JPS593273Y2 - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS593273Y2
JPS593273Y2 JP15829581U JP15829581U JPS593273Y2 JP S593273 Y2 JPS593273 Y2 JP S593273Y2 JP 15829581 U JP15829581 U JP 15829581U JP 15829581 U JP15829581 U JP 15829581U JP S593273 Y2 JPS593273 Y2 JP S593273Y2
Authority
JP
Japan
Prior art keywords
pressure
low
chamber
heat
pressure heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15829581U
Other languages
Japanese (ja)
Other versions
JPS57100071U (en
Inventor
剛 鈴木
Original Assignee
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社 filed Critical 三井造船株式会社
Priority to JP15829581U priority Critical patent/JPS593273Y2/en
Publication of JPS57100071U publication Critical patent/JPS57100071U/ja
Application granted granted Critical
Publication of JPS593273Y2 publication Critical patent/JPS593273Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案はヒートパイプを用いた熱交換器に関するもので
ある。
[Detailed Description of the Invention] The present invention relates to a heat exchanger using heat pipes.

従来、ヒートパイプは優れた伝熱素子として知られ、ま
たヒートパイプを用いた熱交換器も公知である。
Conventionally, heat pipes are known as excellent heat transfer elements, and heat exchangers using heat pipes are also known.

良く知られるようにヒートパイプは、その管内に作動流
体を封じ込んで加熱側及び冷却側に対し蒸発及び凝縮を
行わしめ、熱輸送を潜熱の形で行わしめるため、加熱部
と冷却部の温度差を小さく保ちながら、パイプ断面積当
りの熱輸送量を大きくすることが出来る。
As is well known, a heat pipe confines a working fluid within the pipe and evaporates and condenses it to the heating side and cooling side, and transfers heat in the form of latent heat. It is possible to increase the amount of heat transported per cross-sectional area of the pipe while keeping the difference small.

又熱交換器に組込んだ場合、加熱側及び被加熱側流体の
それぞれをパイプ外で扱うことが出来るため、フィンに
よる伝熱面積が大きくとれるので装置がコンパクトにな
る。
Furthermore, when it is incorporated into a heat exchanger, the heating side and heated side fluids can be handled outside the pipes, so the heat transfer area by the fins can be increased, making the device compact.

しがしながら、例えばここに廃熱回収のための熱交換器
として考えた場合、出来る限り廃熱を回収する(逃げる
温度を出来るだけ小さくする)ことが要望され、従って
廃熱源の温度降下に伴って沸点の異なった伝熱素子(ヒ
ートパイプ)が必要となり、こうして構成された廃熱回
収用熱交換器も開発されているが、装置は意外と大きく
且つ複雑であり、保守等が頻繁であり、信頼性に劣る等
の欠点を有していた。
However, for example, when considering this as a heat exchanger for waste heat recovery, it is desired to recover as much waste heat as possible (reduce the temperature that escapes as much as possible), and therefore it is necessary to reduce the temperature of the waste heat source. Accordingly, heat transfer elements (heat pipes) with different boiling points are required, and heat exchangers configured in this way for waste heat recovery have been developed, but the devices are surprisingly large and complex, and require frequent maintenance. However, it had drawbacks such as poor reliability.

本考案はこのような従来技術の欠点を解消するためにな
されたもので、工場や各種の熱機関等からの廃熱回収を
効果的に行なって廃熱エネルギーの有効利用を図ること
を目的とするもののである。
The present invention was developed in order to eliminate these drawbacks of the conventional technology, and its purpose is to effectively recover waste heat from factories and various heat engines, etc., and to utilize waste heat energy effectively. It is something that you do.

