JPS59222565A - Production of precipitation hardening type alloy member - Google Patents

Production of precipitation hardening type alloy member

Info

Publication number
JPS59222565A
JPS59222565A JP9681283A JP9681283A JPS59222565A JP S59222565 A JPS59222565 A JP S59222565A JP 9681283 A JP9681283 A JP 9681283A JP 9681283 A JP9681283 A JP 9681283A JP S59222565 A JPS59222565 A JP S59222565A
Authority
JP
Japan
Prior art keywords
heat treatment
aging
treatment
straightening
subjected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9681283A
Other languages
Japanese (ja)
Inventor
Hisataka Kawai
久孝 河合
Tomokichi Nagaoka
長岡 友吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9681283A priority Critical patent/JPS59222565A/en
Publication of JPS59222565A publication Critical patent/JPS59222565A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To obtain a member which can satisfy the requirments specified for a heat treatment without deformation and residual stress in a titled process for producing said member in which an aging treatment, machining or straightening stage is included by dividing the aging treatment stage and performing the other stages mentioned above between the divided stages. CONSTITUTION:Raw materials are melted and cast and the casting is subjected to decomposing, forging and annealing heat treatment then to straightening A of bend with a cold press in the case of producing, for example, a pump shaft of ''Monel K500''. The pump shaft is then subjected to an aging heat treatment A of air cooling at the same temp. as in the prior art in which the heat treatment is performed by as much as half the time specified by standards and the pump shaft is machined and is again subjected to straightening B. Said shaft is in succession subjected to the aging heat treatment B under the same conditions as those for the treatment A to complete a product. The precipitation hardening type alloy member which is free from the deformation and residual stress occuring in the machining and aging treatment and can meet the requirements specified for the heat treatment of the material is thus obtd.

Description

【発明の詳細な説明】 止し.機械加工又は変形矯正に起因する残留応力を軽減
した析出硬化型合金部材の製造法に関する。
[Detailed Description of the Invention] Stop. The present invention relates to a method for manufacturing precipitation hardening alloy members that reduces residual stress caused by machining or deformation correction.

最近のポンプ軸には耐食性と強度のすぐれたモネルI(
500(商品名:慶下同様)が8US804等のステン
レス鋼に代って使用されだした。モネルに500はニッ
ケル銅合金(JISH4553 NCuB)にAI(2
、00−4.00%)及びT i ( 0.2 5〜1
.0 0%)を添加し,  Ni3(Ti。
Modern pump shafts are made of Monel I (which has excellent corrosion resistance and strength).
500 (product name: same as Keisha) has begun to be used in place of stainless steel such as 8US804. Monel 500 is nickel copper alloy (JISH4553 NCuB) and AI (2
, 00-4.00%) and T i (0.2 5-1
.. 0 0%) and Ni3(Ti.

Al)を析出させ,強度を改善させたものであり。Al) is precipitated to improve the strength.

アメリカ宇宙材料規格(Aerospaca Mate
rial Spcci−ficaLion+s: IJ
下AM8という)ではAh4S4676Aに規定されて
いる。モネルI(500によりポンプ軸を製造する際の
従来の主工程を第1図に示す。従来のこの方法で問題と
なるのは機械加工の方法によっては,これによる残留応
力により大きな曲がりが発生し,ハンマーあるいはプレ
スなどによる少々の矯正では修正できず,製品を廃却せ
τ′′ ざるを得ない場合#一あ 、        る。
American Space Materials Standard (Aerospaca Mate)
real Spcci-ficaLion+s: IJ
(hereinafter referred to as AM8) is specified in Ah4S4676A. Figure 1 shows the conventional main process for manufacturing pump shafts using Monel I (500).The problem with this conventional method is that depending on the machining method, large bends may occur due to residual stress. #1: If the problem cannot be corrected by slight correction using a hammer or press, and the product must be discarded.

