JPS5922225A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPS5922225A
JPS5922225A JP13272882A JP13272882A JPS5922225A JP S5922225 A JPS5922225 A JP S5922225A JP 13272882 A JP13272882 A JP 13272882A JP 13272882 A JP13272882 A JP 13272882A JP S5922225 A JPS5922225 A JP S5922225A
Authority
JP
Japan
Prior art keywords
film
thickness
recording medium
magnetic recording
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13272882A
Other languages
Japanese (ja)
Inventor
Ryuji Sugita
龍二 杉田
Kenji Kanai
金井 謙二
Kiyoshi Sasaki
清志 佐々木
Takeshi Takahashi
健 高橋
Kazuyoshi Honda
和義 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13272882A priority Critical patent/JPS5922225A/en
Publication of JPS5922225A publication Critical patent/JPS5922225A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To enable the easy manufacture of a magnetic recording medium having virtually no curls by subjecting a substrate to heat shrinkage in the stage of vapor deposition thereby decreasing the curls and decreasing (lo-l)/lo to <=4%. CONSTITUTION:A vertically magnetized Co-Cr film having the axis of easy magnetization in the direction perpendicular to the film plane is formed on a film consisting of a heat resistant polymer material via a Ti film. The thickness of the Ti film in this case is 800Angstrom , the thickness of the Co-Cr film 2,000Angstrom and the thickness of the polymer film 12mum. The temp. on the circumferential side face of a can is 190 deg.C and the thermal shrinkage of the polymer film after left standing for 10min is 0.6%. The resulted magnetic recording medium is positively curled and the (lo-l)/lo thereof is 2%.

Description

【発明の詳細な説明】 本発明はCOとOrを主成分とする磁性層が高分子材料
より成る基板上に、Ti膜あるいはパー70イ膜あるい
はT1膜とパーマロイ膜を介して形成された磁気記録媒
体およびその製造方法に関するものであって、その目的
とするところは磁気記録媒体の走行性1巻き取り性、磁
気ヘットタッチ等に悪影響を及ぼすカールの発生を防I
J二するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a magnetic magnetic layer in which a magnetic layer mainly composed of CO and Or is formed on a substrate made of a polymer material via a Ti film, a Per70 film, a T1 film, and a Permalloy film. This article relates to a recording medium and its manufacturing method, and its purpose is to prevent the occurrence of curls that adversely affect the running properties, winding properties, magnetic head touch, etc. of magnetic recording media.
J2.

従来、磁気記録媒体とし−ては、非磁性基板上に磁性粉
を塗布し−だ塗布形媒体が用いられてきた。
Conventionally, as magnetic recording media, coated media in which magnetic powder is coated on a non-magnetic substrate have been used.

現在、磁気記録再生装置は小型化、高密度化の傾向にあ
るが、塗布形媒体では高密度化に限界がある。この限界
を越えるものとして強磁性金属薄膜よりなる薄膜形媒体
が注目されている。
Currently, there is a trend toward smaller size and higher density of magnetic recording/reproducing devices, but there is a limit to the higher density of coated media. Thin film media made of ferromagnetic metal thin films are attracting attention as a media that exceeds this limit.

薄膜材料としては■を主成分としたものが、C。As a thin film material, the one containing ■ as the main component is C.

のhcp構造に起因する結晶磁気異方性エネルギーが大
きいために、最も優れている。特にOrを10〜30重
量係含むGo −Or膜は、短波長記録再生特性の優れ
た垂直磁化膜になり得る。寸だOrを10〜30重量係
含むCo −Or膜は耐食性も優れている。
It is the most excellent because it has a large magnetocrystalline anisotropy energy due to the hcp structure. In particular, a Go-Or film containing 10 to 30% of Or by weight can be a perpendicular magnetization film with excellent short wavelength recording and reproducing characteristics. A Co-Or film containing 10 to 30 parts by weight of Or has excellent corrosion resistance.

すなわちOrを10〜30重量係含むの−Or膜を磁性
層とする磁気記録媒体は、実用性がありかつ短波長記録
再生特性も非常に優れているので、理想的な薄膜形媒体
と言える。強磁性金属薄膜よりなる薄膜形媒体を製造す
る方法には、メッキ法、スパッタリング法、および真空
蒸着法等があるが、量産性や安定性を考5慮すると真空
蒸着法が最も優れている。真空蒸着法にて生産性が良く
かつ安定に薄膜形媒体を形成するには、第1図に示すよ
うに、円筒状キャ/2の周側面に沿わせて基板1を矢印
Aの方向へ走行させつつ蒸着を行なえばよい。
That is, a magnetic recording medium whose magnetic layer is an -Or film containing 10 to 30% of Or by weight can be said to be an ideal thin film medium because it is practical and has very excellent short wavelength recording and reproducing properties. Methods for producing thin film media made of ferromagnetic metal thin films include plating, sputtering, and vacuum evaporation, but vacuum evaporation is the most superior in terms of mass production and stability. In order to form a thin film medium with high productivity and stability using the vacuum evaporation method, as shown in FIG. What is necessary is to perform the vapor deposition while