この目的を遠戚するため、本考案の熱交換器は高圧加熱
室に高圧冷却室を並設すると共に低圧加熱室に低圧冷却
室を並設し、前記高圧加熱室と前記低圧加熱室を連通さ
せて高圧加熱室から低圧加熱室に向って加熱媒体を通過
させ、また前記高圧冷却室と前記低圧冷却室を連通させ
て低圧冷却室から高圧冷却室に向って被加熱流体を通過
させ、前記高圧加熱室から高圧冷却室に跨ってヒートパ
イブを設置し、該ヒートパイプは前記高圧加熱室内に介
在する上半分が高圧加熱部を成すと共に、下半分が高圧
冷却部を威し、前記低圧加熱室から低圧冷却室に跨って
ヒートパイプを設置し、該ヒートパイプは前記低圧加熱
室内に介在する上半分が低圧加熱部を威すと共に、下半
分が低圧冷却部を威し、前記低圧冷却部と前記高圧加熱
部とを導管によって連通し、前記高圧冷却部と前記低圧
加熱部とをリザーバー及びフラッシュ弁を含む導管によ
り連通させ、かつ前記リザーバーにパージ管を設置した
ことを特徴とするものである。
In order to achieve this objective, the heat exchanger of the present invention has a high-pressure cooling chamber installed in parallel with the high-pressure heating chamber, and a low-pressure cooling chamber installed in parallel with the low-pressure heating chamber, so that the high-pressure heating chamber and the low-pressure heating chamber are connected. to cause the heating medium to pass from the high pressure heating chamber to the low pressure heating chamber, and to communicate the high pressure cooling chamber and the low pressure cooling chamber to allow the fluid to be heated to pass from the low pressure cooling chamber to the high pressure cooling chamber, A heat pipe is installed spanning from a high-pressure heating chamber to a high-pressure cooling chamber, and the upper half of the heat pipe interposed in the high-pressure heating chamber forms a high-pressure heating section, and the lower half serves as a high-pressure cooling section, and the heat pipe serves as a high-pressure cooling section. A heat pipe is installed across the low-pressure cooling chamber, and the heat pipe has an upper half interposed in the low-pressure heating chamber that threatens the low-pressure heating section, and a lower half that impinges the low-pressure cooling section. The high-pressure heating section is communicated with a conduit, the high-pressure cooling section and the low-pressure heating section are communicated with a conduit including a reservoir and a flush valve, and a purge pipe is installed in the reservoir. .

以下、添付図面に即して本考案をさらに説明するが、理
解を容易にするため熱機関(ボイラ)の廃熱回収に適用
した例について説明することにする。
The present invention will be further described below with reference to the accompanying drawings, but for ease of understanding, an example in which the invention is applied to waste heat recovery from a heat engine (boiler) will be described.

まず、ヒートパイプを利用する熱交換器と、従来のよう
に蓄熱形回転式熱交換器を使用し、燃焼用空気の昇温に
より熱効率を上げる空気予熱器形の廃熱回収用熱交換器
とを第1図に即して比較説明する。
First, there is a heat exchanger that uses heat pipes, and a heat exchanger for waste heat recovery that uses an air preheater that uses a conventional regenerative rotary heat exchanger to increase thermal efficiency by raising the temperature of combustion air. will be compared and explained based on FIG.

同図において、横軸に熱交換器に沿っての距離L、縦軸
に温度Tをとると、廃熱源であるガスの温度降下はGに
て示される。
In the figure, when the horizontal axis is the distance L along the heat exchanger and the vertical axis is the temperature T, the temperature drop of the gas that is the waste heat source is indicated by G.

この温度降下に伴って従来の蓄熱形回転式空気予熱器を
使用した廃熱回収用熱交換器の場合の被加熱側(空気)
の温度勾配は、はぼ直線状の線Rで示される。
Due to this temperature drop, the heated side (air) in the case of a heat exchanger for waste heat recovery using a conventional heat storage type rotary air preheater
The temperature gradient of is shown by a nearly straight line R.

一方、本考案および他のヒートパイプを利用した方式に
よる被加熱側の温度勾配は曲線Hによって示される。
On the other hand, the temperature gradient on the heated side according to the present invention and other methods using heat pipes is shown by curve H.

この相違はヒートパイプを利用した熱交換器で、その作
動流体の温度変化は折線Wで示されている(相変化を伴
うため)ように、被加熱側が、それに沿うように温度勾
配となるからである。
This difference is because the heat exchanger uses a heat pipe, and the temperature change of the working fluid is shown by the broken line W (accompanied by a phase change), and the heated side has a temperature gradient along it. It is.

