JPS59222753A - Measuring apparatus using microorganism electrode - Google Patents

Measuring apparatus using microorganism electrode

Info

Publication number
JPS59222753A
JPS59222753A JP58098696A JP9869683A JPS59222753A JP S59222753 A JPS59222753 A JP S59222753A JP 58098696 A JP58098696 A JP 58098696A JP 9869683 A JP9869683 A JP 9869683A JP S59222753 A JPS59222753 A JP S59222753A
Authority
JP
Japan
Prior art keywords
liquid
electrode
microbial
measurement
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58098696A
Other languages
Japanese (ja)
Inventor
Yoshiaki Otani
大谷 芳亨
Kenichiro Harita
張田 健一郎
Naoyuki Nagashio
長塩 尚之
Naomi Murase
村瀬 直美
Motohiko Hikima
引馬 基彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Nissin Electric Co Ltd
Original Assignee
Ajinomoto Co Inc
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc, Nissin Electric Co Ltd filed Critical Ajinomoto Co Inc
Priority to JP58098696A priority Critical patent/JPS59222753A/en
Publication of JPS59222753A publication Critical patent/JPS59222753A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To enable measurement for a long time by washing a microorganism electrode with a washing liquid which is prepared at pH of 2-5 while a substance blocking the growth of bacteria, none of leaven is added thereto. CONSTITUTION:A microorganism electrode 2 is made up of a diaphragm type oxygen electrode 3 and a microorganism membrane 4. Then, a buffer liquid B such as phosphoric acid buffer liquid is fed to a measuring cell 5 with a pump 9 while a washing liquid N thereto 5 through a changeover valve 13 and the pump 9. Here, the washing liquid N is prepared at pH 2-5 by adding hydrochroric acid slightly to a tap water and also, a substance blocking growth of bacteria none of leavens. Then, the changeover valve 13 is switched over to feed a sample liquid S such as factory liquor through a sampling pump 10 and a filter 18 in place of the washing liquid N and BOD of the sample liquid S is measured with the microorganism electrode 2. When a specified time is reached, the changeover valve 13 is switched over to feed standard liquids C1, C2 and C3 for calibration.

Description

【発明の詳細な説明】 この発明は、隔膜式酸素電極と酵母を用いた微生物膜と
を組合せてなる微生物電極を用いて、溶液中の酢酸、ア
ンモニア物質あるいはBOD等を測定する測定装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a measuring device for measuring acetic acid, ammonia substances, BOD, etc. in a solution using a microbial electrode formed by combining a diaphragm-type oxygen electrode and a microbial membrane using yeast.

微生物電極を用いた従来の?1!I定装置としては、た
とえば特開昭54−47699号や特開昭56−108
951号において開示されている装置がある。
Conventional using microbial electrodes? 1! Examples of I-determining devices include, for example, JP-A-54-47699 and JP-A-56-108.
There is an apparatus disclosed in No. 951.

ところが上記のような装置を長期間使用していると微生
物電極からの出力が低下してくる現象がみられ、これに
より正常な測定が妨げられるおそれがある。
However, when such a device as described above is used for a long period of time, a phenomenon is observed in which the output from the microbial electrode decreases, which may prevent normal measurement.

この発明の発明者らは、上記事情に鑑みて鋭意研究をす
すめた結果、試料液中の油分、懸淘物質などが流路用配
管および微生物膜表面に付着したり、生物性スライムが
流路用配管および膜表面に生成したりして、それが流路
内で被測定物質の濃度をさげたり酸素電極への酸素の流
通を妨げたりするのが上記現象の一因であることを見出
した。
In view of the above circumstances, the inventors of this invention conducted intensive research and found that oil, suspended substances, etc. in the sample liquid adhered to the flow path piping and the surface of the microbial membrane, and that biological slime was found in the flow path. It was found that one of the causes of the above phenomenon is that oxygen is generated on the pipes and membrane surfaces, reducing the concentration of the substance to be measured in the flow path and blocking the flow of oxygen to the oxygen electrode. .