なお、3,4はそれぞれ基板1の供給ロールおよび巻き
取りロール、5は蒸発源である。
Note that 3 and 4 are a supply roll and a take-up roll for the substrate 1, respectively, and 5 is an evaporation source.

しかし、上記の方法で薄膜を形成すると、一般に第2図
に示す強磁性金属薄膜6が内側あるいは外側になるよう
なカールを生じ、磁気記録媒体として使用する際に走行
性2巻き取り性、磁気ヘッドタッチ等が悪くなるという
問題を生じる。以下、第2図(a)、 (b)に示す状
態をそれぞれ正カール及び逆カールと呼ぶ。磁気記録媒
体として使用するためには、C6o  g) / 、e
oが4係以下になることが必要である。ただし、eは第
2図に示されるようにカールした状態での長さであり、
10はカールがない状態での長さである。上記の条件を
満たすだめには、第3図に示すように磁気記録媒体にお
いて強磁性金属薄膜6と反対側に非磁性層子を形成する
か、あるいは正カールの場合には薄膜形成後に熱−処理
を施して基板1を収縮させればよいが、いずれにしても
工程が少なくとも一つ増加してしまう。
However, when a thin film is formed by the above method, it generally curls so that the ferromagnetic metal thin film 6 shown in FIG. 2 is on the inside or outside. This causes a problem such as poor head touch. Hereinafter, the states shown in FIGS. 2(a) and 2(b) will be referred to as normal curl and reverse curl, respectively. For use as a magnetic recording medium, C6o g) / , e
It is necessary that o be 4 or less. However, e is the length in the curled state as shown in Figure 2,
10 is the length without curls. In order to satisfy the above conditions, either a non-magnetic layer is formed on the opposite side of the ferromagnetic metal thin film 6 in the magnetic recording medium as shown in FIG. It would be possible to shrink the substrate 1 by performing a treatment, but in any case, at least one additional step is required.

本発明の方法は、[有]とOrを主成分とする膜を磁性
層とする磁気記録媒体において、このように工程を増加
させずに一1蒸着時に基板を熱収縮させることによりカ
ールを減少させ、(lo−e)/lloを4多以下にす
ることができるものである。なお、本発明は膜厚6〜1
8μmの高分子材料より成る基板上に、膜厚300〜3
000AのTi膜あるいはパーマロイ膜あるいはT1膜
とパーマロイ膜を介して、Go −Or膜を形成する場
合に限定しているが、Ch −Or膜を形成するだめの
基板として、このようなものを選ぶ理由は次の3点にあ
る。まず、膜厚6〜18μmの高分子材料より成る基板
を選ぶ理由は、本発明の方法により得られた磁気記録媒
体を磁気テープとして使用する場合には、との膜厚範囲
の基板が最適であるだめである。すなわち、膜厚が6μ
mに満たない高分子基板ではステイフネスが小さすぎ、
テープ走行を安定にすることが困難である。また、膜厚
が18μmを越えると、スティフネスが犬き゛すぎて、
たとえカールがない状態であってもヘッドタッチが悪く
なる。次に、膜厚300〜3000AのTi膜を高分子
基板と[有]−Or膜との間に入れた方が良い理由は、
このような構造にすることにより[有]−Or膜の磁気
特性が良くなるからである。最後に、300〜3QOO
Aのパーマロイ膜あるいはパーマロイ膜とTi膜を間に
入れた方が良い理由は、■−Or膜が垂直磁化膜である
場合にこのような構造にすることにより、よく知られて
いるように信号の記録再生特性が大幅に向上するだめで
ある。なお、以上において膜厚を3000A以下として
いるのは、3000Aを越える膜厚の中間層を形成し、
さらにその上にGo−1r膜を形成すると、金属薄膜の
膜厚が厚くなりすぎ、テープとして使用する際には走行
性の悪化や磁性層のクラックを生じるためである。
The method of the present invention reduces curl in a magnetic recording medium whose magnetic layer is a film mainly composed of [Ar] and Or by thermally shrinking the substrate during vapor deposition without increasing the number of steps. It is possible to make (lo-e)/llo less than 4. Note that the present invention has a film thickness of 6 to 1
A film with a thickness of 300 to 3
Although this is limited to the case where a Go-Or film is formed via a 000A Ti film, a permalloy film, or a T1 film and a permalloy film, such a substrate is selected as the substrate on which the Ch-Or film is formed. The reason lies in the following three points. First, the reason for selecting a substrate made of a polymeric material with a film thickness of 6 to 18 μm is that when the magnetic recording medium obtained by the method of the present invention is used as a magnetic tape, a substrate with a film thickness in the range of 6 to 18 μm is optimal. It's no good. That is, the film thickness is 6μ
Polymer substrates with less than m have too little stiffness,
It is difficult to stabilize tape running. Also, if the film thickness exceeds 18 μm, the stiffness will be too high.
Even if there is no curl, the head touch becomes poor. Next, the reason why it is better to insert a Ti film with a thickness of 300 to 3000 A between the polymer substrate and the -Or film is as follows.
This is because such a structure improves the magnetic properties of the [Ar]-Or film. Finally, 300~3QOO
The reason why it is better to insert the permalloy film in A or between the permalloy film and the Ti film is that if the -Or film is a perpendicularly magnetized film, by creating this structure, as is well known, the signal The recording and reproducing characteristics of the device are greatly improved. In addition, in the above, the film thickness is set to 3000A or less because an intermediate layer with a film thickness exceeding 3000A is formed,
Furthermore, if a Go-1r film is formed on top of the Go-1r film, the thickness of the metal thin film becomes too thick, resulting in poor running properties and cracks in the magnetic layer when used as a tape.

