JPS59222820A - Optical integrated circuit - Google Patents

Optical integrated circuit

Info

Publication number
JPS59222820A
JPS59222820A JP9825183A JP9825183A JPS59222820A JP S59222820 A JPS59222820 A JP S59222820A JP 9825183 A JP9825183 A JP 9825183A JP 9825183 A JP9825183 A JP 9825183A JP S59222820 A JPS59222820 A JP S59222820A
Authority
JP
Japan
Prior art keywords
optical
integrated circuit
control signal
circuit according
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9825183A
Other languages
Japanese (ja)
Inventor
Osamu Yamazaki
山崎 攻
Kentaro Setsune
瀬恒 謙太郎
Tsuneo Mitsuyu
常男 三露
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9825183A priority Critical patent/JPS59222820A/en
Publication of JPS59222820A publication Critical patent/JPS59222820A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3137Digital deflection, i.e. optical switching in an optical waveguide structure with intersecting or branching waveguides, e.g. X-switches and Y-junctions

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To attain high speed operation by driving a switching means by a driving means on the basis of a control signal detected by a control signal detecting means and supplying power necessary for said operation from an accumulating means accumulating power from an optical power genertaing means. CONSTITUTION:A control signal switching light is inputted to the control signal detecting means 23 consisting of a photodiode through an optical fiber 25. The detected control signal is amplified by the driving means 24. Power for these circuits is supplied from the accumulating means 22 consisting of a capacitor or the like by converting light projected from a power supplying optical fiber 26 into power by the optical power generating means 21 consisting of a photocell or the like and accumulating power in the means 22. Output voltage from the driving means 24 is apllied to an electrode 7 of an optical changeover switch consisting of a substrate 1, an optical waveguide 2, a branch 3, optical fibers 4-6 and the electrode 7, so that the optical switch operates at a high speed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光集積回路に関するものであり、特に光の切替
スイッチ機能をもつ光集積回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical integrated circuit, and more particularly to an optical integrated circuit having an optical changeover switch function.

従来例の構成とその問題点 光を用いた情報通信システムにおいて、光情報の接続を
切替える光スィッチは、機械的に鏡などを動かす方式、
音響光学効果による回折を利用する方式、電気光学効果
による方式などかあり、システム構成上重要な役割ケに
なうものである。上記の諸方式の中で、電気光学効果を
利用した全反射(通称TIR)形のスイッチや、導波路
結合器形のスイッチは、高速切替が可能で、しかも消費
電力がきわめて少ないので実用性が高い。最近、光ファ
イバが、電磁誘導の影響全受けにくいという特長をいか
して、遠隔検出や遠隔制御などに光を用いた情報通信シ
ステムに活用されており、基地局から遠く離れた位置に
ある光スィッチを制御する場合、波長の多重化や併設し
た別の光ファイバによる光信号を利用していた。
Conventional configurations and their problems In information communication systems that use light, optical switches that change the connection of optical information are systems that mechanically move mirrors, etc.
There are methods that use diffraction due to the acousto-optic effect, methods that use the electro-optic effect, etc., and they play an important role in system configuration. Among the above methods, total internal reflection (TIR) type switches that utilize electro-optic effects and waveguide coupler type switches are not practical because they can switch at high speed and consume very little power. expensive. Recently, optical fibers have been used in information and communication systems that use light for remote detection and control, taking advantage of the fact that they are not susceptible to the effects of electromagnetic induction. To control this, wavelength multiplexing or optical signals from a separate optical fiber was used.