この発明は、上記知見に基いてなされたものであって、
生物性スライム等が流路用配管および微生物膜表面に付
着するのを防止する手段を具備することにより上記現象
の発生を抑制可能とした測定装置を提供するものである
This invention was made based on the above findings, and
The object of the present invention is to provide a measuring device that can suppress the occurrence of the above phenomenon by being equipped with means for preventing biological slime and the like from adhering to the flow path piping and the surface of the microbial membrane.

すなわち、この発明は、隔膜式酸素電極と酵母を用いた
微生物膜とを組合せてなる微生物電極、液入口と液出口
とを有しかつそれらの間を流れる液が前記微生物膜に接
しうるよう前記微生物電極に対し配置された測定セル、
その測定セルに緩衝液を供給する緩衝液供給手段、前記
測定セルに被測定液を供給する被測定液供給手段、前記
測定セルに空気を供給する空気供給手段および前記測定
槽に洗浄液を供給する洗浄液供給手段を具備してなり、
前記洗浄液がpH2〜5に調製されかつ酵母の育生を阻
害しない細菌の育生阻害物質を添加されてなる微生物電
極を用いた測定装置を提供する。
That is, the present invention has a microbial electrode formed by combining a diaphragm-type oxygen electrode and a microbial membrane using yeast, a liquid inlet and a liquid outlet, and a liquid flowing between them so that the liquid can come into contact with the microbial membrane. a measuring cell placed relative to the microbial electrode;
A buffer solution supply means for supplying a buffer solution to the measurement cell, a measurement liquid supply means for supplying a measurement liquid to the measurement cell, an air supply means for supplying air to the measurement cell, and a cleaning liquid to the measurement tank. It is equipped with a cleaning liquid supply means,
A measuring device using a microorganism electrode is provided, in which the cleaning liquid is adjusted to pH 2 to 5 and added with a bacterial growth inhibitory substance that does not inhibit the growth of yeast.

上記細菌の育生阻害物質としては、クロラムフェニコー
ル、ペニシリン、ネオマイシン、オーレオマイシン、ス
トレプトマイシンなどの抗生物質を挙げることができる
Examples of the above-mentioned bacterial growth inhibitor include antibiotics such as chloramphenicol, penicillin, neomycin, aureomycin, and streptomycin.

以下、図に示す実施例に基いて、さらに詳説する。A more detailed explanation will be given below based on the embodiment shown in the figures.

第1図に示す(1)は、BOD連続測定装置であ一す、
この発明の微生物電極を用いた測定装置の一実施例であ
る。
(1) shown in Figure 1 is a BOD continuous measuring device.
This is an example of a measuring device using the microbial electrode of the present invention.

(2)は微生物電極で、隔膜式酸素電極(3)と微生物
膜(4)とを組合せてなる公知の構成である。
(2) is a microbial electrode, which has a known configuration consisting of a combination of a diaphragm-type oxygen electrode (3) and a microbial membrane (4).

微生物電極(2)の下部には測定セル(5)が取り付け
られており、測定セル(5)の液入口(5a)から流入
して液出口(5b)へ流出する液が微生物膜(4)と接
しつるようになっている。液が微生物膜(4)に効果的
に接するように、液入口(5a)は液出口(5b)より
下の段ちがいの位置に設けである。
A measuring cell (5) is attached to the lower part of the microbial electrode (2), and the liquid that flows in from the liquid inlet (5a) of the measuring cell (5) and flows out to the liquid outlet (5b) forms a microbial membrane (4). It has come to be in contact with The liquid inlet (5a) is located at a different level below the liquid outlet (5b) so that the liquid can effectively contact the microbial membrane (4).