一般に高分子材料よりなる基板は加熱すると熱収縮を生
じるが、本発明はキャンの温度を上げることにより基板
を加熱し、それに蒸発原子の付着時の基板の温度−に昇
を加えることにより基板を熱収縮させ、その収縮量をカ
ール(eo −1,) /loが4係以下になるように
するものである。実験の結果、高分子拐料より成る基板
を10分間放置した後の熱収縮率が0.1〜5係になる
温度よりも100℃低い温度にキャンの周側面の温度を
設定して蒸着を行なうと、(6o−β)/loが4チ以
下になることが明らかになった。この熱収縮率が0.1
係よりも小さい値になる温度にキャンの周側面の温度を
設定して蒸着を行なうと、得られる磁気記録媒体は第2
図(a)(7)ように正カールしており、 (lo l
)/(l。
Generally, substrates made of polymeric materials undergo thermal contraction when heated, but the present invention heats the substrate by increasing the temperature of the can, and also increases the temperature of the substrate at the time of attachment of evaporated atoms. The material is heat-shrinked so that the amount of shrinkage is such that curl (eo -1,)/lo is a factor of 4 or less. As a result of experiments, deposition was carried out by setting the temperature of the circumferential side of the can to a temperature 100 degrees Celsius lower than the temperature at which the thermal shrinkage rate after leaving the substrate made of polymeric material for 10 minutes was 0.1 to 5 factors. It has become clear that when this is done, (6o-β)/lo becomes 4 or less. This heat shrinkage rate is 0.1
If the temperature of the circumferential side of the can is set to a temperature that is smaller than the
As shown in Figure (a) (7), it has a positive curl, (lo l
)/(l.

が4%以−ヒとなった。また、熱収縮率が6チより大き
な値となる温度にキャンの周側面の温度を設定して蒸着
を行なうと、得られる磁気記録媒体は第2図(b)のよ
うに磁性薄膜6が外側になる形の逆カールをしており、
(no  11 ) /loが4%以上となった。以上
のことを図示しだものが第4図である。
became more than 4%. Furthermore, if the temperature of the circumferential surface of the can is set to a temperature at which the thermal contraction rate is greater than 6 cm, the resulting magnetic recording medium will have the magnetic thin film 6 on the outside as shown in FIG. 2(b). It has reverse curls that look like this,
(no 11) /lo was 4% or more. FIG. 4 illustrates the above.

縦軸はC1o −(1) /goであり、正の場合が正
カール、負の場合が逆カールである。横軸はキャンの周
側面の温度を高分子基板の熱収縮率として表わしている
。この結果は基板の膜厚や中間層の膜厚に殆ど依存しな
かった。
The vertical axis is C1o-(1)/go, and when it is positive, it is a positive curl, and when it is negative, it is a reverse curl. The horizontal axis represents the temperature of the circumferential side of the can as the thermal contraction rate of the polymer substrate. This result was almost independent of the thickness of the substrate and the thickness of the intermediate layer.

次に本発明の実施例を述べる。Next, examples of the present invention will be described.

