JPS59221594A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS59221594A
JPS59221594A JP9670283A JP9670283A JPS59221594A JP S59221594 A JPS59221594 A JP S59221594A JP 9670283 A JP9670283 A JP 9670283A JP 9670283 A JP9670283 A JP 9670283A JP S59221594 A JPS59221594 A JP S59221594A
Authority
JP
Japan
Prior art keywords
heat
temperature gas
air
pipe
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9670283A
Other languages
Japanese (ja)
Inventor
Masaaki Munekawa
宗川 正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP9670283A priority Critical patent/JPS59221594A/en
Publication of JPS59221594A publication Critical patent/JPS59221594A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1615Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits being inside a casing and extending at an angle to the longitudinal axis of the casing; the conduits crossing the conduit for the other heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To enhance the safety of a heat exchanger by first recovering the heat of supplied air introduced into a high temperature gas flow passage by the supplied air passed through an iron pipe to lower the exhaust air temperature, thereby enabling to use water or Freon having weak toxicity as the work liquid of a heat pipe. CONSTITUTION:Heat of exhaust air fed from a high temperature air inlet 6 into a high temperature air flow passage 4 is first transmitted by the aid of outer and inner fins 12, 11 to the supplied air introduced from a low temperature air inlet 8 passing through an iron pipe 9. The exhaust air from which heat is removed by the air in the pipe 9 to decrease its temperature is further arrived at a heat pipe 10. Then, the work liquid of the evaporation unit of the pipe 10 is heated and evaporated, the gas-state work fluid flow is moved to a condenser, in which the fluid is cooled by low temperature supply air and again condensed. The heat dissipated upon condensing is transmitted to the supplied air, which is heated. In this manner, the exhaust heat from the exhausted air is recovered.

Description

【発明の詳細な説明】 この弁明は、高温の排気から排熱を回収するのに用いら
れる熱交換器に関する。
DETAILED DESCRIPTION OF THE INVENTION This defense relates to heat exchangers used to recover waste heat from hot exhaust gas.

従来、排熱回収用の熱交換器としては、ケーシング内に
、仕切壁によって高温気体流路と低温気体流路とが形r
FCされ、仕切壁を貫通しかつ両流路にまたがって複数
本のヒートパイプが配置されたものが用いられている。
Conventionally, as a heat exchanger for exhaust heat recovery, a high-temperature gas flow path and a low-temperature gas flow path are formed in a casing by a partition wall.
FC is used, and a plurality of heat pipes are arranged to penetrate the partition wall and straddle both flow paths.

この熱交換器はヒートパイプを利用して排気から排熱を
回収づる一bのCあるから、熱回収率が優れている。
This heat exchanger uses a heat pipe to recover exhaust heat from the exhaust gas, so it has an excellent heat recovery rate.

ところが、排気の湿度が高い場合、たとえば約400℃
以上の場合には、正常に作動する作動液はイAつ、水銀
、ナトリウム等に限定されるので、高温気体流路の高温
気体人[」寄りの部分のヒートパイプにはこのような作
動液を封入しておく必要がある。ところが、上記作動液
は毒性が高く危険性が増づ−という問題がある。
However, if the humidity of the exhaust gas is high, for example about 400℃
In the above cases, the working fluid that can operate normally is limited to mercury, sodium, etc., so such a working fluid is used in the heat pipe in the part of the high-temperature gas flow path that is closer to the high-temperature gas. must be enclosed. However, there is a problem in that the above-mentioned hydraulic fluid is highly toxic and increases the risk.

この発明は上記実情に鑑みてなされたものであって、上
記毒性の高い作動液を使用づ−ることなく高温の排気か
ら排熱を回収することがてぎ、しかも安全性の高い熱交
換器を提供することを目的とする。
This invention was made in view of the above circumstances, and it is essential to recover waste heat from high-temperature exhaust gas without using the highly toxic working fluid, and also to provide a highly safe heat exchanger. The purpose is to provide

この明細■iにおいて、「鉄パイプ」という用詔は、純
鉄からなるパイプのほかに鉄合金からなるパイプも含む
意味で用いられる。
In this specification (i), the term "iron pipe" is used to include pipes made of iron alloys as well as pipes made of pure iron.