これを更に伝熱の面から説明すれば、通常ガス/空気の
熱交換は伝熱壁を介するそれぞれの管壁の熱抵抗は著し
く大きいため(伝熱面の温度差が大きい)、曲線Hのよ
うにならずにほぼ直線Rのようになる。
To further explain this from the perspective of heat transfer, in normal gas/air heat exchange, the thermal resistance of each tube wall via the heat transfer wall is extremely large (the temperature difference between the heat transfer surfaces is large), so the curve H Instead of looking like this, it becomes almost like a straight line R.

ヒートパイプを介すると、中間に相変化を伴う媒質が介
在するため加熱側(ガス)、被加熱側(空気)の伝熱面
つまりヒートパイプの管壁に於てヒートパイプの作動流
体側に著しい熱抵抗の小さい(ヒートパイプの管内壁面
側)境界層を形成するため、伝熱面での温度差が小さく
なることにより空気側の温度上昇勾配は上に凸の曲線を
形成するのである。
When using a heat pipe, there is a medium that undergoes a phase change in between, so the heat transfer surface on the heating side (gas) and the heated side (air), that is, the tube wall of the heat pipe, has a significant influence on the working fluid side of the heat pipe. Since a boundary layer with low thermal resistance (on the inner wall surface side of the heat pipe) is formed, the temperature difference on the heat transfer surface becomes smaller, and the temperature increase gradient on the air side forms an upwardly convex curve.

つまり伝熱面全体の熱貫流率(総括伝熱係数)が増大し
たことを意味する。
This means that the heat transfer coefficient (overall heat transfer coefficient) of the entire heat transfer surface has increased.

したがって、ヒートパイプ 装置全体としての伝熱面積を著しく小さくすることがで
きる。
Therefore, the heat transfer area of the entire heat pipe device can be significantly reduced.

ヒートパイプは上記のように顕著な利点を有するので、
従来から熱交換器によくもちいられており、その一例を
説明すれば、第2図は従来提案されている公知のヒート
パイプを用いた廃熱回収用の熱交換器を示すものであり
、この公知のヒートパイプを用いた方法によるヒートパ
イプは下部を加熱側、上部を冷却側としている。
Since heat pipes have remarkable advantages as mentioned above,
It has traditionally been commonly used in heat exchangers, and to give an example, Figure 2 shows a conventionally proposed heat exchanger for waste heat recovery using a well-known heat pipe. A heat pipe according to a method using a known heat pipe has a lower part as a heating side and an upper part as a cooling side.

ヒートパイプ内には有機媒体あるいは水を作動流体とす
る熱媒体が封入されているため、パイプ内圧力は加熱側
の温度によって決定づけられるため、廃熱回収を行うよ
うな場合はその回収熱量に制限を有する。
Heat pipes contain a heating medium with organic medium or water as the working fluid, so the pressure inside the pipe is determined by the temperature on the heating side, so when recovering waste heat, there is a limit to the amount of heat recovered. has.

それを回避するため沸点の異なる作動流体を用いて図の
ように高圧側1,4及び低圧側2,3のように分けて配
置する必要がある。
In order to avoid this, it is necessary to use working fluids with different boiling points and arrange them separately into high pressure sides 1 and 4 and low pressure sides 2 and 3 as shown in the figure.

こうして優れた伝熱素子としてのヒートパイプを有効に
廃熱回収用熱交換器として構成し、従来の回転式空気予
熱器等よりコンパクトに設計することが出来た。
In this way, the heat pipe, which is an excellent heat transfer element, can be effectively configured as a heat exchanger for waste heat recovery, and the design can be made more compact than conventional rotary air preheaters.

しかしながらこの方法は、図中のパージ管22’.22
″よりヒートパイプ内に発生する作動流体以外のガスを
定期的にパージするため設けるものであり、図示しない
が作動流体と分離する機構等を有し、作動流体を封入す
るヒートパイプが各々異なると、それぞれに対しパージ
設備を設ける必要があり、装置が複雑となる欠点がある
However, in this method, the purge pipe 22'. 22
This is provided to periodically purge gas other than the working fluid generated in the heat pipe.Although not shown, it has a mechanism to separate it from the working fluid. , it is necessary to provide purge equipment for each, which has the disadvantage of complicating the equipment.