又,ハンマーあるいはプレスにより大きな曲がシを矯正
すると,これにょシ発生する残留応力を存在させた1ま
使用することとなり,使用中に異常振動腐食などの問題
を引き起こす可能性がある。そこで、この残留応力を除
去するために第2図に示すとおシ,曲が9矯正B後応力
除去焼なまし熱処理を実施することが考えられる。
Furthermore, if a large bend is corrected using a hammer or press, residual stress will be generated during use, which may cause problems such as abnormal vibration corrosion during use. Therefore, in order to remove this residual stress, it is conceivable to perform a stress-removing annealing heat treatment after the bend 9 straightening B as shown in FIG.

しかし、モネルに500は前述のとおシNi3 (AJ
7, Ti )による析出硬化型材料であるため、応力
除去焼なまじ熱処理により材質が変化する。又AM84
676Aに規定されている材料特性は、焼な捷し熱処理
と時効熱処理を併用した材料であるが、応力除去焼な捷
し熱処理が加わると材料が変質し、規格どおりの熱処理
と認められなくなる問題点がある。
However, 500 for Monel is the same as the above-mentioned Ni3 (AJ
Since it is a precipitation hardening material made of 7, Ti), the material quality changes by stress-relieving annealing heat treatment. Also AM84
The material properties specified in 676A are materials that have been subjected to a combination of annealing heat treatment and aging heat treatment, but when stress-relieving annealing heat treatment is added, the material changes in quality, and there is a problem that it cannot be recognized as heat treatment according to the standard. There is a point.

本発明は、上記従来の製造法の問題点に鑑みでなされた
ものであシ1機械加工や時効処理に起因する変形及び残
留応力のない、しかも材料の熱処理規格を満足できる析
出硬化型合金部材の製造法の提供を目的とする。
The present invention has been made in view of the above-mentioned problems of the conventional manufacturing method. 1. A precipitation hardening alloy member that is free from deformation and residual stress caused by machining or aging treatment, and can satisfy heat treatment standards for the material. The purpose is to provide a manufacturing method for.

すなわち1本発明は1時効処理工程及び機械加工工程又
は矯正工程を包含してなる析出硬化型合金部拐の製造法
にお上の1時効処理工程を複数の工程に分割し、該複数
の時効処理工程間に機械加工工程及び矯正工程のうち少
なくとも・1 一方の工程を行なう事を特徴とする析出硬化型合金部拐
の製造方法を上の要旨とする。
That is, one aspect of the present invention is to divide the above aging treatment step into a plurality of steps in a method for producing a precipitation hardening alloy part, which includes one aging treatment step and a machining step or straightening step, and The above gist is a method for manufacturing a precipitation-hardened alloy component, characterized in that at least one of a machining step and a straightening step is performed between treatment steps.

この構成に゛よシ2後機械加工は矯正による残留応力を
2回目以後の時効処理工程により除去することができ、
しかもちらた々応力除去焼なまし処理工程を行なう必要
がないので2部材の変質がなく、熱処理工程自体も従来
の規格をそのまま満足することができる。
With this configuration, the residual stress caused by straightening after the second machining can be removed by the second and subsequent aging treatment steps,
Moreover, since there is no need to perform a stress-relieving annealing process from time to time, there is no deterioration of the two members, and the heat treatment process itself can satisfy conventional standards as is.

以下、第3図の工程図に示された実施例に基づき本発明
を説明する。
The present invention will be explained below based on the embodiment shown in the process diagram of FIG.

まず、原料を溶解して第1表の化学成分のモネルに50
0を鋳込み分塊、鍛造により直径150mm長さ5mt
で伸ばし、続いて760℃X 0.51+水冷の焼なま
し熱処理を行った。曲がりが生じだので、冷間プレスに
て矯正Aを行った。次に従来と同じ温度で595℃X 
81+空冷の時効熱処理Aを行った。この時効熱処理は
AM84676A規定に定めら−れたものを半分の時間
だけ行ったものである。その後機械加工によシ直径10
0mmに加工し。
First, dissolve the raw materials to form Monel with the chemical components listed in Table 1.
0 is cast into a block and forged into a diameter of 150mm and a length of 5mt.
Then, an annealing heat treatment was performed at 760°C x 0.51 + water cooling. Since it was bent, straightening A was performed using a cold press. Next, at the same temperature as before, 595℃
81+Aging heat treatment A of air cooling was performed. This aging heat treatment was carried out for only half the time specified in AM84676A regulations. Then machined to a diameter of 10
Processed to 0mm.