第1図はこのような従来の光の切替スイッチ機能をもつ
光集積回路を示す概要図である。基板1上にY字形に形
成した光導波路2、その分岐3はそれぞれ光ファイバ4
,5および6にレンズなど(ここでは省略)で光学的に
結合している。ここで基板1として電気光学効果の強い
材料たとえばニオブ酸リチウムを使用し、電極7の間に
電圧を印加すると、光ファイバ4から入射した光は分岐
3へ全反射して導かれ、光ファイバ5に達する。
FIG. 1 is a schematic diagram showing an optical integrated circuit having such a conventional optical changeover switch function. An optical waveguide 2 is formed in a Y-shape on a substrate 1, and its branches 3 are each connected to an optical fiber 4.
, 5 and 6 through a lens or the like (not shown here). Here, when a material with a strong electro-optic effect, such as lithium niobate, is used as the substrate 1 and a voltage is applied between the electrodes 7, the light incident from the optical fiber 4 is totally reflected and guided to the branch 3, and the light is guided to the optical fiber 5. reach.

電圧を印加しない時は光ファイバ6に達する。これによ
シ光スイッチが構成される。この電圧は材質、構成によ
シ異なるが、一般に数十ボAz )以上必要とされる。
When no voltage is applied, it reaches the optical fiber 6. This constitutes an optical switch. This voltage varies depending on the material and configuration, but is generally required to be several tens of volts (Az) or more.

この電圧を得るだめ、この従来例では光電池9を併設し
、光ファイバ8によシこの光電池9を照射し、起電力を
発生させていた。従来の実験例でハ、光電池9としてテ
ルル化カドミ、ラムlいて異常光起電力約30Vを得だ
。この電圧を電極7に印加した結果、スイッチとして動
作させることができだ。しかしながら、このスイッチの
動作速度は遅く、立」ニジが約1秒、立下りが数十秒以
」二の時間を要した。これはテルル の内部抵抗が高く、光照射特約6ギガオーム、非照射特
約100ギガオームもあり、時定数が長くなったためと
推定される。ガリウム砒素のPIN起 構造を用い、開放脅電力3・9ミリボルト、短絡電流3
・6マイクロアンペアを得たが、この光電池を用いても
スイッチの切替速度は数百マイクロ秒と遅く用途も低速
用のものに限られていた。
In order to obtain this voltage, in this conventional example, a photovoltaic cell 9 was provided, and the photovoltaic cell 9 was irradiated through the optical fiber 8 to generate an electromotive force. In the conventional experimental example, an abnormal photovoltage of about 30V was obtained using cadmium telluride and ram as the photovoltaic cell 9. As a result of applying this voltage to the electrode 7, it can be operated as a switch. However, the operating speed of this switch was slow, and it took about 1 second to turn on and off, and several tens of seconds or more to turn on and off. This is presumed to be because tellurium has a high internal resistance, about 6 gigaohms for light irradiation and about 100 gigaohms for non-irradiation, resulting in a long time constant. Using gallium arsenide PIN structure, open-circuit power is 3.9 millivolts, short-circuit current is 3.
・6 microamperes were obtained, but even if this photovoltaic cell was used, the switching speed of the switch was slow at several hundred microseconds, and its use was limited to low-speed applications.

発明の目的 本発明は上記の問題、すなわち切替速度が遅いという問
題を解決し、高速動作が可能な光集積回路を提供するこ
とを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to solve the above-mentioned problem, that is, the problem of slow switching speed, and to provide an optical integrated circuit capable of high-speed operation.

発明の構成 本発明は、光発電手段(光電池など)と光切替手段(全
反射形光スイッチなど)に加えて、新たに光発電手段で
得られた電力を蓄える蓄電手段と、制御信号を検出する
制御信号検出手段と、検出した信号にもとづき光切替手
段を働かせるだめの駆動手段を有し、この駆動手段は」
二記の蓄電手段に蓄えられた電力によシミ力供給されて
動作せしめる構成によって成っている。
Structure of the Invention The present invention provides, in addition to a photovoltaic power generation means (such as a photovoltaic cell) and an optical switching means (such as a total reflection type optical switch), a power storage means for storing electric power newly obtained by the photovoltaic power generation means, and a control signal detecting device. and a drive means for operating the optical switching means based on the detected signal.
It is constructed so that it is operated by being supplied with electric power stored in the electricity storage means mentioned above.

実施例の説明 以下本発明について実施例にもとづき説明する。Description of examples The present invention will be described below based on examples.

