膜表面に重合
性有機金属化合物層を形成させたb、あるいは真空含浸
法を利用したりして行われる。また、重合性有機金属化
合物を水、もしくは水と水溶性有機溶剤との混合液に溶
解した溶液中に酸化皮膜を浸漬し、酸化皮膜を陽極とし
、適当な不活性導体を陰極として直流電流を通電するこ
とによつて酸化皮膜の微細孔の底から孔口まで、皮膜表
面さらにスルーホール等に充分に重合性有機金属化合物
を泳動、浸透等によつて含浸することができる。そして
得られる印刷配線基板に、より高い熱伝導性を必要とす
る時には、酸化皮膜表面に付着している重合性有機金属
化合物溶液は完全に拭き取られ、より高い電気絶縁性を
要する時には酸化皮膜の表面に付着している重合性有機
金属化合物溶液は拭き取らずそのままにされる。こうし
て陽極酸化皮膜の表面、微細孔さらにスルーホール等に
重合性有機金属化合物が十分付着、沈着されたならば、
乾燥して余分な水や有機溶剤が除去される。以上のよう
にして陽極酸化皮膜の表面、微細孔さらにスルーホール
等に付着、沈着した重合性有機金属化合物は加熱などの
重合手段によつて重合される。この重合により、重合性
有機金属化合物は緻密な有機金属化合物ポリマーになり
、しかもこれ等の有機金属化合物は、酸化皮膜との親和
性が高いので酸化皮膜の表面孔内に強固に固着し、微細
孔等を実密に埋める。部品取付穴等の内壁の絶縁も本方
法によれば、何ら問題なく行われる。
In this treatment, the anodic oxide film is immersed in the solution to diffuse and infiltrate the polymerizable organometallic compound into the micropores, etc.
This is carried out by applying the solution to the surface of the oxide film to form a polymerizable organometallic compound layer on the surface of the oxide film, or by using a vacuum impregnation method. Alternatively, the oxide film is immersed in a solution in which a polymerizable organometallic compound is dissolved in water or a mixture of water and a water-soluble organic solvent, and a direct current is applied using the oxide film as an anode and a suitable inert conductor as a cathode. By applying electricity, the polymerizable organometallic compound can be sufficiently impregnated into the surface of the oxide film from the bottom of the fine pores to the pore openings, the surface of the oxide film, and the through-holes by electrophoresis, permeation, etc. When higher thermal conductivity is required for the resulting printed wiring board, the polymerizable organometallic compound solution adhering to the surface of the oxide film is completely wiped off, and when higher electrical insulation is required, the oxide film is removed. The polymerizable organometallic compound solution adhering to the surface is left as it is without being wiped off. Once the polymerizable organometallic compound is sufficiently attached and deposited on the surface of the anodic oxide film, micropores, through holes, etc.,
Drying removes excess water and organic solvents. The polymerizable organometallic compound adhered to and deposited on the surface of the anodic oxide film, micropores, through holes, etc. as described above is polymerized by a polymerization means such as heating. Through this polymerization, the polymerizable organometallic compound becomes a dense organometallic compound polymer, and these organometallic compounds have a high affinity with the oxide film, so they firmly adhere to the surface pores of the oxide film and form fine particles. Fill holes etc. thoroughly. According to this method, insulation of the inner walls of parts mounting holes etc. can be performed without any problem.