又多様な負荷の変動に対して従来方式のヒートパイプで
は封入されている作動流体を負荷変動のそれぞれの温度
に対応した最適な圧力を選択出来ぬ欠点を有し、この面
での不都合があった。
In addition, conventional heat pipes have the disadvantage that it is not possible to select the optimal pressure for the enclosed working fluid in response to various load fluctuations, which is inconvenient in this respect. Ta.

本考案はかかる従来技術の欠点を解消するもので、その
ため第3図に例示するような構成にしたものである。
The present invention is intended to eliminate the drawbacks of the prior art, and therefore has a configuration as illustrated in FIG. 3.

本実施例において、1は熱交換器の高圧加熱室、2は低
圧加熱室、3は低圧冷却室、4は高圧冷却室、5と6は
それぞれ加熱流体入口と出口、7と8はそれぞれ冷却流
体入口と出口である。
In this example, 1 is a high-pressure heating chamber of the heat exchanger, 2 is a low-pressure heating chamber, 3 is a low-pressure cooling chamber, 4 is a high-pressure cooling chamber, 5 and 6 are heating fluid inlets and outlets, respectively, and 7 and 8 are cooling chambers, respectively. Fluid inlet and outlet.

前記高圧加熱室1から高圧冷却室4に跨ってヒートパイ
プ30を設置し、該ヒートパイプ30は前記高圧加熱室
1内に介在する上半分が高圧加熱部9を形成すると共に
、下半分が高圧冷却部12を形成する。
A heat pipe 30 is installed spanning from the high-pressure heating chamber 1 to the high-pressure cooling chamber 4, and the upper half of the heat pipe 30 interposed in the high-pressure heating chamber 1 forms the high-pressure heating section 9, and the lower half forms the high-pressure heating section 9. A cooling section 12 is formed.

また前記低圧加熱室2から低圧冷却室3に跨ってヒート
パイプ40を設置し、該ヒートパイプ40は前記低圧加
熱室2内に介在する上半分が低圧加熱部10を形成する
と共に、下半分が低圧冷却部11を形成する。
Further, a heat pipe 40 is installed spanning from the low pressure heating chamber 2 to the low pressure cooling chamber 3, and the upper half of the heat pipe 40 interposed in the low pressure heating chamber 2 forms the low pressure heating section 10, and the lower half forms the low pressure heating section 10. A low pressure cooling section 11 is formed.

9 a 、10 a 、lla 、12aはそれぞれの
加熱部9゜10および冷却部11.12に設けられたフ
ィンである。
9 a , 10 a , lla , and 12 a are fins provided in the respective heating sections 9 and 10 and cooling sections 11 and 12 .

この熱交換器において、たとえば熱機関(ボイラ)から
出た高温の廃ガ・スは矢印Aで示すように高圧加熱室1
の加熱流体人口5から流入し、高圧加熱部9で熱を与え
られて低圧加熱室2に送られ、さらに低圧加熱部10で
再び熱を与えられて加熱流体出口6から排出される。
In this heat exchanger, for example, high-temperature waste gas discharged from a heat engine (boiler) is transferred to a high-pressure heating chamber as shown by arrow A.
The heated fluid flows in from the heated fluid port 5, is given heat by the high-pressure heating section 9, is sent to the low-pressure heating chamber 2, is further given heat again by the low-pressure heating section 10, and is discharged from the heated fluid outlet 6.

一方、被加熱側の流体(空気)は矢印Bで示すように低
圧冷却室3の冷却流偉人ロアから該低圧冷却室3内に流
入し、低圧加熱部10で蒸発したヒートパイプ内の作動
流体は低圧冷却部11で凝縮し、空気に対して凝縮潜熱
を与えるので、空気の温度は上昇する。
On the other hand, the fluid (air) on the heated side flows into the low-pressure cooling chamber 3 from the cooling flow lower part of the low-pressure cooling chamber 3 as shown by arrow B, and the working fluid in the heat pipe evaporates in the low-pressure heating section 10. is condensed in the low-pressure cooling section 11 and imparts latent heat of condensation to the air, so the temperature of the air increases.