実施例1 第6図に示す真空蒸着装置にて、膜面の垂直方向に磁化
容易軸を有するCo −Cr垂直磁化膜を、T1膜を介
して耐熱性の高分子材料より成るフィルム上に形成した
。ただしTi膜の膜厚は800A、G。
Example 1 A Co-Cr perpendicularly magnetized film having an axis of easy magnetization in the direction perpendicular to the film surface was formed on a film made of a heat-resistant polymer material via a T1 film using the vacuum evaporation apparatus shown in Fig. 6. did. However, the thickness of the Ti film is 800A,G.

−Cr膜の膜厚は200OAI  フィルムの膜厚は1
2μmである。またキャンの周側面の温度は190°C
であり、フィルムの290℃で10分間放置した後の熱
収縮率は0゜6係である。イυられだ磁気記録媒体は正
カールをしており、その(lo  l)/e。
-The thickness of the Cr film is 200OAI The thickness of the film is 1
It is 2 μm. Also, the temperature of the circumferential side of the can is 190°C.
The heat shrinkage rate of the film after being left at 290°C for 10 minutes is 0°6. The magnetic recording medium has a positive curl, and its (lo l)/e.

は2%であった。was 2%.

実施例2 第6図に示す真空蒸着装置にて、Go−Cr垂直磁化膜
を、Ti膜とパーマロイ膜を介して耐熱性の高分子材料
より成るフィルム上に形成した。この媒体の構造を第6
図に示す。なお図において9は耐熱性の高分子材料より
成るフィルム、10はTi膜、11はパーマロイ膜、1
2は[有]−Or垂直磁化膜である。Ti膜、パーマロ
イ膜、Go−Cr膜の膜厚であり、フィルムの膜厚は1
4μmである。またキャンの周側面の温度は230℃で
あり、フィルムの330′Cで10分間放置した後の熱
収縮率は1.6係である。得られた磁気記録媒体は逆カ
ールをしており、その(、lo −6) /goは0.
7%であった。
Example 2 A Go--Cr perpendicularly magnetized film was formed on a film made of a heat-resistant polymer material via a Ti film and a permalloy film using the vacuum evaporation apparatus shown in FIG. The structure of this medium is the sixth
As shown in the figure. In the figure, 9 is a film made of a heat-resistant polymer material, 10 is a Ti film, 11 is a permalloy film, and 1 is a film made of a heat-resistant polymer material.
2 is a perpendicular magnetization film of -Or. The thickness of the Ti film, permalloy film, and Go-Cr film is 1.
It is 4 μm. The temperature of the peripheral side of the can is 230°C, and the heat shrinkage rate of the film after being left at 330'C for 10 minutes is 1.6. The obtained magnetic recording medium has a reverse curl, and its (, lo -6) /go is 0.
It was 7%.

なお、実施例1及び2において、[有]−Or膜を形成
する前の基板のカールは殆どQであった。
In addition, in Examples 1 and 2, the curl of the substrate before forming the [with]-Or film was almost Q.