この発明による熱交換器は、ケーシング内に、仕切壁に
よって高温気体流路と低温気体流路とが形成されており
、高温気体流路の両端が開口されて高温気体入口と高温
気体出口となされ、低温気体流路にお(プる高温気体出
口側の端部が開口されて低温気体入口となされるととも
に高温気体入口側の端部が閉塞され、高温気体流路内の
高温気体入口寄りの部分に、一端が仕切壁を貫通して低
温気体流路に開口し、他端がケーシング外に間口した鉄
パイプが複数本配置され、鉄パーfブよりも高温気体出
口側の部分に、仕切壁を貫通しかつ両流路にまたがって
複数本のヒートバイブが配置されているものである。
In the heat exchanger according to the present invention, a high-temperature gas flow path and a low-temperature gas flow path are formed in the casing by a partition wall, and both ends of the high-temperature gas flow path are opened to form a high-temperature gas inlet and a high-temperature gas outlet. The end of the high-temperature gas outlet side is opened to serve as a low-temperature gas inlet, and the end of the high-temperature gas inlet side is closed, and the high-temperature gas inlet side of the high-temperature gas flow path is closed. A plurality of iron pipes are arranged in the section, with one end penetrating the partition wall and opening into the low temperature gas flow path, and the other end opening outside the casing. A plurality of heat vibrators are arranged to penetrate the wall and straddle both flow paths.

このような構成の熱交換器において、高温のり1気は、
高温気体入口からケーシング内に入り、高温気体流路を
通って高温気体出口から出ていく。一方、給気は、低温
気体入口からケーシング内に入って低温気体流路を通り
、鉄パイプ内を通ってケーシング外に出ていく。高温気
体入[1からケーシング内に入ってきた排気の有する熱
は、まず鉄パイプ内を通っている給気に伝えられる。そ
して、鉄パイプ内の給気に熱を奪われて混痘が低下した
1)1気はさらに高温気体流路内を進み、ビー1〜パイ
プの配置されている箇所に到る。づるど、ヒートバイブ
の高温気体流路内に位置り−る部分の作動液が加熱気化
ケ゛シめられ、このガス状作動液がヒー(〜パイプの低
温流路内に位置する部分に移動りる。ここで給気に一;
り冷却されて凝縮する。凝縮するさいに放たれた熱は給
気に伝えられて、給気が加熱される。
In a heat exchanger with such a configuration, 1 qi of high-temperature glue is
The hot gas enters the casing from the inlet, passes through the hot gas flow path, and exits from the hot gas outlet. On the other hand, the supply air enters the casing from the low-temperature gas inlet, passes through the low-temperature gas flow path, passes through the iron pipe, and exits the casing. The heat of the exhaust gas that enters the casing from the high-temperature gas inlet [1] is first transferred to the supply air passing through the iron pipe. Then, the 1) 1 air, which has been deprived of heat from the supply air in the iron pipe and has a reduced level of variola, further travels through the high-temperature gas flow path and reaches the location where the pipes are located. The working fluid in the part of the heat vibrator located in the high-temperature gas flow path is heated and vaporized, and this gaseous working fluid moves to the part of the heat pipe located in the low-temperature flow path. .Here's the supply.
It cools down and condenses. The heat released during condensation is transferred to the supply air, heating it.

こうして、排気からIJI熱が回収される。In this way, IJI heat is recovered from the exhaust gas.

この発明の熱交換器によれば、高温気体流路内に入って
きた給気の熱は、まず鉄バイブ内を通る給気に奪われる
ので、Jll気がヒートバイブの存在づる箇所に到った
ときには排気の温度は下がっている。したがって、ヒー
トバイブの作動液どして毒性の強いイオウ、水銀、ナト
リウム等を使用する必要がなく、水、フレオン等を使用
でき安全性が高い。
According to the heat exchanger of the present invention, the heat of the supply air that has entered the high-temperature gas flow path is first taken away by the supply air that passes through the iron vibrator, so that the heat does not reach the location where the heat vibrator is located. By this time, the exhaust temperature has dropped. Therefore, there is no need to use highly toxic sulfur, mercury, sodium, etc. as the working fluid of the heat vibrator, and water, Freon, etc. can be used, resulting in high safety.

この発明を、以下実施例を示す図面を参照しながら説明
づる。以下の説明において、前後は第2図を基準にし、
前とは第2図下側を指し、後と(よこれど反対側を指す
ものとする。また左右とは後方に向っていうものとする
The present invention will be explained below with reference to the drawings showing embodiments. In the following explanation, the front and back are based on Figure 2,
Front refers to the bottom side of Figure 2, and rear refers to the opposite side. Also, left and right refers to the rear side.