第2図は本発明の一実施例を説明するだめの概要図であ
る。同図中、基板1、光導波路2、その分岐3、光ファ
イ/<4.5および6、電極7は従来例と同様である。
FIG. 2 is a schematic diagram for explaining one embodiment of the present invention. In the figure, the substrate 1, the optical waveguide 2, its branch 3, the optical fibers /<4.5 and 6, and the electrode 7 are the same as in the conventional example.

光を切替える制御信号は光フアイμ26を経由して、フ
ォトダイオード(第2図中P、 D、で示した)などか
らなる制御信号検出手段23へ導かれる。検出された信
号は電極7を駆動するのに十分なレベ/I/まで駆動手
段24で増幅される。この駆動手段24は4゛目補的M
O3形トランジヌタによシ構成すると消費電力が少なく
効果的である。これらの回路の電源は、電力供給用の光
ファイバ26から放出された光を、フォトセル手段21
によシミ力に変換し、コンデンサなどからなる蓄電手段
22を介して供給される。本発明者らの実験の結果では
、光検出手段23にシリコンフォトダイオードを利用し
、駆動手段24として相補的MOS形の集積回路を利用
し、光発電手段21としてガリウム砒素のフォトセルパ
イル(開放電圧30ボルト)、蓄電手段22として1マ
イクロフアラツドのコンデンサを使用した。
A control signal for switching the light is guided via an optical fiber μ26 to a control signal detection means 23 consisting of a photodiode (indicated by P and D in FIG. 2). The detected signal is amplified by drive means 24 to a level /I/ sufficient to drive electrode 7. This driving means 24 is a 4th complementary M
When constructed using O3 type transistors, power consumption is reduced and it is effective. The power supply for these circuits is such that the light emitted from the optical fiber 26 for power supply is connected to the photocell means 21.
This is converted into a staining force and supplied via a power storage means 22 consisting of a capacitor or the like. According to the results of experiments conducted by the present inventors, a silicon photodiode is used as the photodetection means 23, a complementary MOS type integrated circuit is used as the drive means 24, and a gallium arsenide photocell pile (open) is used as the photovoltaic means 21. (voltage: 30 volts), and a 1 microfarad capacitor was used as the electricity storage means 22.

次に光ファイバ25を経由して断続した光制御信号を印
加した所、光スィッチの立上り時間および立下り時間は
ともに0・1マイクロ秒と速く、従来例の数千倍高速で
動作することを確認した。
Next, when an intermittent optical control signal was applied via the optical fiber 25, the rise time and fall time of the optical switch were both as fast as 0.1 microseconds, indicating that it operated several thousand times faster than the conventional example. confirmed.

この実験形果を考察すると、電極7を駆動する電力は、
容量性負荷であるため、はとんど充放電の突入電流だけ
であり、動作を保持している間はほとんど電力を消費し
ないため、蓄“市手段22に蓄えられた電力は約500
マイクロジユールであったが、突入電流を十分に供給で
きたためと考えらる。
Considering the results of this experiment, the power to drive the electrode 7 is:
Since it is a capacitive load, the inrush current for charging and discharging is the only one, and almost no power is consumed while the operation is maintained, so the power stored in the storage means 22 is approximately 500%.
This is thought to be due to the fact that it was able to supply sufficient inrush current even though it was a micro unit.

光発電手段21としては、上記実施例で示したガリウム
砒素の他にも、Ge,  Si,  PbS,  In
P。
As the photovoltaic means 21, in addition to gallium arsenide shown in the above embodiment, Ge, Si, PbS, In
P.

Ga P 、  Cd S 、  Zn S 、  Z
n Se 、またはCd Te  なとで構成したフォ
トセルパイルを利用できる。まだこれらの材料の異常光
起電力効果を用いた発電手段を使用すると数十ボzlz
 )の電圧が簡単に得られるので有効である。光発電手
段は応答が遅く、すなわち時定数が長くても問題ではな
く、発電効率のよいものが望ましい。
GaP, CdS, ZnS, Z
Photocell piles made of n Se or Cd Te can be used. Still, using power generation means using the extraordinary photovoltaic effect of these materials, it is possible to generate several tens of volts.
) is effective because the voltage can be easily obtained. It is not a problem even if the photovoltaic power generation means has a slow response, that is, a long time constant, and it is desirable that the photovoltaic power generation means has good power generation efficiency.