以」二のように本発明の方法によれば、カールの殆どな
い磁気記録媒体を容易に作製することができる。
As described below, according to the method of the present invention, a magnetic recording medium with almost no curl can be easily produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的な真空蒸着装置の内部構成の概略を示す
図、第2図(a)? (b)は磁気記録媒体のカールの
状態を示す図、第3図は裏面に薄膜を形成することによ
りカールの発生を防止した磁気記録媒体の斜視図、第4
図は磁気記録媒体のカール量と高分子基板の熱収縮率で
表わしだキャンの周側面の温度との関係を示す図、第6
図は本発明の実施例において用いられた真空蒸着装置の
内部構成の概略を示す図、第6図は同じく本発明の実施
例において製造された磁気記録媒体の断面図である。 1・・・・・・基板、2・・・・・・円筒状キャン、5
・・・・・・蒸発源、6・・・・・強磁性薄膜、7・・
・・・・非磁性層、8・・・・・・マスク、1o・・・
・・・Ti膜%  11・・・・・・パーマロイ膜、1
2・・・・・・垂直磁化膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 (CL)(b) 第4図 第5図 第6図
Figure 1 is a diagram showing an outline of the internal configuration of a general vacuum evaporation apparatus, and Figure 2 (a). (b) is a diagram showing a curled state of a magnetic recording medium, FIG. 3 is a perspective view of a magnetic recording medium in which curling is prevented by forming a thin film on the back surface, and FIG.
Figure 6 shows the relationship between the curl amount of the magnetic recording medium and the temperature of the peripheral side of the can expressed by the thermal contraction rate of the polymer substrate.
This figure is a diagram schematically showing the internal structure of a vacuum evaporation apparatus used in an embodiment of the present invention, and FIG. 6 is a sectional view of a magnetic recording medium also manufactured in an embodiment of the present invention. 1... Board, 2... Cylindrical can, 5
...Evaporation source, 6...Ferromagnetic thin film, 7...
...Nonmagnetic layer, 8...Mask, 1o...
...Ti film% 11... Permalloy film, 1
2... Perpendicular magnetization film. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 (CL) (b) Figure 4 Figure 5 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)高分子材料より成るθ〜18μm厚の基板上に、
膜厚300〜30ooZのT1膜あるいはパーマロイ膜
あるいはT1膜とパーマロイ膜を介し、COを70〜9
o重量係含む[有]とOrを主成分とする磁性層を設け
たことを特徴とする磁気記録媒1  \ 体。
(1) On a substrate with a thickness of θ ~ 18 μm made of a polymer material,
70 to 9% CO through a T1 film or permalloy film with a film thickness of 300 to 30 ooZ, or a T1 film and a permalloy film.
1. A magnetic recording medium 1, characterized in that it is provided with a magnetic layer mainly containing O and Or.
(2)高分子材料よりなる6418μm厚の基板を円筒
状キャンの周側面に沿わせて走行させつつ、上記基板上
に真空蒸着法により、膜厚300〜3000AのTi膜
あるいはパーマロイ膜あるいハTi膜とパーマロイ膜を
形成しさらにその上に[有]を7o〜90重量%含むC
OとOrを主成分とする磁性層を形成するとともに、上
記基板を上記キャンの周側面に沿わせて走行させる際に
は、上記基板を10分間放置した後における熱収縮率が
0.1〜6%である温度よりも100′c低い温度に上
記キャンの周側面の温度を設定することを特徴とする磁
気記録媒体の製造方法。
(2) While running a 6418 μm thick substrate made of a polymeric material along the circumferential side of the cylindrical can, a Ti film or a permalloy film or a permalloy film with a thickness of 300 to 3000 A is deposited on the substrate by vacuum evaporation. C that forms a Ti film and a permalloy film and further contains 70 to 90% by weight of
When a magnetic layer containing O and Or as main components is formed and the substrate is run along the circumferential side of the can, the thermal shrinkage rate of the substrate after being left for 10 minutes is 0.1 to 0.1. A method of manufacturing a magnetic recording medium, characterized in that the temperature of the circumferential side of the can is set to a temperature 100'c lower than a temperature of 6%.
JP13272882A 1982-07-28 1982-07-28 Magnetic recording medium and its production Pending JPS5922225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13272882A JPS5922225A (en) 1982-07-28 1982-07-28 Magnetic recording medium and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13272882A JPS5922225A (en) 1982-07-28 1982-07-28 Magnetic recording medium and its production

Publications (1)

Publication Number Publication Date
JPS5922225A true JPS5922225A (en) 1984-02-04

Family

ID=15088195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13272882A Pending JPS5922225A (en) 1982-07-28 1982-07-28 Magnetic recording medium and its production

Country Status (1)

Country Link
JP (1) JPS5922225A (en)

Similar Documents

Publication Publication Date Title
EP0089609B1 (en) Magnetic recording medium and method of manufacturing a magnetic recording medium
JPS58100221A (en) Magnetic recording medium
JPS58158027A (en) Production of magnetic recording medium
JPS5922225A (en) Magnetic recording medium and its production
JPS58115634A (en) Manufacture of magnetic recording medium
JPS6199932A (en) Production of vertical magnetic recording medium
JPH0526249B2 (en)
JPS62134829A (en) Production of magnetic recording medium
JP2529395B2 (en) Method for manufacturing metal thin film magnetic recording medium
JPH031726B2 (en)
JPS5933630A (en) Manufacture of magnetic recording medium
JPS59167829A (en) Magnetic recording medium
JPH01102718A (en) Magnetic recording medium
JPS59201230A (en) Manufacture of vertical magnetic recording medium
JPS59119541A (en) Production of magnetic recording medium
JPS58169332A (en) Manufacture of magnetic recording medium
JPH0196823A (en) Production of magnetic recording medium
JPS63140424A (en) Manufacture of magnetic recording medium
JPH0352115A (en) Metallic thin film type magnetic recording medium
JPH0656650B2 (en) Magnetic recording medium
JPS62202315A (en) Vertical magnetic recording medium
JPS6267728A (en) Production of magnetic recording medium
JPS60205818A (en) Magnetic recording medium
JPH01102721A (en) Perpendicular magnetic recording medium
JPS62150517A (en) Magnetic recording body