熱交換器(′1)のケーシング(2)は、横断面横長方
形の角筒状であり、その内部が、左右方向に伸びる仕切
壁(3)によって前後に仕切られて、左右方向に伸びる
高温気体流路(4)と低温気体流路(5)とが形成され
ている。高温気体流路(4)の両端は間口してd3す、
右端間に1が高温気体人口(6)とされ左端間口が高温
気休出D(7)とされている。低温気体流路(5)は、
左端が開口されるととbに右端が閉塞されており、左端
開口が低温気体入口(8)とされている。高温気体流路
(4)内の高温気体入口(6) ’、、Tりの部分には
、一端が仕切壁(3)を貫通して低温気体流路(5)に
開口し、他端がケーシング(2)側壁を貫通して外部に
開口した鉄パイプ(9)が、上下左右に並んで複数本配
置されている。また、鉄パイプ(9)J:りも左側の部
分に、仕切壁(3)を貫通し両流路(4)<5)にまた
がったヒートパイプ(10)が上下左右に並/Vで複数
本配置されている。
The casing (2) of the heat exchanger ('1) has a rectangular cylindrical shape with a horizontally rectangular cross section, and the inside thereof is partitioned into front and rear by a partition wall (3) extending in the left-right direction. A gas flow path (4) and a low temperature gas flow path (5) are formed. Both ends of the high temperature gas flow path (4) have a frontage of d3,
1 between the right end is the high temperature gas population (6) and the left end is the high temperature air outlet D (7). The low temperature gas flow path (5) is
When the left end is opened, the right end is closed, and the left end opening is used as a low temperature gas inlet (8). The high temperature gas inlet (6) in the high temperature gas flow path (4) has one end penetrating the partition wall (3) and opening into the low temperature gas flow path (5), and the other end opening into the low temperature gas flow path (5). A plurality of iron pipes (9) penetrating the side wall of the casing (2) and opening to the outside are arranged vertically and horizontally. In addition, iron pipe (9) J: On the left side of the rim, there are multiple heat pipes (10) that penetrate the partition wall (3) and straddle both channels (4) < 5) vertically and horizontally in parallel/V. Books are well placed.

鉄パイプ(9)の内Bl+には長手方向に伸びるアルミ
ニウム製(アルミニウム合金製も含む。
Bl+ of the iron pipes (9) is made of aluminum (including aluminum alloy) and extends in the longitudinal direction.

以下同じ)インナーフィン(11)が配置されて鉄バイ
ブ(9)内面にろう付(プされている。また畝バイブ(
9)の外周面にはラジアル状のアルミニウム製アウター
フィン(12)が装着されて鉄パイプ(9)にろう(=
jけされている。両フィン(11)  (12)を鉄パ
イプ(9)にろう付けするために、鉄パイプ(9)の内
外両面には予めアルミニウムメッキR(図示略)が形成
されている。インナーフィン(11)は、横断面三叉形
で、鉄パイプ(9)の中心から放射状に伸びかつ一体化
された3枚の薄板からなる。しかしながら、インブーフ
ィン(11)の形状および材質は上記のものに限定され
るわけではない。また、アウターフィン(12)の形状
および材質も上記のものに限定されない。鉄パイプ(9
)の数は、排気の温度を考慮して決定される。
The same applies hereafter) An inner fin (11) is arranged and brazed to the inner surface of the iron vibrator (9).
A radial aluminum outer fin (12) is attached to the outer peripheral surface of the iron pipe (9).
I'm being criticized. In order to braze both fins (11) and (12) to the iron pipe (9), aluminum plating R (not shown) is previously formed on both the inner and outer surfaces of the iron pipe (9). The inner fin (11) has a trifurcated cross section and is made up of three integrated thin plates extending radially from the center of the iron pipe (9). However, the shape and material of the in-boo fin (11) are not limited to those described above. Furthermore, the shape and material of the outer fin (12) are not limited to those described above. Iron pipe (9
) is determined by taking into account the temperature of the exhaust gas.

ピー1〜バイブ(10)は、高温気体流路(4)内に位
置する部分が蒸発部とされ、低温気体流路(5)内に位
置する部分が凝縮部とされている。またヒートパイプ(
10)は、外周面にアルミニウムメッキ層が形成されl
ζ鉄パイプ(9ンと同径の鉄パイプかlうなり、外周面
にアルミニウム製ラジアルフィン(14)が装着されて
ろう付けされている。全てのヒートパイプ(10)のう
ち右側に位置づるものは作動液として水が注入され、左
側に位置するものは作動液として71ノオンが封入され
ている。
In the pipe 1 to the vibrator (10), the portion located in the high temperature gas flow path (4) serves as an evaporation portion, and the portion located in the low temperature gas flow path (5) serves as a condensation portion. Also heat pipe (
10) has an aluminum plating layer formed on the outer peripheral surface.
Zeta iron pipe (iron pipe with the same diameter as the 9-inch iron pipe, aluminum radial fins (14) are attached to the outer circumferential surface and brazed. The one located on the right side of all the heat pipes (10) Water is injected as a working fluid, and the one on the left is filled with 71 NOON as a working fluid.

