JPS59223060A - Original reader - Google Patents

Original reader

Info

Publication number
JPS59223060A
JPS59223060A JP58097166A JP9716683A JPS59223060A JP S59223060 A JPS59223060 A JP S59223060A JP 58097166 A JP58097166 A JP 58097166A JP 9716683 A JP9716683 A JP 9716683A JP S59223060 A JPS59223060 A JP S59223060A
Authority
JP
Japan
Prior art keywords
correction
ccd
rom
multiplying
reading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58097166A
Other languages
Japanese (ja)
Inventor
Yoshinori Ejima
義紀 江島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58097166A priority Critical patent/JPS59223060A/en
Publication of JPS59223060A publication Critical patent/JPS59223060A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/401Compensating positionally unequal response of the pick-up or reproducing head

Abstract

PURPOSE:To eliminate unevenness in reading of an original picture with a simple constitution by removing the unevenness in a light source with an optical member and further electrically correcting the data by means of the corrected light. CONSTITUTION:Since the quantity of shading is large like the characteristic shown by the dotted line (a) even in the effective reading area (l) of an one- dimensional image pickup element (CCD) 1 in the case of a parallel type aperture, reverse correction is performed by changing the shape of the aperture in accordance with the luminance distribution on an original and the luminance distribution is made flat like the other characteristic shown by the soild line (b). Since the shading of a lens can be measured in advance, correction coefficients to each picture element of the CCD 1 are written in a multiplying ROM 11 in advance. Therefore, a value which is obtained by multiplying image data converted by an AD converter 3 by a correction coefficient corresponding to the picture element, is outputted. In this case, it can be managed without using a large number of bits for the correction coefficient, because it is the correction coefficient of the lens only that is required to be written in the ROM 11. That is to say, no RAM is required and, at the same time, even the capacity of the multiplying ROM 11 can be reduced.

Description

【発明の詳細な説明】 本発明は原稿を光源により露光し、原稿からの反射光に
より画像読取を行う原稿読取装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a document reading device that exposes a document to light using a light source and reads an image using light reflected from the document.

この種の画像読取装置において、撮像素子に元情報を伝
達するだめの光学系において、その光源特に螢光灯やハ
ロゲンランプはその構造的な問題から輝度分布が不均一
性を示し、又撮像素子に元情報を結像させるだめのレン
ズは光学系の本質的な問題(COSθ則)により、周辺
光量が低下するという事が指摘されている。この場合、
例えば原稿の地の濃度が全く均一であっても反射光力く
不均一となり、読取った信号レベルに−くラツキが生じ
るため、特に螢光灯を光源とした場合螢光灯の端部の光
量は中央部に較べ低いので、原稿の周辺部が暗く読取ら
れ正確な原稿情報が伝達出来なくなる。
In this type of image reading device, in the optical system that transmits original information to the image sensor, the light source, especially the fluorescent lamp or halogen lamp, exhibits uneven brightness distribution due to structural problems, and the image sensor It has been pointed out that the amount of light at the periphery of the lens used to image the original information decreases due to an essential problem of the optical system (COS θ law). in this case,
For example, even if the density of the background of a document is completely uniform, the intensity of the reflected light will be uneven, causing fluctuations in the read signal level. This is especially true when a fluorescent lamp is used as a light source. is lower than the central portion, the peripheral portion of the document is read darkly and accurate document information cannot be transmitted.

第1図に原稿読取装置の構成例を示す。FIG. 1 shows an example of the configuration of a document reading device.

読取部Rの上部には、ガラス等より成る原稿台GDが形
成されており、利用者はこの原稿台GD上に読取るべき
原稿を載置する。原稿台GDの下部には原稿を照明する
螢光灯等の棒状光源L1゜L2、原稿を走査(副走査)
する第1の平面鏡PM1、示2の平面鏡PM2、原稿面
の光像を結像させる光学レンズOPL、0PALを通過
し7’C元の強弱を読取るだめの一次元撮像素子CCD
(Change Coupled Device )イ
メージセンサが設けられている。
A document table GD made of glass or the like is formed above the reading section R, and a user places a document to be read on this document table GD. At the bottom of the document table GD, there is a bar-shaped light source L1゜L2 such as a fluorescent light that illuminates the document and scans the document (sub-scanning).
A one-dimensional image sensor CCD that passes through the first plane mirror PM1 shown in FIG. 2, the plane mirror PM2 shown in FIG.
(Change Coupled Device) An image sensor is provided.

