JPH01298920A - Small-sized charger - Google Patents

Small-sized charger

Info

Publication number
JPH01298920A
JPH01298920A JP63129849A JP12984988A JPH01298920A JP H01298920 A JPH01298920 A JP H01298920A JP 63129849 A JP63129849 A JP 63129849A JP 12984988 A JP12984988 A JP 12984988A JP H01298920 A JPH01298920 A JP H01298920A
Authority
JP
Japan
Prior art keywords
voltage
storage unit
solar cell
terminal
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63129849A
Other languages
Japanese (ja)
Other versions
JP2688212B2 (en
Inventor
Masakazu Ichikawa
雅一 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP63129849A priority Critical patent/JP2688212B2/en
Publication of JPH01298920A publication Critical patent/JPH01298920A/en
Application granted granted Critical
Publication of JP2688212B2 publication Critical patent/JP2688212B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromechanical Clocks (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To early convert the voltage of a storage unit as a stable operating voltage, and to efficiently charge by switching a solar cell to a series or parallel in response to the voltage of the storage unit and the photodetecting condition of the cell. CONSTITUTION:A voltage from a solar cell 1 is output through a solar cell switching controller 20, and supplied by a charge switching circuit 13 to a large capacity storage unit 2 or a small capacity storage unit 3. The switching of the storage unit 2, 3 is controlled by the output of a clock circuit 6. The voltage Of the unit 2 is detected by a voltage detector 12. On the other hand, a circuit for detecting the photodetecting state of the cell is provided in the controller 20, and the solar cells S1-S4 are switched to three types of all parallel, all series and 2-series and 2-parallel connections to be charged in response to the output voltage per one cell and the voltage of the large capacity unit.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、充電スピードをアップするための小型充電装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a compact charging device for increasing charging speed.

〔従来の技術〕[Conventional technology]

従来の小型充電装置を充電式電子時計に用いた場合の説
明を、第6図を用いて行う。第6図は従来の充電式電子
時計のシステムブロック図であり、第6図において、1
は太陽電池ブロックであり、該太陽電池ブロック1は各
太陽電池S1.S、、S8、S4の順に直列接続で構成
されている。又太陽電池S1の子端子は逆流防止ダイオ
ード4のアノード側に接続され、太陽電池S4の一端子
は、グランドに接続されている。2は大容量蓄電部、3
は小容量蓄電部であり、太陽電池ブロック1から発生さ
れた電力を逆流防止ダイオード4を介し蓄電する。5は
時計用ICであり、前記大容量蓄電部2に並列接続され
ている。前記時計用IC5は、時計回路部6、充電切替
え回路16及び電圧検出回路12により構成されている
。前記時計回路部6は、発振回路7、分周回路8、波形
成形回路9及び駆動回路10から成り、該駆動回路10
によりモータ11を駆動する。前記電圧検出回路12は
、前記大容量蓄電部2の電圧■。を入力し、電圧検出信
号■1を出力する。前記充電切替え回路16は、前記分
周回路8の任意の分局信号f1及び電圧検出信号■1を
入力し、前記太陽電池ブロック1の起電力を前記大容量
蓄電部2又は小容量蓄電部6に供給する。以上が従来の
充電式電子時計の構成である。
The case where a conventional small charging device is used in a rechargeable electronic watch will be explained using FIG. Figure 6 is a system block diagram of a conventional rechargeable electronic watch.
is a solar cell block, and the solar cell block 1 includes each solar cell S1. S, , S8, and S4 are connected in series in this order. Further, a child terminal of the solar cell S1 is connected to the anode side of the backflow prevention diode 4, and one terminal of the solar cell S4 is connected to the ground. 2 is a large capacity power storage unit, 3
is a small-capacity power storage unit that stores power generated from the solar cell block 1 via a backflow prevention diode 4. Reference numeral 5 denotes a watch IC, which is connected in parallel to the large-capacity power storage section 2 . The timepiece IC 5 includes a timepiece circuit section 6, a charge switching circuit 16, and a voltage detection circuit 12. The clock circuit section 6 includes an oscillation circuit 7, a frequency dividing circuit 8, a waveform shaping circuit 9, and a drive circuit 10.
The motor 11 is driven by. The voltage detection circuit 12 detects the voltage of the large-capacity power storage unit 2. is input, and voltage detection signal ■1 is output. The charging switching circuit 16 inputs an arbitrary division signal f1 and voltage detection signal (1) of the frequency dividing circuit 8, and transfers the electromotive force of the solar cell block 1 to the large capacity power storage unit 2 or the small capacity power storage unit 6. supply The above is the configuration of the conventional rechargeable electronic watch.