その後、空気はさらに高圧冷却室4に送られ、高圧加熱
部9で蒸発したヒートパイプ内の作動流体は高圧冷却部
12で凝縮して凝縮潜熱を空気に与え、それにより空気
はさらに昇温して高温の空気となり、冷却流体出口8か
ら排出されJ所期の熱交換をすべて完了する。
After that, the air is further sent to the high-pressure cooling chamber 4, and the working fluid in the heat pipe that has evaporated in the high-pressure heating section 9 is condensed in the high-pressure cooling section 12, imparting latent heat of condensation to the air, thereby further increasing the temperature of the air. The air becomes high temperature air and is discharged from the cooling fluid outlet 8, completing all of the desired heat exchange.

このような熱交換の過程において、低圧域で凝縮した作
動流体は低圧出口ヘッダ−15からポンプ18により昇
圧されて導管20を介して高圧入口ヘッダ−13に流入
する。
In the process of heat exchange, the working fluid condensed in the low pressure region is pressurized by the pump 18 from the low pressure outlet header 15 and flows into the high pressure inlet header 13 through the conduit 20.

一方、高圧入口ヘッダー13から高圧域に流入して凝縮
した作動流体は重力により高圧出口ヘッダ−16からり
ザーバ−21の中に流入する。
On the other hand, the condensed working fluid that flows into the high pressure region from the high pressure inlet header 13 flows into the reservoir 21 from the high pressure outlet header 16 due to gravity.

リザーバー21内に貯留される作動流体は、負荷の変動
に対応して液面制御を行なうフラッシュ弁17を介して
減圧され、導管19を通って低圧入口ヘッダ−14に流
入し、低圧加熱部10でフラッシュ蒸発した後、低圧加
熱室2から低圧冷却室3、高圧冷却室4、高圧加熱室5
を経て該低圧加熱室2へと強制的に再循環する。
The working fluid stored in the reservoir 21 is reduced in pressure via the flush valve 17 that controls the liquid level in response to load fluctuations, flows into the low pressure inlet header 14 through the conduit 19, and flows into the low pressure heating section 10. After flash evaporation in the low pressure heating chamber 2, low pressure cooling chamber 3, high pressure cooling chamber 4, high pressure heating chamber 5
is forcibly recirculated to the low-pressure heating chamber 2 through the

なお、本実施例におけるパージ管22は従来のものと同
一の機能を果たさせるために設けられるものであるが、
その本数は1本でよい。
Note that the purge pipe 22 in this embodiment is provided to perform the same function as the conventional one, but
The number may be one.

さらに、パージガス等の後処理設備(図示せず)も設け
られるが、その後処理設備も1つで足り、装置が非常に
簡単になる。
Further, post-processing equipment (not shown) such as purge gas is also provided, but only one post-processing equipment is required, making the apparatus extremely simple.

上記のように、本考案は、高圧加熱室1に高圧冷却室4
を並設すると共に低圧加熱室2に低圧冷却室3を並設し
、前記高圧加熱室1と前記低圧加熱室2を連通させて高
圧加熱室1から低圧加熱室2に向って加熱媒体を通過さ
せ、また前記高圧冷却室4と前記低圧冷却室3を連通さ
せて低圧冷却室3から高圧冷却室4に向って被加熱流体
を通過させ、前記高圧加熱室1から高圧冷却室4に跨っ
てヒートパイプ30を設置し、該ヒートパイプ30は前
記高圧加熱室1内に介在する上半分が高圧加熱部9を威
すと共に、下半分が高圧冷却部12を威し、前記低圧加
熱室2から低圧冷却室3に跨ってヒートパイプ40を設
置し、該ヒートパイプ40は前記低圧加熱室2内に介在
する上半分が低圧加熱部10を威すと共に、下半分が低
圧冷却部11を威し、前記低圧冷却部11と前記高圧加
熱部9とを導管20によって連通し、前記高圧冷却部1
2と前記低圧加熱部10とをリザーバー21及びフラシ
ュ弁17を含む導管19により連通させ、かつ前記リザ
ーバー21にパージ管22を設置したので、ヒートパイ
プの作動液体が低圧冷却室3から高圧加熱室1に流れ、
更に、高圧冷却室4から低圧加熱室2に流れ、熱回収効
率を低下させることなく装置自体を簡略化することが出
来るようになる。
As mentioned above, the present invention has a high pressure heating chamber 1 and a high pressure cooling chamber 4.
are installed in parallel, and a low-pressure cooling chamber 3 is installed in parallel with the low-pressure heating chamber 2, and the high-pressure heating chamber 1 and the low-pressure heating chamber 2 are communicated with each other, so that the heating medium passes from the high-pressure heating chamber 1 toward the low-pressure heating chamber 2. Furthermore, the high pressure cooling chamber 4 and the low pressure cooling chamber 3 are communicated with each other to allow the fluid to be heated to pass from the low pressure cooling chamber 3 to the high pressure cooling chamber 4, and from the high pressure heating chamber 1 to the high pressure cooling chamber 4. A heat pipe 30 is installed, and the upper half of the heat pipe 30 located in the high-pressure heating chamber 1 acts on the high-pressure heating section 9, and the lower half acts on the high-pressure cooling section 12, and the heat pipe 30 is arranged in the high-pressure heating chamber 1. A heat pipe 40 is installed across the low-pressure cooling chamber 3, and the upper half of the heat pipe 40 located in the low-pressure heating chamber 2 threatens the low-pressure heating section 10, and the lower half threatens the low-pressure cooling section 11. , the low-pressure cooling section 11 and the high-pressure heating section 9 are connected through a conduit 20, and the high-pressure cooling section 1
2 and the low-pressure heating section 10 are communicated through a conduit 19 including a reservoir 21 and a flush valve 17, and a purge pipe 22 is installed in the reservoir 21, so that the working fluid of the heat pipe flows from the low-pressure cooling chamber 3 to the high-pressure heating chamber. Flows to 1,
Furthermore, since the heat flows from the high-pressure cooling chamber 4 to the low-pressure heating chamber 2, the apparatus itself can be simplified without reducing heat recovery efficiency.