光源L1.L2、第1の平面鏡PM1は支持体STによ
り一体となっており1、キャリッジCAiに固定されて
いる。キャリッジCA1は周知の駆動手段により案内レ
ールGL上を図中左から右へ(F方向)往動および右か
ら左へ復動する。
Light source L1. L2 and the first plane mirror PM1 are integrated by a support ST1 and are fixed to the carriage CAi. The carriage CA1 moves forward on the guide rail GL from left to right (direction F) in the figure and back from right to left by a well-known drive means.

第2の平面鏡2M2ti第1の平面鏡PM1と同一方向
へ第1の平面鏡PM1の移動速度の1/2のスピードで
キャリッジCA2により案内レールGL上を移動する。
The second plane mirror 2M2ti is moved on the guide rail GL by the carriage CA2 in the same direction as the first plane mirror PM1 at a speed 1/2 of the moving speed of the first plane mirror PM1.

尚、往動終了時には平面鏡PM1 、PM2は図中点線
で示す位置PM1’。
Incidentally, at the end of the forward movement, the plane mirrors PM1 and PM2 are at the position PM1' indicated by the dotted line in the figure.

P M 2’まで移動する。この時原稿台GDから平面
鏡PM1 、PM2を通ってレンズOPLまでの光路長
は常に一定に保たれる。
Move to P M 2'. At this time, the optical path length from the document table GD to the lens OPL through the plane mirrors PM1 and PM2 is always kept constant.

イメージセンサCCDIの主走査方向は図面に垂直な方
向である。千咋鏡PMi 、PM2の往動中、イメージ
センサCCD Iの受光要素からの信号を順序良く読出
すならば、原稿面をラスタースキャンした順次信号を得
ることが出来る。
The main scanning direction of the image sensor CCDI is perpendicular to the drawing. If the signals from the light-receiving elements of the image sensor CCD I are read out in an orderly manner during the forward movement of the Senkukyo PMi and PM2, sequential signals obtained by raster scanning the document surface can be obtained.

この装置において、光学系の不均一に起伏する読取りの
誤差を防止すべく、第2図に示す如くの補正回路を用い
、電気的に読取った画像信号の不均一を補正する方法が
従来用いられていた。すなわちコピー毎に一次元撮像素
子CCDIの読取−位置が所定の読取開始位置、すなわ
ちホームポジションHPにあるとき以下のシーケンスを
行う。まず不図示の光源L1.L2を点灯しホームポジ
ションHP上に設けられた撮像素子CCDの読取中以上
での全面が均一濃度の標準白色又は灰色板几EFを照射
し、反射光をCCDIに入力する。
In this device, in order to prevent reading errors caused by uneven ups and downs in the optical system, a conventional method has been used in which a correction circuit as shown in Fig. 2 is used to correct the unevenness of the electrically read image signal. was. That is, for each copy, when the reading position of the one-dimensional image sensor CCDI is at a predetermined reading start position, that is, the home position HP, the following sequence is performed. First, a light source L1 (not shown). L2 is turned on and a standard white or gray plate EF having a uniform density is irradiated over the entire surface of the imaging device CCD provided on the home position HP during reading, and the reflected light is input to the CCDI.

この時第2図示回路においてスイッチ4は1側にしてお
き、CCD1から光電変換された信号はAMP2を通り
、更にんの一変換器3でアナログ・デジタル()=/D
 )変換される。そして、NΦ変換された画像データは
数画素毎にサンプリングされて、メモリRAM5に書き
込まれる。全画素を行わず、数画素毎にサンプリングす
る理由は几AM5のメモリ容量を節約するためである。
At this time, in the second illustrated circuit, the switch 4 is set to the 1 side, and the photoelectrically converted signal from the CCD 1 passes through the AMP 2, and is then converted to analog/digital ()=/D by a further converter 3.
) converted. The NΦ-converted image data is then sampled every few pixels and written into the memory RAM5. The reason why sampling is not performed for all pixels but every few pixels is to save the memory capacity of the AM5.

捉っである一画素のシェーディングデータに基づき隣接
する数画素(白画素も含めて)の補正を行う。
Based on the shading data of one captured pixel, several adjacent pixels (including white pixels) are corrected.