次に従来の充電式電子時計の動作説明をする。Next, we will explain the operation of a conventional rechargeable electronic watch.

前記大容量蓄電部2の電圧■cが、前記時計用IC5の
安定動作電圧Vt、を下回る場合、電圧検出回路12は
Lを出力するため前記充電切替え回路16は、前記分周
信号f、に同期し、端子にと端子A及び、端子にと端子
Bを交互に接続する。
When the voltage (c) of the large-capacity storage unit 2 is lower than the stable operating voltage Vt of the watch IC 5, the voltage detection circuit 12 outputs L, so the charging switching circuit 16 changes the voltage to the divided signal f. Terminal A and terminal B are connected alternately to each other in synchronization.

前記太陽電池ブロック1の起電力は、充電切替え回路1
6の動体に従い、前記大容量蓄電部2及び小容量蓄電部
6に交互に供給される。又、小容量蓄電部3は、容量が
少ないために前記太陽電池ブロック1の起電力が供給さ
れると、瞬時に、安定動作電圧V tl  を上回わる
。又前記時計用IC5は、小容量蓄電部3を電源として
いるために安定した動作が行われる。次に前記太陽電池
ブロック1の起電力により、前記大容量蓄電部2の電圧
■cが安定動作電圧V L、  を上回った場合、前記
電圧検出回路12は、電圧検出信号■、をHとし、前記
充電切替え回路13は、端子Kに端子A及び端子Bを強
制接続する。これにより、前記時計用IC5、小容量蓄
電部3及び大容量蓄電部2は並列接続される。
The electromotive force of the solar cell block 1 is generated by the charging switching circuit 1.
According to the moving object No. 6, the power is alternately supplied to the large capacity power storage unit 2 and the small capacity power storage unit 6. Moreover, since the small capacity electricity storage unit 3 has a small capacity, when the electromotive force of the solar cell block 1 is supplied, the voltage instantly exceeds the stable operating voltage V tl . Moreover, since the watch IC 5 uses the small capacity power storage unit 3 as a power source, stable operation is performed. Next, when the voltage ■c of the large-capacity power storage unit 2 exceeds the stable operating voltage VL, due to the electromotive force of the solar cell block 1, the voltage detection circuit 12 sets the voltage detection signal ■, to H, The charging switching circuit 13 forcibly connects the terminal A and the terminal B to the terminal K. Thereby, the watch IC 5, the small capacity power storage section 3, and the large capacity power storage section 2 are connected in parallel.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のごと〈従来の小型充電装置は、装置が小型である
ため、太陽電池の面積が小さく、起電力も限定されてし
まうという背景の中で充電式電子時計のごと(、直列接
続されたままの太陽電池で大容量蓄電部を充分な電圧レ
ベルに至る迄充電するには長時間かかるため、電子時計
のスタートに時間がかかるという問題があった。
As mentioned above, conventional small charging devices are small, so the solar cell area is small and the electromotive force is limited. Since it takes a long time to charge a large-capacity power storage unit to a sufficient voltage level using a solar cell, there is a problem in that it takes a long time to start an electronic clock.

本発明の目的は、限られた面積の太陽電池で、大容量蓄
電部を効率よく充電し、短時間で充分な電圧を確保する
小型充電装置を提供するものである。
An object of the present invention is to provide a small-sized charging device that efficiently charges a large-capacity power storage unit using a solar cell with a limited area and secures sufficient voltage in a short time.

〔課題を解決するための手段〕[Means to solve the problem]

上記の問題を解決するために、本発明は次の様な構成を
取って(・る。
In order to solve the above problems, the present invention has the following configuration.

即ち本発明における小型充電装置は、複数個の太陽電池
と、該複数個の太陽電池の起電力を蓄えるための蓄電部
と、前記蓄電部の電力を放電させないための逆流防止素
子を有する充電式装置において、前記蓄電の電圧を検出
するための電圧検出回路と、前記太陽電池の受光条件を
検出するための受光条件判別回路と、前記電圧検出回路
と受光条件判別回路の信号により前記太陽電池を直列及
び並列に切替えるための直並列切替え回路を設けた事を
特徴としている。
That is, the small-sized charging device according to the present invention is a rechargeable type having a plurality of solar cells, a power storage unit for storing the electromotive force of the plurality of solar cells, and a backflow prevention element for preventing the power of the power storage unit from being discharged. The device includes a voltage detection circuit for detecting the voltage of the stored electricity, a light reception condition determination circuit for detecting the light reception condition of the solar cell, and a light reception condition determination circuit for detecting the light reception condition determination circuit. It features a series-parallel switching circuit for switching between series and parallel.