すなわち、本考案によれば、パージ管22及びパージガ
スなどの処理設備が一つで足りるので、その分だけ装置
自体は構造が簡単になると言う利点がある。
That is, according to the present invention, since only one purge pipe 22 and one processing equipment for purge gas are required, the structure of the apparatus itself is simplified accordingly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は各種熱交換器における距離と温度との関係をグ
ラフで示す図、第2図は従来のヒートパイプを用いた熱
交換器の図式的説明図、第3図は本考案による熱交換器
の一実施例の図式的説明図である。 1・・・・・・高圧加熱室、2・・・・・・低圧加熱室
、3・・・・・・低圧冷却室、4・・・・・・高圧冷却
室、5・・・・・・加熱流体入口、6・・・・・・加熱
流体出口、7・・・・・・冷却流体入口、8・・・・・
・冷却流体出口、9・・・・・・ヒートパイプの高圧加
熱部、10・・・・・・低圧加熱部、11・・・・・・
低圧冷却部、12・・・・・高圧冷却部、17・・・・
・・フラッシュ弁、18・・・・・・ポンプ、21・・
・・・・リザーバー、22・・・・・・パージ管。
Figure 1 is a graph showing the relationship between distance and temperature in various heat exchangers, Figure 2 is a schematic illustration of a conventional heat exchanger using a heat pipe, and Figure 3 is a heat exchanger according to the present invention. FIG. 2 is a schematic illustration of one embodiment of the vessel. 1...High pressure heating chamber, 2...Low pressure heating chamber, 3...Low pressure cooling chamber, 4...High pressure cooling chamber, 5...・Heating fluid inlet, 6... Heating fluid outlet, 7... Cooling fluid inlet, 8...
・Cooling fluid outlet, 9...High pressure heating part of heat pipe, 10...Low pressure heating part, 11...
Low pressure cooling section, 12... High pressure cooling section, 17...
...Flush valve, 18...Pump, 21...
...Reservoir, 22...Purge pipe.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 高圧加熱室1に高圧冷却室4を並設すると共に低圧加熱
室2に低圧冷却室3を並設し、前記高圧加熱室1と前記
低圧加熱室2を連通させて高圧加熱室1から低圧加熱室
2に向って加熱媒体を通過させ、また前記高圧冷却室4
と前記低圧冷却室3を連通させて低圧冷却室3から高圧
冷却室4に向って被加熱流体を通過させ、前記高圧加熱
室1から高圧冷却室4に跨ってヒートパイプ30を設置
し、該ヒートパイプ30は前記高圧加熱室1内に介在す
る上半分が高圧加熱部9を威すと共に、下半分が高圧冷
却部12を威し、前記低圧加熱室2から低圧冷却室3に
跨ってヒートパイプ40を設置し、該ヒートパイプ40
は前記低圧加熱室2内に介在する上半分が低圧加熱部1
0を威すと共に、下半分が低圧冷却部11を威し、前記
低圧冷却部11と前記高圧加熱部9とを導管20によっ
て連通し、前記高圧冷却部12と前記低圧加熱部10と
をリザーバー21及びフラッシュ弁17を含む導管19
により連通させ、かつ前記リザーバー21にパージ管2
2を設置したことを特徴とする熱交換器。
A high-pressure cooling chamber 4 is installed in parallel with the high-pressure heating chamber 1, and a low-pressure cooling chamber 3 is installed in parallel with the low-pressure heating chamber 2, and the high-pressure heating chamber 1 and the low-pressure heating chamber 2 are communicated with each other to allow low-pressure heating from the high-pressure heating chamber 1. A heating medium is passed towards the chamber 2 and the high pressure cooling chamber 4
The low pressure cooling chamber 3 is communicated with the low pressure cooling chamber 3 to allow the fluid to be heated to pass from the low pressure cooling chamber 3 to the high pressure cooling chamber 4, and a heat pipe 30 is installed spanning from the high pressure heating chamber 1 to the high pressure cooling chamber 4. The heat pipe 30 has an upper half interposed in the high-pressure heating chamber 1 that acts on the high-pressure heating section 9, and a lower half that acts on the high-pressure cooling section 12, and heats from the low-pressure heating chamber 2 to the low-pressure cooling chamber 3. A pipe 40 is installed, and the heat pipe 40
The upper half interposed in the low-pressure heating chamber 2 is the low-pressure heating section 1
At the same time, the lower half serves as a reservoir for the low-pressure cooling section 11, communicating the low-pressure cooling section 11 and the high-pressure heating section 9 through a conduit 20, and connecting the high-pressure cooling section 12 and the low-pressure heating section 10 as a reservoir. 21 and a conduit 19 including flush valve 17
and connect the purge pipe 2 to the reservoir 21.
A heat exchanger characterized in that 2 is installed.
JP15829581U 1981-10-26 1981-10-26 Heat exchanger Expired JPS593273Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15829581U JPS593273Y2 (en) 1981-10-26 1981-10-26 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15829581U JPS593273Y2 (en) 1981-10-26 1981-10-26 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS57100071U JPS57100071U (en) 1982-06-19
JPS593273Y2 true JPS593273Y2 (en) 1984-01-28