制御信号は電気信号で伝送することも可能であるが、光
信号で伝送した方が電磁誘導等の影響が少なく有利であ
る。光切替の速度は制御信号検出手段,駆動手段,光切
換手段に支配されるだめ、上記の制御信号検出手段には
十分応答速度の速い、時定数の小さい素子にすることが
望ましい。
Although the control signal can be transmitted as an electrical signal, it is more advantageous to transmit it as an optical signal since it is less affected by electromagnetic induction and the like. Since the speed of light switching is controlled by the control signal detection means, driving means, and light switching means, it is desirable that the control signal detection means be an element with a sufficiently fast response speed and a small time constant.

光発電手段は光を受けて発電する機能が十分であれば、
基板」二または裏面上などに設け、光導波2や分岐3お
よびそれらの端面からもれる光によって発電させること
もできる。制御信号として光を利用している場合、この
光の一部を発電に利用することもできる。さらに、切替
えられる光と、制御信号の光と、発電用の光と、それぞ
れ波長を異らせ、単一の光ファイバで伝送させておいて
、フィルりで再びそれぞれの光の分離することも可能で
、構成が簡素化し有効である。制御信号としてパルスコ
ード化した信号によって、よシ複雑な切替動作をさせる
こともできる。
If the photovoltaic power generating means has a sufficient function of receiving light and generating electricity,
It is also possible to provide it on the substrate 2 or the back surface, and to generate electricity by the light leaking from the optical waveguide 2, the branch 3, and their end faces. When light is used as a control signal, a portion of this light can also be used for power generation. Furthermore, it is also possible to transmit the switching light, the control signal light, and the power generation light at different wavelengths through a single optical fiber, and then separate the lights again by filtering them. It is possible, has a simple configuration, and is effective. More complex switching operations can be performed using pulse-coded signals as control signals.

光切換手段としては、全反射形以外にも導波路結合器形
の構成をとってもよく、同様に本発明を実施例 」二記のような変形変更は当然本発明の範囲に含まれる
ものである。
The optical switching means may have a waveguide coupler type configuration in addition to the total reflection type, and the modifications and changes described in Embodiment 2 of the present invention are naturally included in the scope of the present invention. .

発明の効果 本発明によって、常時光により発電した電力を充電して
おき、切替動作が必要な時に大きな突入電流を供給する
ため、切替の応答速度が大幅に速くなシ、高速動作が可
能になった。遠隔計測,遠隔制御など光による情報通信
シヌテムなどに用途は広い。
Effects of the Invention According to the present invention, electric power generated by light is constantly charged and a large inrush current is supplied when switching operation is required, so the switching response speed is significantly faster and high-speed operation is possible. Ta. It has a wide range of applications, including remote measurement, remote control, and other optical information communication systems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光集積回路を示す概略図、第2図は本発
明の一実施例の光集積回路を示す概要図である。 1・・・・・・基板、2・・・・・・光導波路、4, 
 5,  6。 25+26・・・・・光ファイバ、7・・・・・電極、
21・・・・・・光発電手段、22・・・・・・蓄電手
段、23・・・・・・制御信号検出手段、24・・・・
・・駆動手段。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 ?!22
FIG. 1 is a schematic diagram showing a conventional optical integrated circuit, and FIG. 2 is a schematic diagram showing an optical integrated circuit according to an embodiment of the present invention. 1...substrate, 2...optical waveguide, 4,
5, 6. 25+26...optical fiber, 7...electrode,
21...Photovoltaic power generation means, 22...Electricity storage means, 23...Control signal detection means, 24...
...Driving means. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2? ! 22

Claims (1)