〔実施例〕〔Example〕

以下本発明を充電式電子時計に用いた場合の実施例を第
1図〜第5図及び第7図を用いて説明する。
Embodiments in which the present invention is applied to a rechargeable electronic timepiece will be described below with reference to FIGS. 1 to 5 and 7.

第1図は、本発明の全体システムブロック図であり、第
2図は、第1図に示す太陽電池切替え制御部のシステム
ブロック図であり、第3図は、第2図に示す太陽電池切
替え制御部における波形図であり、分周信号f1%クロ
ック信号Pl、波形成形信号P2、ラッチリセット信号
Pg、電圧検出信号■1、リセット信号P4、受光判別
許可信号P、が記載されている。第4図は、太陽電池の
接続状態図である。
FIG. 1 is an overall system block diagram of the present invention, FIG. 2 is a system block diagram of the solar cell switching control section shown in FIG. 1, and FIG. 3 is a system block diagram of the solar cell switching control section shown in FIG. It is a waveform diagram in the control section, and describes a frequency divided signal f1% clock signal Pl, a waveform shaping signal P2, a latch reset signal Pg, a voltage detection signal ■1, a reset signal P4, and a light reception determination permission signal P. FIG. 4 is a diagram showing the connection state of solar cells.

第1図において第6図と同一要素には同一番号を付し説
明を省略する。第1図において、前記太陽電池ブロック
1の各太陽電池S8.S、 、S3、S4の接続は次の
様である。太陽電池S1の子端子は、太陽電池切替え制
御部20(以下、制御部20と記述する)のS端子及び
前記逆流防止ダイオード4のアノード側に制御され、一
端子は前記制御部200T、端子に接続されている。太
陽電池S2の子端子は制御部200T2端子、一端子は
制御部200T3端子、太陽電池乙の子端子は制御部2
00T4端子、一端子は別命1部2oのT、端子にそれ
ぞれ接続されており、太陽電池S4の子端子は制御部2
00T6端子、一端子はグランドに接続されている。前
記制伍部2oは、前記分周回路8の分周信号f1、前記
波形成形回路9のクロック信号P1、波形成形信号P2
、ラッチリセット信号P、及び前記電1圧検出回路12
の電圧検出信号v8、第2電圧検出信号■2を入力し、
前記各太陽電池S1、S2、S3、S4を直並列に切替
える。又、G端子はグランドに接続されている。以上が
全体のシステムブロック図の構成である。
In FIG. 1, the same elements as those in FIG. 6 are given the same numbers and their explanations will be omitted. In FIG. 1, each solar cell S8. of the solar cell block 1 is shown. The connections of S, , S3, and S4 are as follows. The child terminal of the solar cell S1 is controlled by the S terminal of the solar cell switching control section 20 (hereinafter referred to as control section 20) and the anode side of the backflow prevention diode 4, and one terminal is connected to the control section 200T, the terminal. It is connected. The child terminal of solar cell S2 is the control unit 200T2 terminal, one terminal is the control unit 200T3 terminal, and the child terminal of solar cell B is the control unit 2 terminal.
The 00T4 terminal and one terminal are respectively connected to the T and terminals of Separate Order 1 Part 2o, and the child terminal of the solar cell S4 is connected to the control part 2.
The 00T6 terminal and one terminal are connected to ground. The control unit 2o receives the frequency divided signal f1 of the frequency dividing circuit 8, the clock signal P1 of the waveform shaping circuit 9, and the waveform shaping signal P2.
, latch reset signal P, and the voltage 1 voltage detection circuit 12
Input the voltage detection signal v8 and the second voltage detection signal ■2,
The solar cells S1, S2, S3, and S4 are switched in series and parallel. Further, the G terminal is connected to ground. The above is the configuration of the entire system block diagram.

次に第2図を用いて、前記制御部20の構成を説明する
。制御部20は、前記太陽電池S1、S2 、Ss 、
S4の直並列切替え機能と、太陽電池受光条件判別機能
を有し、破線部分は太陽電池受光条件判別回路29であ
り、太陽電池直並列切替え機能を兼用している。
Next, the configuration of the control section 20 will be explained using FIG. 2. The control unit 20 controls the solar cells S1, S2, Ss,
It has a series/parallel switching function of S4 and a solar cell light reception condition determination function, and the broken line portion is a solar cell light reception condition determination circuit 29, which also serves as the solar cell series/parallel switching function.