次に原稿走査に移るとスイッチ4は2側になり、C0D
iのNの変換された画像データは逐次乗算メモリROM
6にアドレス信号として入力されると共に、RAM5の
内容もCCD1の信号数ビットに対応して読出され、同
じく乗算ROM乙にアドレス信号として入力される。
Next, when scanning the original, switch 4 is set to the 2 side, and C0D
The N converted image data of i is stored in a sequential multiplication memory ROM.
6 as an address signal, the contents of the RAM 5 are also read out in correspondence with the signal number bits of the CCD 1, and are similarly input as an address signal to the multiplication ROM B.

乗算ROM6[はR,AM5からの入力値が例えばV4
なる値であればR,0M6ではCCD 1からの入力値
に4/6の値を乗じた内容が予め補正値として書き込ま
れている。これによって乗算ROM6ではR,AM 5
からの入力値に基づき、CCD1からの画像データを一
画素毎に補正しコンパレータへ出力する様になっている
。しかしながら、この様な構成では基準板読取によるデ
ータを記憶するR、AMを必要とし、又、例えばCCD
 1の画素数を数ビツト毎にサンプリングしても、光学
系による不均一が大きく補正量が大きい場合、メモリR
AMの容量は非常に大きなものを必要とし、装置全体が
高価なものとなる。又数ビツト間引(−・てサンプリン
グを行うと、その部分に局部的な光量ムラがある場合補
正が出来なくなるという欠点がある。
Multiplying ROM6 [is R, the input value from AM5 is, for example, V4
If the value is R, 0M6, the content obtained by multiplying the input value from CCD 1 by a value of 4/6 is written in advance as a correction value. As a result, in the multiplication ROM 6, R, AM 5
Based on the input value from the CCD 1, the image data from the CCD 1 is corrected pixel by pixel and output to the comparator. However, such a configuration requires R and AM to store data obtained by reading the reference plate, and also requires, for example, a CCD.
Even if the number of pixels of 1 is sampled every few bits, if the non-uniformity due to the optical system is large and the correction amount is large, the memory R
AM requires a very large capacity, making the entire device expensive. Furthermore, if sampling is performed by thinning out several bits, there is a drawback that if there is local unevenness in the amount of light in that area, it will not be possible to correct it.

本発明は以上の点に鑑みてなされたもので、多種の原因
による画像読取信号の不均一を除去し、更に良好な画像
読取を達成するものである。
The present invention has been made in view of the above points, and it is an object of the present invention to eliminate non-uniformity of image reading signals caused by various causes, and to achieve even better image reading.

以下、図面を用い本発明を更に詳細に説1311jる。Hereinafter, the present invention will be explained in more detail 1311j using the drawings.

第3図、第4図は本発明を適用した実施例である。第3
図は第1図の構成と同様に露光用光源に螢光灯を用い、
螢光灯のアパーチャの形状(a)及び原稿面上での輝度
分布(b)を示したものである。すなわち平行型アパー
チャでは、点線(イ)で示した特性の如く一次元撮像素
子cc:c+iの有効読取領域I内でもシェーディング
の量が大きい。そこで、原稿面上での輝度分布に応じて
、アパーチャの形状を変えることにより逆補正を行い、
第6図の(b)の(ロ)に示す様に輝度分布が非常に均
一で7ラツトなものとする。
FIGS. 3 and 4 show embodiments to which the present invention is applied. Third
The figure uses a fluorescent lamp as the light source for exposure, similar to the configuration in Figure 1.
The shape of the aperture of the fluorescent lamp (a) and the luminance distribution on the document surface (b) are shown. That is, with the parallel aperture, the amount of shading is large even within the effective reading area I of the one-dimensional image sensor cc:c+i, as shown by the characteristic shown by the dotted line (A). Therefore, we performed reverse correction by changing the shape of the aperture according to the brightness distribution on the document surface.
As shown in FIG. 6(b) (b), the brightness distribution is extremely uniform and has a 7-rat distribution.

矢にレンズOPLによるシェーディングを第4図の如く
の回路を用い、電気的に補正を行う。すなわち、レンズ
OPLのシェーディングは予め測定出来るため、CCD
1の各画素に対応する補正係数を乗算ROM11に予め
書き込んでおく。
The shading of the arrow by the lens OPL is electrically corrected using a circuit as shown in FIG. In other words, since the shading of the lens OPL can be measured in advance, the CCD
A correction coefficient corresponding to each pixel of 1 is written in the multiplication ROM 11 in advance.