これら微生物電極(2)および測定セル(5)は、恒温
水槽(6)中で所定温度(たとえば30℃)に保たれて
いる。(7)は、コイル状の流路で、この中を通過する
間に液がほぼ所定温度となるよう長さが定められている
These microbial electrode (2) and measurement cell (5) are maintained at a predetermined temperature (for example, 30° C.) in a constant temperature water bath (6). (7) is a coil-shaped flow path whose length is determined so that the liquid reaches approximately a predetermined temperature while passing through the flow path.

(8)はマイクロコンピュータのごとき制御回路で、予
め設定された手順に従って緩衝液ノ)、試料液(S)、
8?i準液(C□)〜(C3)、洗浄液□□□および空
気を測定セル(5)に供給すべく、ポンプ(9)+10
1 、エアポンプθ匂および切換バルブθ匂を制御する
。また微生物電極(2)の出力電流に基いてBOD値の
算出を行う。
(8) is a control circuit such as a microcomputer, and according to a preset procedure, the buffer solution (S), sample solution (S),
8? i Pump (9) + 10 to supply semi-liquids (C□) to (C3), cleaning liquid □□□ and air to the measurement cell (5)
1. Control the air pump θ and switching valve θ. Further, the BOD value is calculated based on the output current of the microbial electrode (2).

洗浄液■は、上水道水に塩酸をわずかに加えてpH8程
度に調製し、かつ抗生物質を添加したものである。
Cleaning solution (2) is made by adding a slight amount of hydrochloric acid to tap water to adjust the pH to about 8, and adding an antibiotic.

次に動作を説明すると、まずリン酸緩衝液(o、oiM
、pH7)のごとき緩衝液lB)がローラーポンプ(9
)によって測定セル(5)に供給され、かつ洗浄液■が
切換バルブ(13)およびローラーポンプ(9)を介し
て測定セル(5)に供給される。また常時エアポンプ(
+2)から空気が供給される。緩衝液03)の流量はた
とえば0.8mt’/分、洗浄液□の流量はたとえば1
.2−7分、空気流量はたとえば800m11分である
Next, to explain the operation, first, phosphate buffer (o, oiM
, pH 7) is added to the roller pump (9).
) is supplied to the measuring cell (5) via the switching valve (13) and the roller pump (9), and cleaning liquid (1) is supplied to the measuring cell (5) via the switching valve (13) and the roller pump (9). Also, a constant air pump (
Air is supplied from +2). The flow rate of the buffer solution 03) is, for example, 0.8 mt'/min, and the flow rate of the washing solution □ is, for example, 1
.. 2-7 minutes, the air flow rate is, for example, 800 m11 minutes.

このとき微生物電極(2)の出力電流はベースライン値
を与える。
At this time, the output current of the microbial electrode (2) provides a baseline value.

試料測定時には、切換バルブ(1階が切換えられて、洗
浄液(財)の代りに工場廃水のごとき試料液(S)が採
取ポンプ(10)およびフィルタθ〜を介して供給され
る。
At the time of sample measurement, the switching valve (1st floor) is switched and a sample liquid (S) such as factory wastewater is supplied via the collection pump (10) and the filter θ~ instead of the cleaning liquid.

緩衝液の)の供給などは前と同様である。微生物電極(
2)の出力電流は、試料液(S)のBODに比例した減
少値を示す。
Supply of buffer solution, etc. is the same as before. Microbial electrode (
The output current of 2) shows a decreasing value proportional to the BOD of the sample solution (S).

上記のように測定セル(5)に試料液(S)を供給する
のはたとえば30分毎に5分間くらい行われ、他の時間
は洗浄液Nが供給される。
As mentioned above, the sample liquid (S) is supplied to the measurement cell (5) for about 5 minutes every 30 minutes, and the cleaning liquid N is supplied at other times.