再度矯正Bを行った。続いて時効熱処理Aと同一条件の
時効熱処理Bを行って製品を完成させだ。すなわち1本
実施例では従来−1度で行われてき/ζ4時効熱処理2
つに分割し、この2つの時効熱処理の間に機械加工及び
矯正を行なって。
Correction B was performed again. Next, aging heat treatment B is performed under the same conditions as aging heat treatment A to complete the product. In other words, in this example, conventionally it was carried out at -1 degree/ζ4 aging heat treatment 2
It is divided into two parts, and machining and straightening are performed between these two aging heat treatments.

その後の時効熱処理Bにより機械加工及び矯正に起因す
る残留応力を除去したものであって。
Residual stress caused by machining and straightening was removed by subsequent aging heat treatment B.

4A制に残留応力がほとんど残らないので長期間経ても
変位が小さく、又このような残留応力除去のため時効熱
処理と機械加工の前に行った時効熱処理とを加えたもの
が従来の熱処理条件と同一のため拐質も規定のものが得
られる。
Since almost no residual stress remains in the 4A system, the displacement is small even after a long period of time, and in order to remove such residual stress, aging heat treatment and aging heat treatment performed before machining are added to the conventional heat treatment conditions. Since they are the same, the same quality of microorganisms can be obtained.

第2表に本実施例並びに本実施例と同一の熱処理条件に
て行った第1図の従来例との曲りに1yjするH年度化
を示した。製造直後はほぼ同じ4’+’j度に矯正等を
行ったので、同程度の曲りδであるが、製造後1年で本
実施例は曲りδを1年り内でも、製造直後と同程度に押
えているにもかかわらず、従来例では、製造直後とくら
べて倍以上に変形していることがわかる。
Table 2 shows the curve of this example and the conventional example shown in FIG. 1, which was conducted under the same heat treatment conditions as this example, and the H-year conversion by 1yj. Immediately after manufacturing, straightening, etc. were performed to approximately the same degree of 4'+'j, so the bending δ was the same. It can be seen that in the conventional example, the deformation is more than twice as large as that immediately after manufacture, even though the deformation is kept to a certain degree.

ここで1曲りδとは第4図の模式図で示すように長さ5
mの軸1の両端を支持しながら回転した時の軸1の最大
変位をさす。
Here, one bend δ is a length of 5 as shown in the schematic diagram in Figure 4.
Refers to the maximum displacement of shaft 1 when rotating while supporting both ends of shaft 1 of m.

岡1本実施例では時効熱処理を2つに分割したが2時効
熱処理による変形が大きい場合1時効熱処理及び矯正を
3度以上に分けて行っても良い。また1本実施例では時
効熱処理条件を従来のものを全く2分したものとし、複
数の時効熱処理条件が全く同一としたが9時効熱処理の
目的を逸脱しない範囲において1時効熱処理条件を違え
ても良い。又1本実施例では2つの時効熱処理の間に機
械加工と矯正を同時に行ったが1時効処理工程る変位の
程度によってはいずれか一方でも良い。
Oka 1 In this embodiment, the aging heat treatment is divided into two parts, but if the deformation caused by the second aging heat treatment is large, the first aging heat treatment and straightening may be performed in three or more parts. In addition, in this example, the aging heat treatment conditions were completely divided into two from the conventional aging heat treatment conditions, and the multiple aging heat treatment conditions were exactly the same. good. Further, in this embodiment, machining and straightening were performed simultaneously between the two aging heat treatments, but either one may be used depending on the degree of displacement during one aging treatment process.

第1表 化学成分 第2表  曲り(δ)の経年変化 製」−1本発明法によれば、残留応力が内在せず7曲が
り及びその経年変化もなく、規格どおりの月質を(fl
fiえた材料を得ることができ、特に経年変化の影響の
大きな長尺物や精密部品等の製造法として最適である。
Table 1 Chemical composition Table 2 Change in bending (δ) over time - 1 According to the method of the present invention, there is no residual stress, there is no bending or its change over time, and the quality of the moon (fl
It is possible to obtain a material with a high fi-

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来の析出硬化型部相の製造工形I
゛図、第3図は本発明の実施例にかかる製造工程図、第
4図は部材の軸的り説明図であ垢1圀 病2圀 躬3圀 ) 謔4圀
Figures 1 and 2 show the conventional precipitation hardening type manufacturing process I.
Figures 1 and 3 are manufacturing process diagrams according to embodiments of the present invention, and Figure 4 is an explanatory diagram of the axis of the members.