CCD1のNΦ変換器6でんΦ変換された画像デ−タが
入力されると、その画像データにその画素に対応した補
正係数を乗じた値が出力される。
When Φ-converted image data is input to the NΦ converter 6 of the CCD 1, a value obtained by multiplying the image data by a correction coefficient corresponding to that pixel is output.

これによりCCD1の読取信号を補正し、コンパレータ
12へ出力する事になる。この場合、光源光量はアパー
チャの形状により均一化されて〜・るので、光源のシェ
ーディング補正量を考慮する必要が全く無く、レンズの
補正係数のみをROM11に書き込めば良いので、従来
方式に較べて補正係数のビット数が少なくて済む。
As a result, the read signal of the CCD 1 is corrected and outputted to the comparator 12. In this case, the amount of light from the light source is made uniform by the shape of the aperture, so there is no need to consider the amount of shading correction for the light source, and only the correction coefficient of the lens needs to be written into the ROM 11. The number of bits of the correction coefficient can be reduced.

すなわち、従来例に比してR,AMが不要になると共に
、乗算ROM1iの容量も小さく出来るという特徴があ
る。
That is, compared to the conventional example, R and AM are not required, and the capacity of the multiplication ROM 1i can be reduced.

以上説明した様に、照明系に原稿面上の輝度分布の不均
一性を改善するためにアパーチャの形状の螢光灯を設け
、レンズOPLのシェーディングの補正は予め乗算E、
OM11に書き込まれた補正係数により補正する事によ
り、従来例に比してより簡単なシステムで安価なシェー
ディング補正装置が可能となる。
As explained above, an aperture-shaped fluorescent lamp is provided in the illumination system to improve the non-uniformity of the brightness distribution on the document surface, and the shading of the lens OPL is corrected by multiplying E in advance.
By performing correction using the correction coefficients written in the OM 11, it is possible to provide a shading correction device that is simpler and cheaper than the conventional example.

尚、本実施例では、光源側での光量補正は螢光灯の7パ
ーチヤ形状により行ったが、第5図の如(CCD1への
結像用レンズOPLの前面に、原稿面上の螢光灯16の
輝度分布に応じた形状の補正板15を設け、これにより
補正を行いレンズOPLに集光させるという方法も可能
である。尚14は光路を変えるための反射鏡である。こ
の場合には、補正板15を非常に安価な板金等で実現可
能なため、第2図示の実施例すなわち螢光灯のアパーチ
ャの形状を変える方法よりも安価に達成出来る。
In this example, the light amount correction on the light source side was performed using the 7-percha shape of the fluorescent lamp, but as shown in FIG. It is also possible to provide a correction plate 15 shaped according to the luminance distribution of the lamp 16, and use this to correct the light and focus it on the lens OPL.Incidentally, reference numeral 14 is a reflecting mirror for changing the optical path.In this case, Since the correction plate 15 can be realized using a very inexpensive sheet metal, it can be achieved at a lower cost than the embodiment shown in the second figure, that is, the method of changing the shape of the aperture of the fluorescent lamp.

また、第4図の補正回路を第2図の従来の補正回路とす
れば、更なる補正の精度を向上することができる。
Further, if the correction circuit shown in FIG. 4 is replaced with the conventional correction circuit shown in FIG. 2, the accuracy of correction can be further improved.

また、本実施例では螢光灯を光源としたが、ハロゲンラ
ンプや白熱灯等の他の光源を用いても同様であることは
言うまでもない。
Further, in this embodiment, a fluorescent lamp was used as the light source, but it goes without saying that other light sources such as a halogen lamp or an incandescent lamp may be used.