この熱交換器(1)において、高温の排気は、第2図に
実線矢印(Δ)で示1ように、高温気体入C1(6)か
ら高温気体流路(4)内に入り、流路(4)内を通って
高温気体出口(7)から出ていく。一方、給気は、第2
図に破線矢印(B)で示り゛ように、低温気体入口(8
)から低温気体流路(5)内に入り、流路(5)内を通
りかつ鉄パイプ(9)内を通ってケーシング(2)外に
出でいく。高温気体入口(6)から高温気体流路(4)
内に入ってきた排気の有する熱は、まずアウターフィン
(12)およびインナーフィン(11)の助けをかりて
鉄バイブ(9)内を通る給気に伝えられる。鉄パイプ(
9)内の給気に熱を奪われて温度の低下した排気は、ざ
らに高温気体流路(4)内を進みヒートパイプ(10)
が配置されている箇所に到る。すると、ヒートパイプ(
10)の蒸発部の作動液が加熱気化せしめられ、このガ
ス状作動流が凝縮部へ移動し、ここで給気により冷2J
1されて再び凝縮する。凝縮するさいに放たれた熱は給
気に伝えられて給気が加熱さる。こうして排気から排熱
が回収される。
In this heat exchanger (1), high-temperature exhaust gas enters the high-temperature gas flow path (4) from the high-temperature gas input C1 (6) as indicated by the solid arrow (Δ) in FIG. (4) and exits from the high temperature gas outlet (7). On the other hand, the air supply
As shown by the broken line arrow (B) in the figure, the low temperature gas inlet (8
), the low temperature gas enters the flow path (5), passes through the flow path (5), passes through the iron pipe (9), and exits the casing (2). High temperature gas flow path (4) from high temperature gas inlet (6)
The heat of the exhaust gas that has entered is first transferred to the supply air passing through the iron vibe (9) with the help of the outer fins (12) and inner fins (11). Iron pipe (
9) The exhaust gas, whose temperature has decreased due to heat taken away from the supply air inside, roughly moves through the high temperature gas flow path (4) and passes through the heat pipe (10).
Reach the location where is located. Then, the heat pipe (
The working fluid in the evaporator section 10) is heated and vaporized, and this gaseous working flow moves to the condensing section, where it is cooled to 2J by supply air.
1 and condenses again. The heat released during condensation is transferred to the supply air and heats the supply air. In this way, waste heat is recovered from the exhaust gas.

」二記実施例においては、鉄パイプ(9)にインナーフ
ィン(11)およびアウターフィン(12〉が設(プら
れ、ヒートパイプ(10)の外周面にラジアルフィン(
14)が設りられているので、熱交換効率が一層向上す
るが、これらのフィンは必ずしも必要としない。また上
記実施例においては、鉄パイプ(9)およびヒートパイ
プ(10)の径が等しいので、ケーシング(2)への配
置作業が簡単に行なえるが、必ずしも両者を同径とする
必要はない。
In the second embodiment, an inner fin (11) and an outer fin (12) are provided on the iron pipe (9), and a radial fin (12) is provided on the outer peripheral surface of the heat pipe (10).
14), the heat exchange efficiency is further improved, but these fins are not necessarily required. Further, in the above embodiment, since the diameters of the iron pipe (9) and the heat pipe (10) are the same, the work of arranging them in the casing (2) can be easily performed, but it is not necessary that both have the same diameter.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の実施例を示し、第1図は斜視図、第2
図は水平断面図、第3図は鉄パイプの横断面図である。 (1)・・・熱交換器、(2)・・・ケーシング、(3
)・・・仕切壁、(4)・・・高温気体流路、(5)・
・・低温気体流路、(6)・・・高温気体入口、(7〉
・・・高温気体出口、(8)・・・低温気体入口、(9
)・・・鉄パイプ、(10)・・・ヒートパイプ。 以  上 外4名
The drawings show an embodiment of the invention, with the first being a perspective view and the second being a perspective view.
The figure is a horizontal cross-sectional view, and Figure 3 is a cross-sectional view of the iron pipe. (1)...Heat exchanger, (2)...Casing, (3
)...Partition wall, (4)...High temperature gas flow path, (5)...
・・Low temperature gas flow path, (6) ・・High temperature gas inlet, (7>
...High temperature gas outlet, (8)...Low temperature gas inlet, (9
)...Iron pipe, (10)...Heat pipe. 4 people other than the above