陽極酸化処理は、スローイングパワーが良いので、孔の
内面にも均一に酸化皮膜が形成される。これは陽極酸化
の場合、酸化皮膜が厚く成長した部分は、抵抗が大きく
なるので、電流が皮膜の薄い抵抗の少い部分に流れよう
とする。この結果皮膜の均一性が増す傾向を有するので
ある。また、有機金属化合物の通電による含浸も、含浸
が進行すると、しだいに抵抗が増して電流が流れにくく
なるので、相対的に含浸が遅い部分に電流が流れるよう
になる。このため含浸も均一に行われるので、部品取付
穴の内面にも充分含浸される。つづいて有機金属化合物
ポリマーが付着、含浸された陽極酸化皮膜の表面に配線
用導体が形成される。
Since the anodic oxidation treatment has good throwing power, an oxide film is evenly formed on the inner surface of the hole. This is because in the case of anodic oxidation, the resistance increases in areas where the oxide film has grown thicker, so current tends to flow to areas where the film is thinner and has less resistance. As a result, the uniformity of the film tends to increase. In addition, when impregnating an organometallic compound by applying electricity, as the impregnation progresses, the resistance gradually increases and it becomes difficult for the current to flow, so that the current flows through the parts where the impregnation is relatively slow. Therefore, the impregnation is performed uniformly, so that the inner surface of the component mounting hole is also sufficiently impregnated. Subsequently, a wiring conductor is formed on the surface of the anodic oxide film to which the organometallic compound polymer is attached and impregnated.

これには無電解メツキ法、蒸着法、イオンスパツタリン
グ法、イオンプレーテイング法などによつて直接回路を
形成するか或いは金属薄層をまず形成させた後厚み数1
0μの銅、ニツケルなどの配線用導体が形成され、目的
の印刷配線基板が得られる。このようにして得られた印
刷配線基板の例として第1図卦よび第2図に陽極酸化可
能な金属板としてアルミニウム板を用いたものを示す。
This can be done by directly forming a circuit by electroless plating, vapor deposition, ion sputtering, ion plating, etc., or by first forming a thin metal layer and then forming a thin layer with a thickness of several 1.
A wiring conductor of 0 μm copper, nickel, etc. is formed, and the desired printed wiring board is obtained. As an example of the printed wiring board thus obtained, FIGS. 1 and 2 show one in which an aluminum plate is used as the anodizable metal plate.

第1図はアルミニウム板1の表面のアルマイト皮膜2の
微細孔3にのみ、有機金属化合物ポリマー4を充填し、
アルマイト皮膜2の表面に配線用導体5を形成したもの
であり、第2図はアルマイト皮膜2の表面に有機金属化
合物ポリマー皮膜6を形成し、このポリマー皮膜6の表
面に配線用導体5を形成したものである。以上のように
して重合性有機金属化合物で処理された陽極酸化皮膜は
、微細孔等が有機金属化合物ポリマーによつて実密に埋
められ、皮膜表面も前記ポリマーで被覆され、さらにス
ルーホール等も同様に処理されているので非常に高い電
気絶縁性が得られる。
FIG. 1 shows that only the micropores 3 of the alumite film 2 on the surface of the aluminum plate 1 are filled with an organometallic compound polymer 4.
A wiring conductor 5 is formed on the surface of an alumite film 2. In FIG. 2, an organometallic compound polymer film 6 is formed on the surface of the alumite film 2, and a wiring conductor 5 is formed on the surface of this polymer film 6. This is what I did. In the anodic oxide film treated with the polymerizable organometallic compound in the manner described above, the micropores, etc. are completely filled with the organometallic compound polymer, the film surface is also covered with the polymer, and the through holes etc. are also covered. Since it is treated in the same way, extremely high electrical insulation properties can be obtained.

また、微細孔のみを前記ポリマーによつて埋めることが
できるので、高い熱伝導性を保つたまま電気絶縁性が向
上する。さらに高温時(150℃程度)の電気絶縁性も
向上する。また、充填、被覆された前記ポリマーが金属
系であるので、このポリマー自体の熱伝達性が優れ、表
面を被覆された酸化皮膜も、従来の樹脂で被覆された酸
化皮膜に比べて高い熱伝導性を有し、放熱性が向上する
。以下、実施例に基づいてこの発明を具体的に説明する
Furthermore, since only the micropores can be filled with the polymer, electrical insulation is improved while maintaining high thermal conductivity. Furthermore, electrical insulation properties at high temperatures (approximately 150° C.) are also improved. In addition, since the filled and coated polymer is metal-based, the polymer itself has excellent heat conductivity, and the oxide film covering the surface has a higher heat conductivity than the conventional oxide film coated with resin. properties, and improves heat dissipation. Hereinafter, this invention will be specifically explained based on Examples.