以上、説明した様に本発明によれば、光源の不均一を光
学的な部材により除去し、この補正された元により露光
された原稿からの読取データを更に電気的に補正するこ
とにより、原稿画像の読取の不均一性を簡単な構成でよ
り完全に除去することができる。
As described above, according to the present invention, the non-uniformity of the light source is removed by an optical member, and the read data from the original exposed by this corrected source is further electrically corrected. Non-uniformity in image reading can be more completely removed with a simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は原稿読取装置の構成例を示す図、第2図は従来
の画像データ補正回路図、第6図は本発明による光学的
補正を説明する図、第4図は本発明による補正回路図、
第5図は本発明の他の光学的補正を説明する図であシ、
1はCCD、OPLはレンズ、6,11は乗算”OMs
 7 、12はコンパレータ、15は補正板である。
FIG. 1 is a diagram showing a configuration example of a document reading device, FIG. 2 is a conventional image data correction circuit diagram, FIG. 6 is a diagram explaining optical correction according to the present invention, and FIG. 4 is a correction circuit according to the present invention. figure,
FIG. 5 is a diagram illustrating another optical correction of the present invention.
1 is CCD, OPL is lens, 6 and 11 are multiplication "OMs"
7 and 12 are comparators, and 15 is a correction plate.

Claims (1)

【特許請求の範囲】[Claims] 原稿を露光するための光源と、上記光源の光量の不均一
を光学的に補正する手段と、上記原稿からの反射光によ
り原稿画像を光電的に読取る手段と、上記読取手段から
の読取信号のレベル不均一を電気的に補正する手段とを
有することを特徴とする原稿読取装置。
A light source for exposing an original; a means for optically correcting non-uniformity of the light amount of the light source; a means for photoelectrically reading an original image using reflected light from the original; and a reading signal from the reading means. A document reading device comprising means for electrically correcting level non-uniformity.
JP58097166A 1983-06-01 1983-06-01 Original reader Pending JPS59223060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58097166A JPS59223060A (en) 1983-06-01 1983-06-01 Original reader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58097166A JPS59223060A (en) 1983-06-01 1983-06-01 Original reader

Publications (1)

Publication Number Publication Date
JPS59223060A true JPS59223060A (en) 1984-12-14

Family

ID=14184983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58097166A Pending JPS59223060A (en) 1983-06-01 1983-06-01 Original reader

Country Status (1)

Country Link
JP (1) JPS59223060A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144972A (en) * 1984-12-19 1986-07-02 Hitachi Ltd Image signal processor
JPS61167270A (en) * 1985-01-18 1986-07-28 Konishiroku Photo Ind Co Ltd Shading correcting device
JPS61237575A (en) * 1985-04-12 1986-10-22 Fuji Xerox Co Ltd Picture reader

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193241A (en) * 1975-02-14 1976-08-16
JPS54119940A (en) * 1978-02-09 1979-09-18 Cselt Centro Studi Lab Telecom Method and device for mixing and separating light beam
JPS5512905A (en) * 1978-07-13 1980-01-29 Nippon Telegr & Teleph Corp <Ntt> Multichannel low-loss light-wave divider

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193241A (en) * 1975-02-14 1976-08-16
JPS54119940A (en) * 1978-02-09 1979-09-18 Cselt Centro Studi Lab Telecom Method and device for mixing and separating light beam
JPS5512905A (en) * 1978-07-13 1980-01-29 Nippon Telegr & Teleph Corp <Ntt> Multichannel low-loss light-wave divider

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144972A (en) * 1984-12-19 1986-07-02 Hitachi Ltd Image signal processor
JPS61167270A (en) * 1985-01-18 1986-07-28 Konishiroku Photo Ind Co Ltd Shading correcting device
JPS61237575A (en) * 1985-04-12 1986-10-22 Fuji Xerox Co Ltd Picture reader

Similar Documents

Publication Publication Date Title
JPH04363967A (en) Original reader
JP2889080B2 (en) Scanner
JPS59223060A (en) Original reader
JPH0249589B2 (en)
US5103320A (en) Image reading apparatus with correction of two-dimensional shading
JP2580118B2 (en) Information reading device
JP2618923B2 (en) Document reading device
JP2590851B2 (en) Information reader
JPS63142960A (en) Image reader
JP2569667B2 (en) Image reading device
JPS62105571A (en) Film reader
JP2627219B2 (en) Image reading device
JPH0122791B2 (en)
JPH02177665A (en) Method and device for reading picture
JPH09130540A (en) Image reader
JPH01300677A (en) Shading correction processing method
JPH06105145A (en) Picture input device
JPH0153539B2 (en)
JPH0585159U (en) Document reader
JPH08130608A (en) Image reader
JPH01225280A (en) Picture reader
JPH0223771A (en) Picture reading device
JPH0810894B2 (en) Image reader
JPH05344289A (en) Image reader
JPH0537778A (en) Picture reader