所定の校正設定時刻になると、切換バルブθ濁が切換え
られて、洗浄液軸の代りに標準液(C1)、 (C8,
)、 (C3)が測定セル(5)にそれぞれ供給され、
各々について測定が行われる。各標準液(C1) 、 
(C2) 、 (C3)のBOD値は既知であるから、
これらに対する微生物電極(2)の出力値に基き、制御
回路(8)は検量線を校正する。この校正はたとえば1
日数回行われる。
At the predetermined calibration setting time, the switching valve θ is switched and the standard solution (C1), (C8,
), (C3) are respectively supplied to the measurement cell (5),
Measurements are taken for each. Each standard solution (C1),
Since the BOD values of (C2) and (C3) are known,
Based on the output values of the microbial electrode (2) for these, the control circuit (8) calibrates the calibration curve. For example, this calibration is 1
It is held several times a day.

実施例 第2図は、上記実施例装置(+)と同様の装置を用いて
、BOD値が50〜100り/7!の食堂廃水を30分
間隔(試料測定時間5分/洗浄液供給時間25分)で連
続的に測定を繰返し、微生物電極の出力電流のベースラ
イン値の変化を調べた図である。(a)は洗浄液として
pH7程度の上水道水を用いた場合で、測定回数が増す
につれてベースライン値が低下する現象が著しい。(b
)は洗浄液として上水道水に塩酸を加えてpH8程度に
調製したものを用いた場合で、ベースライン値の低下は
(a)より少なくなっている。(C)は洗浄液として上
水道水に塩酸を加えてpH8程度に調製しかつクロラム
フェニコールをi o omg7i添加したものを用い
た場合で、ベースライン値の低下がかなり防止されてい
る。
Example FIG. 2 shows a BOD value of 50 to 100/7! using a device similar to the device of the above example (+). FIG. 2 is a diagram showing changes in the baseline value of the output current of the microbial electrode by continuously repeating measurements of wastewater from a cafeteria at 30-minute intervals (sample measurement time: 5 minutes/cleaning liquid supply time: 25 minutes). (a) shows the case where tap water with a pH of about 7 is used as the cleaning liquid, and there is a remarkable phenomenon in which the baseline value decreases as the number of measurements increases. (b
) is a case where tap water adjusted to pH 8 by adding hydrochloric acid was used as the cleaning liquid, and the decrease in the baseline value was smaller than in (a). (C) is a case where tap water prepared by adding hydrochloric acid to adjust the pH to about 8 and to which io omg7i of chloramphenicol was added was used as a cleaning liquid, and a decrease in the baseline value was considerably prevented.

実施例 上記実施例装置(1)と同様の装置において、グルコー
スおよびグルタミン酸によるBOD値200my/lの
標準液を15分間供給しかつ洗浄液を30分間供給する
ことを10日間繰返し、切換バルブ03)からコイル(
7)の出口端までの配管(ビニルチューブ、長さ2m、
内径1 am )の「つまり度」を調べた。「つまり度
」は次式により算出する。
Example In an apparatus similar to the above-mentioned Example apparatus (1), a standard solution of glucose and glutamic acid with a BOD value of 200 my/l was supplied for 15 minutes and a cleaning solution was supplied for 30 minutes, which was repeated for 10 days. coil(
7) Piping (vinyl tube, length 2m,
The ``degree'' of the inner diameter (1 am) was investigated. The "degree" is calculated using the following formula.

つまり度−(〔実験前の配管の通水量〕−〔実験後の配
管の通水量〕)/ 〔実験前の配管の通水量〕 洗浄液としてpH7程度の上水道水を用いた場合、「つ
まり度」は38%で、かなり配管内面に生物性スライム
が付着していた。
In other words, degree - ([amount of water flowing through the piping before the experiment] - [amount of water flowing through the piping after the experiment]) / [amount of water flowing through the piping before the experiment] When tap water with a pH of about 7 is used as the cleaning liquid, the "clogged degree" was 38%, indicating that a considerable amount of biological slime was attached to the inner surface of the pipe.