実施例 1 100m1×50Tn1L×2111Lの2SAI板の
所定の位置に内径111φで、深さ方向の断面が半円型
のエツヂを有する穴をあけ、15%硫酸水溶液中で電解
し、厚さ30μのアルマイト皮膜を化成した。
Example 1 A hole with an inner diameter of 111φ and a semicircular edge in the cross section in the depth direction was drilled at a predetermined position in a 2SAI plate measuring 100m1 x 50Tn1L x 2111L, electrolyzed in a 15% sulfuric acid aqueous solution, and a hole with a thickness of 30μ was made. The alumite film was chemically converted.

乾燥後、このアルマイト皮膜表面にCH2=CHSi(
0C2H40CH3)3の20%エタノール溶液を塗布
し、室温で乾燥した後、130℃で2時間加熱重合させ
、約10μの厚みの有機金属化合物ポリマー皮膜を形成
した。この試料の回路部分以外をマスキングして塩化バ
ラジウム0.5V/l水溶液に室温で10分間浸漬し、
活性化処理を行い、ついで無電解ニツケルメツキを行い
前記ポリマー皮膜上に配線用導体を形成した。ついで水
洗、乾燥後、素地アルミニウムと配線用導体との間の交
流絶縁耐圧を測定したところ1KV以上の値を得た。ま
たこの基板に回路部品を半田付けし、室内に1週間放置
した後絶縁耐圧を測定したが半田付けや湿度の影響によ
る絶縁性の低下は見られなかつた。実施例 2実施例1
と同様にして2SAI板に厚み30μのアルマイト皮膜
を化成し、水洗後、CH2=CHSi(0C2H40C
H3)3の4%水溶液中でこのアルマイト皮膜を陽極と
し、不溶性導体を陰極として、直流25mA/Dm2、
初期電圧250Vで2時間通電したのち、水溶液より取
り出し、アルマイト皮膜表面に付着している水溶液を充
分に拭き取つてから温風乾燥し、13『C2時間加熱し
て重合させた。
After drying, CH2=CHSi(
A 20% ethanol solution of 0C2H40CH3)3 was applied, dried at room temperature, and then heated and polymerized at 130° C. for 2 hours to form an organometallic compound polymer film with a thickness of about 10 μm. This sample was immersed in a 0.5 V/l aqueous solution of palladium chloride for 10 minutes at room temperature while masking the parts other than the circuit part.
Activation treatment was performed, and then electroless nickel plating was performed to form a wiring conductor on the polymer film. Then, after washing with water and drying, the AC dielectric strength voltage between the base aluminum and the wiring conductor was measured, and a value of 1 KV or more was obtained. Further, when circuit components were soldered to this board and the dielectric strength was measured after leaving it indoors for a week, no deterioration in insulation properties due to soldering or humidity was observed. Example 2 Example 1
An alumite film with a thickness of 30 μm was formed on the 2SAI plate in the same manner as above, and after washing with water, CH2=CHSi (0C2H40C
H3) In a 4% aqueous solution of 3, this alumite film was used as an anode and the insoluble conductor was used as a cathode, and a DC current of 25 mA/Dm2 was applied.
After being energized for 2 hours at an initial voltage of 250 V, it was taken out from the aqueous solution, the aqueous solution adhering to the surface of the alumite film was thoroughly wiped off, and then dried with hot air, and then heated for 2 hours at 13"C to polymerize.