【特許請求の範囲】 (1)光発電手段と、上記光発電手段に電気的に接続し
た蓄電手段と、制御信号検出手段と光切番手段と、上記
光切番手段に接続した駆動手段とを有し、上記制御信号
検出手段の出力信号と、上記蓄電手段に蓄えられた電力
により上記駆動手段が上記光切番手段を駆動することを
特徴とする光集積回路。 (2)光発電手段として、Ge 、 Si iたけこれ
らの混合物またはAl 、 Ga 、 Inのうち少な
くとも1種とP 、 As 、 Sbのうち少なくとも
1種を含む化合物、またはPb 、 Zn 、 Cd 
のうち少なくとも1種とS 、 Se 、 Teのうち
少なくとも1種を含む化合物の単結晶体もしくは薄膜を
用いること全特徴とする特許請求の範囲第1項に記載の
光集積回路。 (3)制御信号として、光信号を用いることを特徴とす
る特許請求の範囲第1項に記載の光集積回路。 (4)制御信号検出手段の時定数が、光発電手段および
蓄電手段を一体とした時定数よりも短いことを特徴とす
る特許請求の範囲第1項に記載の光集積回路。 (6)光発電手段を、光切番手段を構成する基板に一体
化して配置したことを特徴とする特許請求の範囲第1項
に記載の光集積回路。 (6)光切番手段が複数個あり、かつ制御信号が波長の
異なる複数個の光信号からなり、」二記光信号の組合せ
に対応して上記光切番手段を切替えるようにしたこと全
特徴とする特♂1−請求の範囲第1項に記載の光集積回
路。 (ア)符号化した断続信号を用いたること全特徴とする
特許請求の範囲第1項に記載の光集積回路。 (8)制御信号および光発電手段用の光全開−光線路で
伝送することを特徴とする特r1゛請求の範囲第1項に
記載の光集積回路。 (9)駆動手段金相補的金属酸化膜電界効果トランジス
タ(CMO5FICT )を含む回路で構成したことを
特徴とする特許請求の範囲第1項に記載の光集積回路。 (1o)光切替手段により切替られる光と、制御信号と
なる光と、光発電手段に供給される光をそれぞれ異なる
波長として同一光線路で伝送することを特徴とする特許
請求の範囲第1項に記載の光集積回路。 (11)光切替手段として電気光学効果を利用すること
を特徴とする特許請求の範囲第1項に記載の光集積回路
[Scope of Claims] (1) A photovoltaic power generation means, a power storage means electrically connected to the photovoltaic power generation means, a control signal detection means, an optical switching means, and a driving means connected to the optical switching means. an optical integrated circuit, characterized in that the driving means drives the optical switching means using the output signal of the control signal detection means and the electric power stored in the electricity storage means. (2) As a photovoltaic means, Ge, Si, a mixture thereof, or a compound containing at least one of Al, Ga, and In and at least one of P, As, and Sb, or Pb, Zn, and Cd.
The optical integrated circuit according to claim 1, characterized in that a single crystal or a thin film of a compound containing at least one of S, Se, and Te is used. (3) The optical integrated circuit according to claim 1, wherein an optical signal is used as the control signal. (4) The optical integrated circuit according to claim 1, wherein the time constant of the control signal detection means is shorter than the time constant of the integrated photovoltaic means and the power storage means. (6) The optical integrated circuit according to claim 1, characterized in that the photovoltaic power generating means is arranged integrally with a substrate constituting the optical switching means. (6) There is a plurality of optical switching means, and the control signal is composed of a plurality of optical signals with different wavelengths, and the optical switching means is switched in response to the combination of the two optical signals. Characteristic feature ♂1 - The optical integrated circuit according to claim 1. The optical integrated circuit according to claim 1, characterized in that (a) an encoded intermittent signal is used. (8) The optical integrated circuit according to claim 1, characterized in that the control signal and the light for the photovoltaic power generation means are transmitted by a fully open optical line. (9) The optical integrated circuit according to claim 1, characterized in that the driving means is constituted by a circuit including a gold complementary metal oxide field effect transistor (CMO5FICT). (1o) The light switched by the optical switching means, the light serving as a control signal, and the light supplied to the photovoltaic power generation means are transmitted as different wavelengths through the same optical path, respectively. The optical integrated circuit described in . (11) The optical integrated circuit according to claim 1, wherein an electro-optic effect is utilized as the optical switching means.
JP9825183A 1983-06-01 1983-06-01 Optical integrated circuit Pending JPS59222820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9825183A JPS59222820A (en) 1983-06-01 1983-06-01 Optical integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9825183A JPS59222820A (en) 1983-06-01 1983-06-01 Optical integrated circuit