洗浄液として上水道水に塩酸を加えてpH4程度に調製
したものを用いた場合、「つまり度」は19%で、生物
性スライムの付着はまだ多い。
When tap water adjusted to pH 4 by adding hydrochloric acid was used as a cleaning solution, the "clogging rate" was 19%, and there was still a lot of biological slime attached.

洗浄液として上水道水に塩酸を加えてpH4程度に調製
しかつクロラムフェニコールを80my/l添加したも
のを用いた場合、1つまり度」は10%で、かなり生物
性スライムの付着が防止されていた。
When tap water was adjusted to pH 4 by adding hydrochloric acid and 80 my/l of chloramphenicol was used as a cleaning solution, the 1 degree was 10%, and the adhesion of biological slime was considerably prevented. Ta.

以上の説明から理解されるように、この発明の微生物W
L8iiを用いた測定装置によれば、酸性でかつ細菌の
生育阻害物質を含んだ洗浄液で配管および微生物膜表面
が洗浄されるから、生物性スライムなどの付着による配
管および微生物膜の汚染が防止され、長期にわたり好適
に測定を続けることができるようになる。
As understood from the above explanation, the microorganism W of this invention
According to the measurement device using the L8ii, the piping and the surface of the microbial membrane are cleaned with a cleaning solution that is acidic and contains substances that inhibit the growth of bacteria, thereby preventing contamination of the piping and the microbial membrane due to adhesion of biological slime, etc. , it becomes possible to continue measurements suitably over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例であるBOD連続測定装置
の構成説明図、第2図は第1図に示す装置と同様の装置
におけるベースライン値の経時変化の一例の図である。 (1)・・・BOD連続測定装置、
FIG. 1 is an explanatory diagram of the configuration of a BOD continuous measuring device which is an embodiment of the present invention, and FIG. 2 is a diagram showing an example of a change in baseline value over time in a device similar to the device shown in FIG. 1. (1)...BOD continuous measurement device,

Claims (1)

【特許請求の範囲】 1、隔膜式酸素WL極と酵母を用いた微生物膜とを組合
せてなる微生物電極、液入口と液出口とを有しかつそれ
らの間を流れる液が前記微生物膜に接しうるよう前記微
生物電極に対し配置された測定セル、その測定セルに緩
衝液を供給する緩衝液供給手段、前記測定セルに被測定
液を供給する被測定液供給手段、前記測定セルに空気を
供給する空気供給手段および前記測定槽に洗浄液を供給
する洗浄液供給手段を具備してなり、前記洗浄液がpH
2〜5に調製されかつ酵母の育生を阻害しない細菌の育
生阻害物質を添加されてなることを特徴とする微生物電
極を用いた測定装置。 2、細菌の育生阻害物質が、クロラムフェニコールテ、
洗浄液中ニ80tr41/l 〜100Q/13の濃度
で添加されてなる特許請求の範囲第1項記載の装置。
[Claims] 1. A microbial electrode formed by combining a diaphragm-type oxygen WL electrode and a microbial membrane using yeast, which has a liquid inlet and a liquid outlet, and the liquid flowing between them is in contact with the microbial membrane. A measurement cell arranged with respect to the microbial electrode so as to be moist, a buffer supply means for supplying a buffer solution to the measurement cell, a measurement liquid supply means for supplying a measurement liquid to the measurement cell, and an air supply to the measurement cell. and a cleaning liquid supplying means for supplying a cleaning liquid to the measurement tank, the cleaning liquid having a pH of
1. A measuring device using a microbial electrode, characterized in that it is prepared as follows: 2 to 5 and contains a bacterial growth inhibiting substance that does not inhibit the growth of yeast. 2. Bacterial growth inhibitors include chloramphenicolte,
2. The apparatus according to claim 1, wherein the cleaning solution is added at a concentration of 80TR41/l to 100Q/13.
JP58098696A 1983-06-01 1983-06-01 Measuring apparatus using microorganism electrode Pending JPS59222753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58098696A JPS59222753A (en) 1983-06-01 1983-06-01 Measuring apparatus using microorganism electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58098696A JPS59222753A (en) 1983-06-01 1983-06-01 Measuring apparatus using microorganism electrode