この試料を実施例1と同様に処理してアルマイト皮膜表
面に配線用導体を形成し、交流絶縁耐圧を測定したとこ
ろ800Vの耐圧を得た。また、この基板に部品を半田
付けした後、室内に1週間放置した後再び、素地アルミ
ニウムと配線用導体間の絶縁耐圧を測定したが半田付け
や湿度の影響による絶縁性の低下は見られなかつた。な
卦、この試料の断面をX線マイクロアナライザで線分析
したところ第3図に示したように、アルマイト皮膜の微
細孔の最奥部まで、有機金属化合物が含浸されているこ
とが確認された。実施例 3 実施例1と同様にして2SA1板に、厚み30μmのア
ルマイト皮膜を化成し、ついで、フエニルトリエトキシ
シラン(C6H5Si(0C2H5)350v01%、
イソプロパノール49.6%、水0.4v01%の溶液
中でアルマイト皮膜を陽極とし、アルミニウムを陰極と
し、直流500Vで1時間通電した。
This sample was treated in the same manner as in Example 1 to form a wiring conductor on the surface of the alumite film, and when the AC dielectric strength voltage was measured, a withstand voltage of 800V was obtained. In addition, after soldering components to this board and leaving it indoors for a week, we measured the dielectric strength voltage between the base aluminum and the wiring conductor again, and no deterioration in insulation was observed due to the effects of soldering or humidity. Ta. Furthermore, when a cross section of this sample was analyzed using an X-ray microanalyzer, it was confirmed that the organometallic compound was impregnated to the deepest part of the micropores of the alumite film, as shown in Figure 3. . Example 3 A 30 μm thick alumite film was formed on a 2SA1 board in the same manner as in Example 1, and then phenyltriethoxysilane (C6H5Si(0C2H5) 350v01%,
In a solution of 49.6% isopropanol and 0.4v01% water, the alumite film was used as an anode and aluminum was used as a cathode, and current was applied at 500 V DC for 1 hour.

この時の電流は、最初は約10mK/Dm2.終りは約
6mA/Dm2であつた。通電後、溶液からアルマイト
皮膜を取う出し、アルマイト皮膜の表面に付着している
溶液を充分に拭き取つてから温風乾燥しついで130℃
で2時間加熱し、重合させた後、実施例1と同様にして
アルマイト皮膜表面に配線用導体を形成し、交流絶縁耐
圧を測定したところ、1.1KV以上であつた。また常
温での、体積固有抵抗は約4X1012Ω?、150℃
では約6×1011Ω?であつた。またこの基板に部品
を半田付けし、室内1週間放置後、基板の性能の低下は
みられなかつた。実施例2と同様にX線マイクロアナラ
イザで線分析したところ、アルマイト皮膜の微細孔の最
奥部まで、有機金属化合物が含浸されていることが確認
された。実施例 4 実施例1に卦いて、得られたアルマイト皮膜に翫重合性
有機金属化合物としてチタンオクチレングリコレート(
C4H,O)2Ti(C8Hl6O2)の50%エタノ
ール溶液を用い、真空含浸を行つた。
At this time, the current was initially about 10 mK/Dm2. The end was approximately 6 mA/Dm2. After energizing, take out the alumite film from the solution, thoroughly wipe off the solution adhering to the surface of the alumite film, dry it with hot air, and heat it to 130°C.
After heating and polymerizing for 2 hours, a wiring conductor was formed on the surface of the alumite film in the same manner as in Example 1, and the AC dielectric strength voltage was measured and found to be 1.1 KV or more. Also, the volume resistivity at room temperature is approximately 4X1012Ω? , 150℃
So about 6×1011Ω? It was hot. Furthermore, after parts were soldered to this board and left indoors for a week, no deterioration in board performance was observed. When ray analysis was performed using an X-ray microanalyzer in the same manner as in Example 2, it was confirmed that the organometallic compound was impregnated to the deepest part of the micropores of the alumite film. Example 4 Continuing with Example 1, titanium octylene glycolate (
Vacuum impregnation was performed using a 50% ethanol solution of C4H,O)2Ti (C8Hl6O2).