Publications (1)

Publication Number Publication Date
JPS59222820A true JPS59222820A (en) 1984-12-14

Family

ID=14214735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9825183A Pending JPS59222820A (en) 1983-06-01 1983-06-01 Optical integrated circuit

Country Status (1)

Country Link
JP (1) JPS59222820A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4810050A (en) * 1985-05-24 1989-03-07 British Telecommunications Public Limited Company Optical inverter and logic devices using same with buffer limited electrical interface
EP0689067A3 (en) * 1994-06-22 1997-04-09 Fujitsu Ltd Method of producing optical waveguide system, optical device and optical coupler employing the same, optical network and optical circuit board
US5854868A (en) * 1994-06-22 1998-12-29 Fujitsu Limited Optical device and light waveguide integrated circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4810050A (en) * 1985-05-24 1989-03-07 British Telecommunications Public Limited Company Optical inverter and logic devices using same with buffer limited electrical interface
EP0224542B1 (en) * 1985-05-24 1990-12-27 BRITISH TELECOMMUNICATIONS public limited company Optical logic device and assembly
EP0689067A3 (en) * 1994-06-22 1997-04-09 Fujitsu Ltd Method of producing optical waveguide system, optical device and optical coupler employing the same, optical network and optical circuit board
US5854868A (en) * 1994-06-22 1998-12-29 Fujitsu Limited Optical device and light waveguide integrated circuit
US6081632A (en) * 1994-06-22 2000-06-27 Fujitsu Limited Method of producing optical waveguide system, optical device and optical coupler employing the same, optical network and optical circuit board
EP1315006A1 (en) * 1994-06-22 2003-05-28 Fujitsu Limited Method of producing optical waveguide system, optical device and optical coupler employing the same, optical network and optical circuit board

Similar Documents

Publication Publication Date Title
US5237233A (en) Optoelectronic active circuit element
JP2650746B2 (en) Symmetric optical device
EP0359778B1 (en) Optical device
FR2744295A1 (en) CIRCUIT FOR PROTECTING HIGH POWER SWITCHING DEVICES
EP0961183B1 (en) Electronic timepiece
US5130528A (en) Opto-photo-electric switch
EP0265315B1 (en) Integrated bistable electronic switch with a small voltage drop
JPS59222820A (en) Optical integrated circuit
JPS56137533A (en) Optical information processor
EP0393925B1 (en) Method and apparatus for increasing the processing capacity of optical digital processing systems having optically bistable devices
EP0517441B1 (en) Dynamic optical logic
US4972069A (en) Direct generation of ultrafast electrical pulses
US4922091A (en) Direct generation of ultrafast electrical pulses
JPS62502919A (en) Optical logic devices and their combinations
FR2687258A1 (en) DEVICE COMPRISING A PIEZOELECTRIC TRANSDUCER.
Boyd et al. Dynamic optical switching of symmetric self‐electro‐optic effect devices
Gibbs et al. Semiconductor nonlinear etalons
JP2591120B2 (en) Imaging device
JPS6348218B2 (en)
JPH01298920A (en) Small-sized charger
JPS554017A (en) Photo switch
SU1290401A1 (en) Indication element
JPH0846504A (en) Relay
FR2686749A1 (en) Voltage converter
Li et al. Design And Performance Of High-Speed Optically-Addressed Spatial Light Modulators