Publications (1)

Publication Number Publication Date
JPS59222753A true JPS59222753A (en) 1984-12-14

Family

ID=14226665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58098696A Pending JPS59222753A (en) 1983-06-01 1983-06-01 Measuring apparatus using microorganism electrode

Country Status (1)

Country Link
JP (1) JPS59222753A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176448U (en) * 1985-04-24 1986-11-04
JPS6355455A (en) * 1986-08-26 1988-03-09 Yokogawa Electric Corp Method for measuring residual chlorine
CN104807864A (en) * 2015-01-08 2015-07-29 北京神州瑞霖环保科技有限公司 Digital electrode for measuring content of perfluorocapylic acid and measuring apparatus
CN106018481A (en) * 2016-05-17 2016-10-12 中国科学院生态环境研究中心 Gas-liquid two-phase alternate biological membrane micro-environment detection method
CN105928982B (en) * 2016-05-17 2018-07-17 中国科学院生态环境研究中心 A kind of alternate biomembrane microenvironment detection device of gas-liquid two-phase
JP2023018633A (en) * 2021-07-27 2023-02-08 中国科学院重慶緑色智能技術研究院 Bod (biochemical oxygen demand) measurement smart sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176448U (en) * 1985-04-24 1986-11-04
JPS6355455A (en) * 1986-08-26 1988-03-09 Yokogawa Electric Corp Method for measuring residual chlorine
CN104807864A (en) * 2015-01-08 2015-07-29 北京神州瑞霖环保科技有限公司 Digital electrode for measuring content of perfluorocapylic acid and measuring apparatus
CN106018481A (en) * 2016-05-17 2016-10-12 中国科学院生态环境研究中心 Gas-liquid two-phase alternate biological membrane micro-environment detection method
CN105928982B (en) * 2016-05-17 2018-07-17 中国科学院生态环境研究中心 A kind of alternate biomembrane microenvironment detection device of gas-liquid two-phase
JP2023018633A (en) * 2021-07-27 2023-02-08 中国科学院重慶緑色智能技術研究院 Bod (biochemical oxygen demand) measurement smart sensor

Similar Documents

Publication Publication Date Title
JP2008032691A (en) Water quality monitoring system and method
JPS59222753A (en) Measuring apparatus using microorganism electrode
CN114275866A (en) Intelligent dosing flocculation precipitation system
JP5129463B2 (en) Water quality abnormality detection method
JP4521319B2 (en) Biosensor type abnormal water quality monitoring device
JP3289522B2 (en) BOD measuring device
JP3721087B2 (en) Biosensor type abnormal water quality detection device
JP4999742B2 (en) Toxic substance detection method and toxic substance detection apparatus
JPS6093952A (en) Continuous measurement of bod
JP2000074870A (en) Bod biosensor measuring device
JP2004037273A (en) Water analyzing method and device
US10407328B2 (en) Method to control a process variable
JPH0637324Y2 (en) Measuring device using microbial electrode
JP3497806B2 (en) Water quality monitoring device
JPS5999353A (en) Method and apparatus for measuring bod
JP2001165893A (en) Detecting method for toxic substance in environmental water
CN217148887U (en) AAO technology carbon source adding control system
JPS6148755A (en) Measuring device for electric conductivity of culture solution
CN219098849U (en) Bactericide dosing device for water treatment
KR100363438B1 (en) Continuous activated sludge respiration and short term BOD analyzer based on tubular flow respiration chamber
CN113277685B (en) AAO process carbon source adding control method
JP3507833B2 (en) Flow cell for biosensor
JP2595166Y2 (en) BOD measuring device
JPH0475079B2 (en)
JPH07191014A (en) Slime preventing method for flow passage of biosensor and flow passage structure used therefor