Claims (1)

【特許請求の範囲】[Claims] ケーシング(2)内に、仕切壁(3)によつ゛(高温気
体流路(4)と低温気体流路く5)とが形成されてJ3
す、高温気体流路(4)の両端が開口されて高温気体人
口(6)と高温気体出口(7)となされ、低温気体流路
(5)における高温気体出口(7)、側の端部が開口さ
れて低温気体入口(8)となされるとともに高温気体入
口(6)側の端部が閉塞され、高温気体流路(4)内の
高温気体入口(6)寄りの部分に、一端が仕切壁(3)
を貫通して低温気体流路(5)に間OL、他端がケーシ
ング(2)外に間口した鉄パイプ(9)が複数本配置さ
れ、鉄パイプ(9)J、りも高温気体出口〈7)側の部
分に、仕切壁(3)を貫通しかつ両流路(4)(5)に
またがって複数本のヒートパイプ(10)が配置されて
いる熱交換器。
In the casing (2), a high temperature gas flow path (4) and a low temperature gas flow path 5 are formed by the partition wall (3).
Both ends of the high-temperature gas flow path (4) are opened to form a high-temperature gas population (6) and a high-temperature gas outlet (7), and the end on the side of the high-temperature gas outlet (7) in the low-temperature gas flow path (5) is opened to serve as a low-temperature gas inlet (8), and the end on the high-temperature gas inlet (6) side is closed. Partition wall (3)
A plurality of iron pipes (9) are arranged in the low temperature gas flow path (5) through the OL and the other end is open to the outside of the casing (2). 7) A heat exchanger in which a plurality of heat pipes (10) are arranged penetrating the partition wall (3) and spanning both flow paths (4) and (5).
JP9670283A 1983-05-30 1983-05-30 Heat exchanger Pending JPS59221594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9670283A JPS59221594A (en) 1983-05-30 1983-05-30 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9670283A JPS59221594A (en) 1983-05-30 1983-05-30 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS59221594A true JPS59221594A (en) 1984-12-13

Family

ID=14172089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9670283A Pending JPS59221594A (en) 1983-05-30 1983-05-30 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS59221594A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103376012A (en) * 2012-04-20 2013-10-30 财团法人工业技术研究院 Heat exchange device
CN103822512A (en) * 2013-12-03 2014-05-28 天津华能北方热力设备有限公司 Heat-pipe type multimedia gas heating apparatus
CN104713394A (en) * 2015-03-24 2015-06-17 华为技术有限公司 Heat radiator and heat pipe heat radiation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103376012A (en) * 2012-04-20 2013-10-30 财团法人工业技术研究院 Heat exchange device
CN103822512A (en) * 2013-12-03 2014-05-28 天津华能北方热力设备有限公司 Heat-pipe type multimedia gas heating apparatus
CN104713394A (en) * 2015-03-24 2015-06-17 华为技术有限公司 Heat radiator and heat pipe heat radiation system

Similar Documents

Publication Publication Date Title
JPH0359397A (en) Tubular heat exchanger with fin
FR2583864B1 (en) DEVICE FOR HEAT EXCHANGING OF THE EXCHANGER TYPE WITH PERFORATED PLATES HAVING IMPROVED SEALING.
JPH10176874A (en) Heat-exchanger
JPS61201996A (en) Heat-pipe type hydrogen storage device
JPH0550668B2 (en)
JPS61107062A (en) Absorption type heat pump
JPS59221594A (en) Heat exchanger
JPS592838B2 (en) Gas venting method and device for heat pipe heat exchanger
JPS62294897A (en) Heat accumulation type heat exchanger
JP2971685B2 (en) Heat exchanger and method of manufacturing the same
JPS5929986A (en) Heat medium circulating type heat exchanger
JPS6222779Y2 (en)
JPS60188795A (en) Heat exchanger
JPH0776653B2 (en) Direct contact type condenser and heat cycle device using the same
JP3175284B2 (en) Chemical heat pump
JPS63131962A (en) Solid absorption heat pump
JP2554787B2 (en) Absorption heat pump device
JPS593273Y2 (en) Heat exchanger
JPS5899661A (en) Engine waste-heat recovery absorption type cold and hot water machine
JPS60174489A (en) Heat transfer system for waste heat recovery
US1086767A (en) Condensing apparatus.
JPS58205038A (en) Pressure reducing boiler
JPS5937437B2 (en) Waste heat recovery system
JPS58213167A (en) Heat recovery absorption heat pump
JPS59501279A (en) Power unit for absorption heat exchange system