ついで、表面から付着液を除去し、室温で乾燥したのち
、130℃で2時間加熱重合を行つた。この基板につい
て交流絶縁耐圧を測定したところ、約800Vの値であ
つた。実施例 5 実施例4に卦ける重合性有機金属化合物に代えてCH3
Al(C4H,O)2を用いて同様の処理をして基板を
得た。
Subsequently, the adhering liquid was removed from the surface, and after drying at room temperature, heating polymerization was performed at 130° C. for 2 hours. When the AC dielectric strength voltage of this board was measured, it was approximately 800V. Example 5 CH3 in place of the polymerizable organometallic compound in Example 4
A substrate was obtained by performing similar treatment using Al(C4H,O)2.

この基板について同様の試験を実施したところ実施例4
と同様の結果を得た。実施例 6 実施例1と同様にしてアルミニウム板に厚さ301tm
の陽極酸化皮膜を形成し、これをCH2=CHSi(0
C2H40CH3)3の20v01%エタノール溶液中
に浸漬して1時間放置し、この溶液を微細孔中に拡散、
浸透させた。
When similar tests were conducted on this board, Example 4
obtained similar results. Example 6 An aluminum plate with a thickness of 301 t was prepared in the same manner as in Example 1.
An anodic oxide film of CH2=CHSi(0
It was immersed in a 20v01% ethanol solution of C2H40CH3)3 and left for 1 hour, and this solution was diffused into the micropores.
Infiltrated.

陽極酸化皮膜を上記溶液より取り出して表面に付着して
いる溶液をよくぬぐいとつた後、150℃で2時間加熱
して重合させた。これを実施例1と同様にして配線用導
体を形成し、この配線基板の交流絶縁耐圧を測定したと
ころ、500V以上の値を得た。実施例 7 100×50X111のマグネシウム合金板(JISl
種)を、酸性フツ化アンモニウム300t/11重クロ
ム酸ナトリウム100r/11リン酸(85%)90T
!Ll!/lを含む水溶液中で、浴温75℃、電流密度
5A/Dm2で50分間陽極酸化処理を行い、厚さ約3
0μmの陽極酸化皮膜を得た。
The anodic oxide film was taken out from the solution, the solution adhering to the surface was thoroughly wiped off, and then heated at 150° C. for 2 hours to polymerize. A wiring conductor was formed in the same manner as in Example 1, and when the AC dielectric strength voltage of this wiring board was measured, a value of 500 V or more was obtained. Example 7 100x50x111 magnesium alloy plate (JISl
seeds), acidic ammonium fluoride 300t/11 sodium dichromate 100r/11 phosphoric acid (85%) 90T
! Ll! Anodic oxidation treatment was carried out for 50 minutes at a bath temperature of 75°C and a current density of 5A/Dm2 in an aqueous solution containing 3.0% of
A 0 μm anodic oxide film was obtained.

ついで、この皮膜をメチルトリエトキシシラン85v0
1%、エタノール5v01%、水10v01%の溶液中
で前記皮膜を陽極として直流1KV、15mAで1時間
通電処理を行つたのち、150℃で2時間加熱した。こ
の処理マグネシウム合金板に実施例1と同様にして配線
用導体を形成した。この配線基板の交流絶縁耐圧は70
0V以上であつた。実施例 8 100×50X1mmの2Sアルミニウム板5枚をそれ
ぞれ、17wt%蓚酸水溶液中で浴温20℃、電流密度
2A/Dm2で陽極酸化処理し、厚み30μmの陽極酸
化皮膜を生成した。
Next, this film was coated with methyltriethoxysilane 85v0.
In a solution of 1% ethanol, 5v01% ethanol, and 10v01% water, the film was energized for 1 hour at 1KV DC and 15mA using the film as an anode, and then heated at 150°C for 2 hours. A wiring conductor was formed on this treated magnesium alloy plate in the same manner as in Example 1. The AC insulation voltage of this wiring board is 70
It was 0V or more. Example 8 Five 100 x 50 x 1 mm 2S aluminum plates were each anodized in a 17 wt % oxalic acid aqueous solution at a bath temperature of 20° C. and a current density of 2 A/Dm 2 to form an anodic oxide film with a thickness of 30 μm.