21は2人力ORゲートであり、一方は前記電圧検出信
号■、が入力され、もう一方は前記分周信号f、が入力
され、リセット信号P4を出力する。22は2人力OR
ゲートであり、一方は電圧検出信号■1、もう一方は波
形成形信号P2が入力され、受光判別許可信号P、を出
力している。
21 is a two-man OR gate, one of which receives the voltage detection signal (2), the other receives the frequency division signal (f), and outputs a reset signal P4. 22 is a two-person OR
The gate is a gate, and the voltage detection signal 1 is inputted to one side, and the waveform shaping signal P2 is inputted to the other side, and a light reception discrimination permission signal P is outputted.

23.24はデータタイプフリップフロップ(以下D−
FFと記述する)であり、該D−FF23.24のクロ
ック入力端子Ck、 、 Ck、には前記クロック信号
P1が入力されリセット入力端子R1、R2には前記リ
セット信号P4が入力されている。
23.24 is a data type flip-flop (hereinafter D-
The clock signal P1 is input to the clock input terminals Ck, , Ck of the D-FF 23.24, and the reset signal P4 is input to the reset input terminals R1 and R2.

又前記D−FF23のデータ入力端子D1には、前記第
2電圧検出信号■、が入力され、第2電圧検出同期信号
v2が出力される。又前記r)−FF24のデータ入力
端子1″)2には、受光判別信号■、を入力し、受光判
別同期信号■3を出力する。
Further, the second voltage detection signal (2) is input to the data input terminal D1 of the D-FF 23, and the second voltage detection synchronization signal v2 is output. Further, the light reception determination signal (2) is inputted to the data input terminal 1'')2 of the r)-FF 24, and the light reception determination synchronization signal (3) is output.

25はデコーダであり、第2電圧検出同期信号スミッシ
ョンゲート制御信号A、B%C,Dを出力する。27は
セット、リセットラッチ(以下SR−ラッチ)であり、
セット入力端子Sには、バクファーゲート26(以下B
UFと記述する)を介し起電圧■が入力され、リセット
端子Rには、前記ラッチリセット信号P3が入力され、
前記受光判別信号V、を出力する。
A decoder 25 outputs second voltage detection synchronization signals transmission gate control signals A, B%C, and D. 27 is a set/reset latch (hereinafter referred to as SR-latch);
A buffer gate 26 (hereinafter referred to as B) is connected to the set input terminal S.
The electromotive force ■ is inputted through the terminal R (denoted as UF), and the latch reset signal P3 is inputted to the reset terminal R.
The light reception determination signal V is output.

60〜40はトランスミッションゲートであり、(以下
TGと記述する)該TG30〜40はコントロール信号
がHの時ONとなる。又TG30.32のコントロール
端子は前記デコーダ25の0、端子に、TG34.37
のコントロール端子は前記デコーダ25の02端子に、
TG31は前記デコーダ25の0.端子に、TG33.
35.66.38のコントロール端子は前記デコーダ2
5の04端子に接続されている。又、TG40のコント
ロール端子は前記受光判別許可信号P。
Reference numerals 60 to 40 are transmission gates, and the TGs 30 to 40 (hereinafter referred to as TG) are turned ON when the control signal is H. Also, the control terminal of TG30.32 is connected to the 0 terminal of the decoder 25, and the control terminal of TG34.37 is connected to the 0 terminal of the decoder 25.
The control terminal is connected to the 02 terminal of the decoder 25,
TG31 is 0.0 of the decoder 25. At the terminal, TG33.
The control terminals of 35, 66, and 38 are connected to the decoder 2.
It is connected to the 04 terminal of 5. Further, the control terminal of the TG 40 receives the light reception determination permission signal P.

が入力され、TG39のコントロール端子はインバータ
28を介し受光判別許可信号P、が入力されている。
is input, and a light reception determination permission signal P is input to the control terminal of the TG 39 via the inverter 28.

前記TG30の入出力端子の一方は前記端子T、に、も
う一方は端子T2に、前記TG310入力端子の一方は
前記端子T3に、もう一方は端子T4に、鋪記TG32
の入出力端子の一方は前記端子T、に、もう一方を前記
TG40及びTG35の入出力端子に接続されている。
One of the input/output terminals of the TG30 is connected to the terminal T, the other is connected to the terminal T2, one of the input terminals of the TG310 is connected to the terminal T3, and the other is connected to the terminal T4.
One of its input/output terminals is connected to the terminal T, and the other is connected to the input/output terminals of the TG40 and TG35.