Claims (1)

【特許請求の範囲】[Claims] 時効処理工程及び機械加工工程又は矯正工程を包含して
なる析出硬化型合金部拐の製造法にお発明1時効処理工
程を複数工程に分割し、該複数の時効処理工程間に機械
加工工程及び矯正工程のうぢ少なくとも一方の工程を行
なう事を慣″徴とする析出硬化型合金部拐の製造法。
Invention 1: The aging treatment step is divided into a plurality of steps, and the machining step and A method for manufacturing precipitation hardening alloy parts, which conventionally includes performing at least one of the straightening steps.
JP9681283A 1983-05-31 1983-05-31 Production of precipitation hardening type alloy member Pending JPS59222565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9681283A JPS59222565A (en) 1983-05-31 1983-05-31 Production of precipitation hardening type alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9681283A JPS59222565A (en) 1983-05-31 1983-05-31 Production of precipitation hardening type alloy member

Publications (1)

Publication Number Publication Date
JPS59222565A true JPS59222565A (en) 1984-12-14

Family

ID=14175005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9681283A Pending JPS59222565A (en) 1983-05-31 1983-05-31 Production of precipitation hardening type alloy member

Country Status (1)

Country Link
JP (1) JPS59222565A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4931105A (en) * 1989-02-16 1990-06-05 Beryllium Copper Processes L.P. Process for heat treating beryllium copper
CN102989945A (en) * 2012-08-22 2013-03-27 昌利锻造有限公司 Processing method of forge piece pump shaft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4931105A (en) * 1989-02-16 1990-06-05 Beryllium Copper Processes L.P. Process for heat treating beryllium copper
CN102989945A (en) * 2012-08-22 2013-03-27 昌利锻造有限公司 Processing method of forge piece pump shaft

Similar Documents

Publication Publication Date Title
US20210102282A1 (en) Copper-nickel-tin alloy with high toughness
JPH09108762A (en) Method and device for producing straight bar from steel wire rod of hard workability
JPS59222565A (en) Production of precipitation hardening type alloy member
JPH06248400A (en) Method for forging aluminum alloy
JPH11256278A (en) Cobalt-free maraging steel
JPH0673482A (en) Aluminum alloy member and its production
JPH1017927A (en) Production of containing delta-ferrite-austenitic stainless steel
JPH086160B2 (en) Method for manufacturing conical tubular member
JP4831969B2 (en) Brass material manufacturing method and brass material
JP2792020B2 (en) Titanium alloy cold-forged parts and their manufacturing method
JPH01149934A (en) Heat-resistant continuous casting mold and its production
JPH02294454A (en) Manufacture of forging made of al alloy
TWI568862B (en) Method for manufacturing austenitic alloy steel
JPS6012421B2 (en) Manufacturing method of lead wire material
JP2585168B2 (en) Method for producing high strength low linear expansion Fe-Ni alloy wire
JP2005089788A (en) Aluminum alloy piping material for heat exchanger having excellent corrosion resistance, and its manufacturing method
JP2578174B2 (en) Processing method of β-type titanium alloy
JPH08144033A (en) Production of pure titanium or low titanium alloy elongation material
JPH03258433A (en) Hot forging method for beryllium copper alloy
CN115572916A (en) Ultra-high-sulfur austenitic stainless steel and preparation method thereof
JP2022025817A (en) Copper alloy tube and manufacturing method thereof
JP2023042797A (en) Tube with inner groove and manufacturing method thereof
JPH04107213A (en) Inline softening treatment for air-hardening seamless steel tube
JPH0263624A (en) Manufacture of forged part made of al alloy
JPS63125647A (en) Production of beryllium copper alloy