ついで、各各の皮膜に対して、ジルコニウムテトライソ
プロポキシド、リン酸トリn−ブチルエステル、ホウ酸
トリn−ブチルエステル、メチルゲルマニウムトリメト
キシド、ジメチルオキシエチル錫を上記皮膜の微細孔に
真空含浸した。ついで、24時間大気中で放置し、加水
分解を行つたのち、130℃で2時間加熱して重合した
。ついで、この処理アルミニウム板上に実施例1と同様
に配線用導体を形成した。この配線基板の交流絶縁耐圧
は500V以上であつた。以上説明したように、この発
明の印刷配線基板の製造法は、部品取付穴、スルーホー
ルをあらかじめ穿設した陽極酸化可能な金属板の表面に
陽極酸化皮膜を形成し、ついでこの陽極酸化皮膜の表面
、微細孔中さらにスルーホール等にも重合性有機金属化
合物を付着、含浸し、ついで重合させたのち、この陽極
酸化皮膜表面に直接配線用導体を形成するものであるの
で、陽極酸化皮膜の微細孔にも十分な有機金属化合物の
ポリマーが充填されることになるので、高い絶縁性と加
熱クラックの発生防止性が得られ、従って酸化皮膜ある
いはポリマー皮膜の上に直接配線用導体を形成しても散
熱性が非常に向上するなどの利点を有する。
Next, for each film, zirconium tetraisopropoxide, tri-n-butyl phosphate, tri-n-butyl borate, methylgermanium trimethoxide, and dimethyloxyethyltin were applied to the micropores of the film under vacuum. Impregnated. Next, the mixture was left in the air for 24 hours to perform hydrolysis, and then heated at 130° C. for 2 hours to polymerize. Then, a wiring conductor was formed on this treated aluminum plate in the same manner as in Example 1. The AC dielectric strength voltage of this wiring board was 500V or more. As explained above, the method for manufacturing a printed wiring board of the present invention involves forming an anodized film on the surface of an anodizable metal plate in which component mounting holes and through-holes have been drilled in advance; A polymerizable organometallic compound is attached to and impregnated on the surface, in micropores, and through holes, etc., and then polymerized, and then a wiring conductor is formed directly on the surface of this anodic oxide film. Since the fine pores are also filled with a sufficient amount of the organometallic compound polymer, high insulation properties and prevention of heating cracks can be obtained, making it possible to form wiring conductors directly on the oxide film or polymer film. However, it has the advantage of greatly improved heat dissipation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はこの発明によって得られる印刷配
線基板の例を示すもので、第1図はアルマイト皮膜の微
細孔中にのみ有機金属化合物ポリマーを充填したもの、
第2図はアルマイト皮膜の表面にのみ有機金属化合物ポ
リマー皮膜を形成したものを示す概要断面図、第3図は
アルマイト皮膜微細孔中に有機金属化合物ポリマーが充
填されていることを示すX線マイクロアナライザによる
線分析の結果を示す測定チャートで、I線はAlの、I
I線はSiの分布を示す。 1・・・アルミニウム板2・・・・アルマイト皮膜、3
・・・微細孔、4・・・有機金属化合物ポリマー、5・
・配線用導体、6・・・有機金属化合物ポリマー皮膜。
Figures 1 and 2 show examples of printed wiring boards obtained by the present invention. Figure 1 shows one in which only the micropores of the alumite film are filled with organometallic compound polymer;
Figure 2 is a schematic cross-sectional view showing an organometallic compound polymer film formed only on the surface of the alumite film, and Figure 3 is an X-ray micrograph showing that the organometallic compound polymer is filled in the micropores of the alumite film. This is a measurement chart showing the results of line analysis by an analyzer.
The I line shows the distribution of Si. 1... Aluminum plate 2... Alumite film, 3
... Micropore, 4... Organometallic compound polymer, 5.
- Wiring conductor, 6... Organometallic compound polymer film.