TG35のもう一方の入出力端子は、前記端子Sに接続
されている。前記TG40のもう一方の入出力端子は前
記端子T6及びTG39の入出力端子は、該TG39の
もう一方の入出力端子は抵抗Rを介し前記端子G及び前
記BUF26の入力部に接続されている。前記TG33
.64の一方の入力端子は前記端子T2及びT4に、も
う一方は共通で前記端子Sに接続されている。前記TG
36.TG37、TG?)8の一方の入出力端子は前記
端子T、 、T、及びT、に、もう一方は共通で前記G
端子に接続されている。
The other input/output terminal of the TG 35 is connected to the terminal S. The other input/output terminal of the TG 40 is connected to the terminal G and the input part of the BUF 26 via a resistor R. Said TG33
.. One input terminal of 64 is connected to the terminals T2 and T4, and the other input terminal is commonly connected to the terminal S. Said TG
36. TG37, TG? )8, one input/output terminal is connected to the terminals T, , T, and T, and the other is common to the terminal G.
connected to the terminal.

次に、上記構成を有する充電式電子時計の動作説明をす
る。
Next, the operation of the rechargeable electronic timepiece having the above configuration will be explained.

前記電圧検出回路12の第2電圧検出信号■2とは、前
記太陽電池S、〜S4がすべて並列接続された時つまり
太陽電池1段分での起電力にまり前記大容量蓄電部2が
上りうる限界電圧VL、を検出すると出力されるもので
あり、検出されると第2電圧検出信号■2はHとなる。
The second voltage detection signal (2) of the voltage detection circuit 12 is a signal generated when the solar cells S, to S4 are all connected in parallel, that is, when the large-capacity power storage unit 2 rises due to the electromotive force of one stage of solar cells. It is output when the limit voltage VL is detected, and when detected, the second voltage detection signal 2 becomes H.

又、前記限界電圧Vi2は、前記時計用IC5の安定動
作電圧■1より低い電圧レベルである。(第5図参照)
電圧検出係号■1がLの場合、前記大容量蓄電部2及び
小容量蓄電部6に交互に充電を行う。第3図に示す1.
領域がそれである。又第3図の■領域は前記大容量蓄電
部2、■領域は前記小容量蓄電部3に分局信号f、に同
期し充電される。該小容量蓄電部6充電中は、前記リセ
ット信号P4はHとなり、前記D−FF23.24は強
制リセットされ、前記第2電圧検出同期信号■2、受光
と(条件〔1〕が選ばれる。又それにより、太陽電池接
続条件は第4図(ハ)が選ばれ、前記太陽電池S、〜S
4はすべて直列接続される。
Further, the limit voltage Vi2 is at a voltage level lower than the stable operating voltage 1 of the timepiece IC 5. (See Figure 5)
When the voltage detection coefficient (1) is L, the large-capacity power storage unit 2 and the small-capacity power storage unit 6 are charged alternately. 1 shown in Figure 3.
That's the area. In addition, in FIG. 3, the large-capacity power storage unit 2 is charged in the region (■), and the small-capacity power storage unit 3 is charged in the region (2) in synchronization with the branch signal f. While the small capacity power storage unit 6 is being charged, the reset signal P4 becomes H, the D-FFs 23 and 24 are forcibly reset, and the second voltage detection synchronization signal (2) and light reception (condition [1]) are selected. Accordingly, the solar cell connection conditions shown in FIG. 4 (c) are selected, and the solar cells S, ~S
4 are all connected in series.

又、前記太陽電池ブロック1の受光条件判別は、第3図
に示す■領域で行われる。前記受光判別許可信号P、が
Lになると、第2図に示す様に、いままでとは逆KTG
40はOFF、TG39はONt前記太陽電池S4は、
抵抗Rの閉ループ状態になる。太陽電池S4に充分な光
が照射されている場合のみ抵抗RKは、充分な起電圧■
が発生し、前記SR−ラッチにセットをかけ、前記受光
判別信号■、がHとなる。又、前記大容量蓄電部2の充
電つまり第3図の領域を過ぎた後再び■領域に入ると、
前記ラッチリセット信号P3が出力され、前記SR−ラ
ッチ27はリセットされ、受光判別信号■3はLになる
Further, the determination of the light receiving conditions of the solar cell block 1 is performed in the region (■) shown in FIG. When the light reception discrimination permission signal P becomes L, as shown in FIG.
40 is OFF, TG39 is ON, and the solar cell S4 is
The resistance R becomes a closed loop state. Only when solar cell S4 is irradiated with sufficient light, resistor RK will generate sufficient electromotive force ■
is generated, the SR-latch is set, and the light reception determination signal (2) becomes H. Moreover, when the large capacity storage unit 2 is charged, that is, after passing through the area shown in FIG. 3 and entering the area ■ again,
The latch reset signal P3 is output, the SR-latch 27 is reset, and the light reception determination signal 3 becomes L.