Family

ID=29950794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15829581U Expired JPS593273Y2 (en) 1981-10-26 1981-10-26 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS593273Y2 (en)

Also Published As

Publication number Publication date
JPS57100071U (en) 1982-06-19

Similar Documents

Publication Publication Date Title
CA1069115A (en) Method and apparatus for preheating combustion air while cooling a hot process gas
US5165472A (en) Heat exchanger with fluid injectors
JPS593273Y2 (en) Heat exchanger
JPS592838B2 (en) Gas venting method and device for heat pipe heat exchanger
CN110260694A (en) Plate journey shunt plate heat exchanger
JPH0665955B2 (en) Heat exchanger
KR100213303B1 (en) Waste gas regenerating heat exchanger using water flowing layer
JP3332494B2 (en) Waste gas heat recovery unit
JP2002162123A (en) Heat pump
CN109812795A (en) A kind of heat-exchange system
JP3184501B2 (en) Internal heat exchange distillation column
JPH0631696B2 (en) Combined gas preheater
KR20190128830A (en) Heat Recovery System for Boiler
RU2375660C2 (en) Heat recovery unit
JP2002372311A (en) Latent heat recovery type heat exchanger
JPH1026486A (en) Recovery of heat of exhaust gas by heating medium connected spiral type heat exchangers
JPS6324382Y2 (en)
JPS599834B2 (en) Waste heat recovery equipment that prevents corrosion caused by sulfur oxides
JPS602890A (en) Separated type heat exchanging device
JPS6215662Y2 (en)
JPS62793A (en) Combination heater
JPH0510596B2 (en)
JPS5924783B2 (en) air cooled vacuum condenser
JPS6126356Y2 (en)
JPH0227348Y2 (en)