Claims (1)

【特許請求の範囲】[Claims] 1 部品取付穴、スルーホール等の穴を穿設した陽極酸
化可能な金属板の表面に陽極酸化皮膜を形成し、ついで
この陽極酸化皮膜の表面および/または微細孔中さらに
は前記穴に重合性有機金属化合物を付着、含浸し重合さ
せたのち、配線用導体等を形成することを特徴とする印
刷配線基板の製造方法。
1. An anodic oxide film is formed on the surface of a metal plate that can be anodized with holes such as component mounting holes and through holes, and then a polymerizable film is formed on the surface of this anodic oxide film and/or in the micropores as well as in the holes. A method for manufacturing a printed wiring board, which comprises depositing, impregnating and polymerizing an organic metal compound, and then forming a wiring conductor, etc.
JP1394381A 1981-02-02 1981-02-02 Printed wiring board manufacturing method Expired JPS5922396B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1394381A JPS5922396B2 (en) 1981-02-02 1981-02-02 Printed wiring board manufacturing method
CA000395127A CA1212073A (en) 1981-02-02 1982-01-28 Impregnating anodic oxide film with polymerizable compound and polymerizing and resulting wiring board
DE8282300465T DE3270926D1 (en) 1981-02-02 1982-01-29 Process of treating anodic oxide film, printed wiring board and process of making the same
EP82300465A EP0058023B1 (en) 1981-02-02 1982-01-29 Process of treating anodic oxide film, printed wiring board and process of making the same
US06/344,711 US4483751A (en) 1981-02-02 1982-02-01 Process of treating a nodic oxide film, printed wiring board and process of making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1394381A JPS5922396B2 (en) 1981-02-02 1981-02-02 Printed wiring board manufacturing method

Publications (2)

Publication Number Publication Date
JPS57128998A JPS57128998A (en) 1982-08-10
JPS5922396B2 true JPS5922396B2 (en) 1984-05-26

Family

ID=11847284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1394381A Expired JPS5922396B2 (en) 1981-02-02 1981-02-02 Printed wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JPS5922396B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188260U (en) * 1984-05-23 1985-12-13 ダイハツ工業株式会社 Gear transmission lubrication system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123297A (en) * 1982-12-27 1984-07-17 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Method of forming substrate for printed circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188260U (en) * 1984-05-23 1985-12-13 ダイハツ工業株式会社 Gear transmission lubrication system

Also Published As

Publication number Publication date
JPS57128998A (en) 1982-08-10

Similar Documents

Publication Publication Date Title
EP0058023B1 (en) Process of treating anodic oxide film, printed wiring board and process of making the same
US4495378A (en) Heat-removing circuit boards
EP3205750B1 (en) Method of filling through-holes to reduce voids and other defects
CN1500372A (en) Laminate for formation of capacitor layer and method for prodn. thereof
EP3205749B1 (en) Method of filling through-holes to reduce voids and other defects
JPS5922396B2 (en) Printed wiring board manufacturing method
GB2206451A (en) Substrates for circuit panels
JPS5922395B2 (en) Printed wiring board manufacturing method
JP2008041838A (en) Metal core board and manufacturing method therefor
JPH0318088A (en) Insulating metallic substrate and manufacture thereof
JPS64838B2 (en)
JPS5853719B2 (en) How to treat anodized film
US4714646A (en) Electrophoretic insulation of metal circuit board core
GB2080630A (en) Printed circuit panels
JP2008147208A (en) Manufacturing method of heat dissipation substrate for electric circuit
JPS5834558B2 (en) Treatment method for anodic oxide film
JP2008153556A (en) Manufacturing method of heatsink substrate for electric circuit
JPS5853718B2 (en) How to treat anodized film
JPH11229187A (en) Substrate for electronic material excellent in insulating property and its production
AU2016204907A1 (en) Integrated plated circuit heat sink and method of manufacture
JPS5853720B2 (en) How to treat anodized film
WO2020204745A1 (en) Method for forming copper conductors for printed circuit board
EP0239839A1 (en) Electrophoretic insulation of metal circuit board core
JP3873535B2 (en) Circuit board
RU2694430C1 (en) Method of producing dielectric layer on aluminium substrate surface