次に、第3図■領域つまり大容量蓄電部2の充電の説明
をする。第3図に示す様に、前記リセット信号P4は、
Lであるために、前記D−FF23.24は、前記クロ
ック信号P、に従い、第2電圧検出信号■2及び受光判
別信号■、を入力し、第4図(イ)、(ロ)、ビ→に示
す太陽電池接続条件により、前記大容量蓄電部2の充電
を行う。
Next, the charging of the large-capacity power storage unit 2 in the area (■) of FIG. 3 will be explained. As shown in FIG. 3, the reset signal P4 is
Therefore, the D-FF 23.24 inputs the second voltage detection signal (2) and the light reception determination signal (2) according to the clock signal P, and the signals shown in FIGS. The large-capacity power storage unit 2 is charged under the solar cell connection conditions shown in →.

次に第2電圧検出信号■2と受光判別信号v3の条件に
よる太陽電池の接続法の説明を第4図及び第7図を用い
て行う。
Next, a solar cell connection method based on the conditions of the second voltage detection signal (2) and the light reception determination signal (v3) will be explained with reference to FIGS. 4 and 7.

前記大容量蓄電部2が前記限界電圧vL2を越えず、又
前記太陽電池ブロック1に充分な光が照射されていない
場合と、前記大容量蓄電部2が限界電圧vt、を越えた
が、太陽電池ブロック1に充分な光が照射されない場合
つまり第7図のごとく、条件〔1〕及び〔3〕の場合、
太陽電池の接続条件は、第4図ビ1が選択され、前記太
陽電池S1〜S4は直列接続される。
In the case where the large-capacity power storage unit 2 does not exceed the limit voltage vL2 and the solar cell block 1 is not irradiated with sufficient light, and in the case where the large-capacity power storage unit 2 exceeds the limit voltage vt, In the case where the battery block 1 is not irradiated with sufficient light, that is, in the case of conditions [1] and [3] as shown in Fig. 7,
As for the connection condition of the solar cells, Fig. 4B1 is selected, and the solar cells S1 to S4 are connected in series.

次に前記大容量蓄電部2が限界電圧Vc、を越えていな
いが、前記太陽電池ブロック1に充分な光が照射されて
いた場合つまり第7図の条件〔2〕の場合、太陽電池接
続条件は、第4図(イ)が選択され、前記太陽電池S、
〜S4はすべて並列接続される。
Next, in the case where the large-capacity power storage unit 2 does not exceed the limit voltage Vc, but the solar cell block 1 is irradiated with sufficient light, that is, in the case of condition [2] in FIG. 7, the solar cell connection condition 4(a) is selected, and the solar cell S,
~S4 are all connected in parallel.

次に前記大容量蓄電部2が限界電圧Vt、を越えかつ、
前記太陽電池ブロック1に充分な光が照射されている場
合つまり第7図の条件〔4〕が選択された場合太陽電池
接続条件は第4図(ロ)になり、前期太陽電池S、、S
、及びS3.84プロ、りの並列接続になる。
Next, the large-capacity power storage unit 2 exceeds the limit voltage Vt, and
When the solar cell block 1 is irradiated with sufficient light, that is, when condition [4] in FIG. 7 is selected, the solar cell connection condition becomes as shown in FIG.
, and S3.84 Pro are connected in parallel.

次に前記大容量蓄電部2が安定動作電圧Vt、を越えた
場合について説明する。第3図のt、領域であり、前記
受光判別許可信号P、はHを継続し、れる。又前記リセ
ット信号P4はHであるために前記D−FF26.24
は強制リセットされ、前記太陽電池ブロックに光が充分
照射があるかないかにかかわらず第7図の条件〔5〕が
選択され、太陽電池接続条件は第4図(ハ)Kなり前記
太@電池81〜S4はすべて直列接続される。
Next, a case will be described in which the large-capacity power storage unit 2 exceeds the stable operating voltage Vt. In the region t in FIG. 3, the light reception determination permission signal P continues to be H. Also, since the reset signal P4 is H, the D-FF26.24
is forcibly reset, and the condition [5] in Fig. 7 is selected regardless of whether the solar cell block is sufficiently irradiated with light or not, and the solar cell connection condition becomes K in Fig. 4 (c) and the thick @ battery 81 ~S4 are all connected in series.

又、一定光景下における前記大容量蓄電部2の充電電圧
特性は、第5図のとと(なる。■・は本発明の回路によ
る充電電圧特性、vcは従来の充電電圧特性である。
Further, the charging voltage characteristics of the large-capacity power storage unit 2 under a certain scene are as shown in FIG.

電圧特性■eは、前記蓄電部2が07から限界電圧vL
2の間では太陽電池の接続条件は第4図(イ)で充電を
行い、該限界電圧v12と安定動作電圧vt3の間では
太陽電池の接続条件は第4図(ロ)で充電を行い、前記
蓄電部2の電圧V。が安定動作電圧vt、を越えた場合
の太陽電池の接続条件は第4図?iで充電が行なわれる
Voltage characteristic ■e indicates that the power storage unit 2 has a limit voltage vL from 07 to
2, the solar cell connection conditions are as shown in FIG. 4 (a), and between the limit voltage v12 and stable operating voltage vt3, the solar cell connection conditions are as shown in FIG. 4 (b), and charging is performed as shown in FIG. Voltage V of the power storage unit 2. Figure 4 shows the connection conditions for solar cells when VT exceeds the stable operating voltage VT. Charging is performed with i.

以上が本発明の実施例の動作説明である。The above is an explanation of the operation of the embodiment of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかな様に、本発明によれば、複数個の
太陽電池と、該複数個の太陽電池の起電力を蓄えるため
の蓄電部と、前記蓄電部を有する充電装置において、前
記蓄電部の電圧を検出するための電圧検出回路と、前記
太陽電池の受光条件を検出するための受光条件判別回路
と、前記電圧検出回路と受光条件判別回路の信号により
前記太陽電池を直列及び並列に切替えるための直並列切
替え回路を設ける事で、大容量蓄電部の充電電圧Voが
安定動作電圧VL、に至るまでの時間が、従来の大容量
蓄電部の充電電圧■cに比べて1/3の時間で済み、大
容量蓄電部を効率よ(充電する事が可能となった。
As is clear from the above description, according to the present invention, in a charging device having a plurality of solar cells, a power storage unit for storing electromotive force of the plurality of solar cells, and the power storage unit, the power storage a voltage detection circuit for detecting the voltage of the solar cell; a light receiving condition determining circuit for detecting the light receiving condition of the solar cell; and a voltage detecting circuit for detecting the light receiving condition of the solar cell; and a light receiving condition determining circuit for connecting the solar cells in series and parallel by signals from the voltage detecting circuit and the light receiving condition determining circuit. By providing a series-parallel switching circuit for switching, the time it takes for the charging voltage Vo of the large-capacity storage unit to reach the stable operating voltage VL is reduced to 1/3 compared to the charging voltage ■c of a conventional large-capacity storage unit. , and it is now possible to efficiently charge a large-capacity power storage unit.

【図面の簡単な説明】 第1図は本発明の充電式電子時計のシステムブロック図
、第2図は第1図に示す太陽電池切替え制御部のシステ
ムブロック図、第3図は第2図における太陽電池切替え
制御部の各信号の波形図、第4藷浮(陽電池接続状態図
、第5図は一定光量での大容量蓄電部の充電特性図、第
6図は従来技術の充電式電子時計のシステムブロック図
、第7図は本発明におけるトランスミッションゲート0
N−OFF及び太陽電池接続条件対応図である。 12・・・・・・電圧検出回路、 16・・・・・・充電切替え回路、 20・・・・・・太陽電池切替え制御部、29・・・・
・・受光条件判別回路。 ;  ご  ご  Cジ  ど  と゛(ロ) 第 5 図
[Brief Description of the Drawings] Fig. 1 is a system block diagram of the rechargeable electronic watch of the present invention, Fig. 2 is a system block diagram of the solar cell switching control section shown in Fig. 1, and Fig. 3 is a system block diagram of the solar cell switching control section shown in Fig. 2. Waveform diagram of each signal of the solar battery switching control unit, Figure 4 is a diagram of the solar battery connection state, Figure 5 is a charging characteristic diagram of a large-capacity power storage unit at a constant light intensity, Figure 6 is a diagram of the conventional rechargeable electronic The system block diagram of the watch, FIG. 7, is the transmission gate 0 in the present invention.
It is a correspondence diagram of N-OFF and solar cell connection conditions. 12...Voltage detection circuit, 16...Charging switching circuit, 20...Solar cell switching control section, 29...
...Light receiving condition determination circuit. Figure 5

Claims (1)

【特許請求の範囲】[Claims] 複数個の太陽電池と、該複数個の太陽電池の起電力を蓄
えるための蓄電部を有する充電装置において、前記蓄電
部の電圧を検出するための電圧検出回路と、前記太陽電
池の受光条件を検出するための受光条件判別回路と、前
記電圧検出回路と受光条件判別回路の信号により前記太
陽電池を直列及び並列に切替えるための直並列切替え回
路を設けたことを特徴とする小型充電装置。
A charging device having a plurality of solar cells and a power storage unit for storing electromotive force of the plurality of solar cells, a voltage detection circuit for detecting the voltage of the power storage unit, and a light receiving condition of the solar cells. A small charging device characterized in that it is provided with a light reception condition determination circuit for detection, and a series/parallel switching circuit for switching the solar cells between series and parallel based on signals from the voltage detection circuit and the light reception condition determination circuit.
JP63129849A 1988-05-27 1988-05-27 Small charging device Expired - Fee Related JP2688212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63129849A JP2688212B2 (en) 1988-05-27 1988-05-27 Small charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63129849A JP2688212B2 (en) 1988-05-27 1988-05-27 Small charging device

Publications (2)

Publication Number Publication Date
JPH01298920A true JPH01298920A (en) 1989-12-01
JP2688212B2 JP2688212B2 (en) 1997-12-08

Family

ID=15019765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63129849A Expired - Fee Related JP2688212B2 (en) 1988-05-27 1988-05-27 Small charging device

Country Status (1)

Country Link
JP (1) JP2688212B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1950873A1 (en) * 2007-01-29 2008-07-30 Tendris Holding BV Apparatus comprising low voltage power source
JP2010276611A (en) * 2010-07-26 2010-12-09 Citizen Holdings Co Ltd Electronic clock with solar cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100403620C (en) * 2006-11-30 2008-07-16 北京恒基伟业投资发展有限公司 A method and device for using photovoltaic battery self-adapted serial and parallel charging

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133094A (en) * 1978-04-07 1979-10-16 Canon Inc Power supply system using solar cells
JPS58198125A (en) * 1982-05-15 1983-11-18 松下電工株式会社 Charging system by solar battery
JPS61277081A (en) * 1985-05-31 1986-12-08 Seiko Epson Corp Solar cell timepiece

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133094A (en) * 1978-04-07 1979-10-16 Canon Inc Power supply system using solar cells
JPS58198125A (en) * 1982-05-15 1983-11-18 松下電工株式会社 Charging system by solar battery
JPS61277081A (en) * 1985-05-31 1986-12-08 Seiko Epson Corp Solar cell timepiece

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1950873A1 (en) * 2007-01-29 2008-07-30 Tendris Holding BV Apparatus comprising low voltage power source
WO2008092870A2 (en) * 2007-01-29 2008-08-07 Tendris Solutions B.V. Apparatus comprising low voltage power source
WO2008092870A3 (en) * 2007-01-29 2008-10-30 Tendris Holding B V Apparatus comprising low voltage power source
JP2010276611A (en) * 2010-07-26 2010-12-09 Citizen Holdings Co Ltd Electronic clock with solar cell

Also Published As

Publication number Publication date
JP2688212B2 (en) 1997-12-08

Similar Documents

Publication Publication Date Title
EP0550620A4 (en)
US4434395A (en) Solar cell power supply circuit
JPH01298920A (en) Small-sized charger
US20010038276A1 (en) Device for charging a starting battery in a vehicle
JPS58123330A (en) Power source for solar battery
KR20180114321A (en) System for controlling a switching device
US6194876B1 (en) Power generating system
JP3292593B2 (en) Power supply using solar cells
JP3408062B2 (en) Method and device for charging secondary battery
JPH07170675A (en) Power supply circuit of camera using solar cell
JPH0429077A (en) Controller for battery
JPH11295449A (en) Electronic clock with generation device
JPH0326025B2 (en)
JPS62126835A (en) Electric source apparatus
JPH043560Y2 (en)
JPH0450549B2 (en)
KR920007740Y1 (en) Circuit detecting fullcharging battery
CN116533784A (en) Mobile energy storage charging equipment of new energy automobile
JP3675060B2 (en) Power supply device, power generation device and electronic device
JPS63228930A (en) Battery charging controller for solar cell
JPH0695812B2 (en) Charger
JP2001037077A (en) Capacitor power source
JPS62191839A (en) Heavy load controlling system
JPH0431801Y2 (en)
JPH0450550B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees