JPS59219958A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS59219958A
JPS59219958A JP58094609A JP9460983A JPS59219958A JP S59219958 A JPS59219958 A JP S59219958A JP 58094609 A JP58094609 A JP 58094609A JP 9460983 A JP9460983 A JP 9460983A JP S59219958 A JPS59219958 A JP S59219958A
Authority
JP
Japan
Prior art keywords
circuit section
well region
memory cell
transistor
junction depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58094609A
Other languages
Japanese (ja)
Inventor
Koji Sato
浩司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58094609A priority Critical patent/JPS59219958A/en
Publication of JPS59219958A publication Critical patent/JPS59219958A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components

Abstract

PURPOSE:To prevent the generation of an alpha-ray soft-error in a memory cell without increasing the generation of a latch-up in a circuit section of CMOS constitution by sufficiently deepening the junction depth of a well region in a CMOS circuit section while forming a memory cell circuit section in a shallow well region. CONSTITUTION:An n type well region 42 for a CMOS in deep junction depth d1 is formed to a peripheral circuit section 31 in a p type semiconductor substrate 41, and an n type well region 43 for preventing a soft error in shallow junction depth d0 is formed to a memory cell circuit section 31. Source-drain (p<+> diffusion layers 47) for a transistor are shaped in an element region isolated by a field oxide film 44 in the peripheral circuit section 31 through the implantation, etc. of an impurity. On the other hand, a p<-> diffusion layer 48 for a cell transistor, which functions as source-drain for the cell transistor and combines one electrode for a memory cell capacitor, is formed to the memory cell section 30, and a first polysilicon electrode 46 as the other electrode for the cell capacitor is shaped on the p<-> diffusion layer 48 through a gate oxide film 45, etc.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、CMO8(相補型MO8)構造を有する半
導体装置に1)51するもので、例えばMOSダイナミ
ック型メモリ、MOSスタティック型メモリ等に使用さ
れる半導体装置に関するものである。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a semiconductor device having a CMO8 (complementary MO8) structure, which is used for example in MOS dynamic memory, MOS static memory, etc. The present invention relates to a semiconductor device.

〔発明の技術的背景〕[Technical background of the invention]

半導体メモリ等では、樹脂パッケージ等に含まれる微量
の放射性元素から放出されるα線による回路の誤動作、
いわゆるα線ソフトエラーが引き起される。
In semiconductor memories, etc., circuit malfunctions due to alpha rays emitted from trace amounts of radioactive elements contained in resin packages, etc.
This causes a so-called α-ray soft error.

すなわち、例えば第1図に示すようなp型基4反1ノ内
にn型拡散層12の形成され、p型基板1ノが例えば−
3vに設定されたものにおいて、α線(図のα)が入射
すると基板11内に電子正孔対が誘起され、このα線に
よシ誘起さり、る電子正孔対の数はα粒子が消滅する直
前で最大となる。そして、L 1図の断面図に沿って示
しているn型拡散層12および半導体基板11の第2図
のようなポテンシャルによって、第1図に示すような装
置では、p型基板11内に誘起された電子正孔対のうち
電子はメモリセルとなるn+拡散層12に流れ込み、註
拡散層12内の′tu荷:fiを変化させ、メモリの誤
動作を引き起こすことになる。
That is, for example, as shown in FIG.
3V, when α rays (α in the figure) are incident, electron-hole pairs are induced in the substrate 11, and the number of electron-hole pairs induced by this α ray is It reaches its maximum just before it disappears. In the device shown in FIG. 1, a potential is induced in the p-type substrate 11 by the potential shown in FIG. Of the electron-hole pairs generated, electrons flow into the n+ diffusion layer 12 which becomes a memory cell, changing the 'tu load: fi in the diffusion layer 12, causing a malfunction of the memory.

このようなα線ソフトエラーを防止する目的でMOSス
タティック型メモリ、MOSダイナミ。
MOS static type memory and MOS dynamic type memory are used to prevent such α-ray soft errors.

り型メモリ(以下それぞ′FLSRAM 、 DRAM
と略記す)において、第3図に示すようにメモリセル部
分を不純物ウェル内に形成することが行なわれている。
type memory (hereinafter referred to as FLSRAM, DRAM)
(abbreviated as ), a memory cell portion is formed in an impurity well as shown in FIG.

すなわち、n型基板21にpウェル領域22を形成し、
このpウェル領域22内にメモリセルトランジスタのn
 拡散層23を形成し例えば+5■にn型基板21を設
定する。このような装置でiqi n型基板21とpウ
ェル41J)(↓域22との間にポテンシャルの障壁が
形成さハ、るだめα線の入射により生じた′電子のうち
n型基板21内で生じた分のものは、pウェル領域22
内に入り込めなくなる。Itf ってソフトエラーに関
与するのはpウェル領域22で誘起される分のみとなり
、ソフトエラーの発生率を低減できる。
That is, a p-well region 22 is formed on an n-type substrate 21,
In this p-well region 22, there is an n-type memory cell transistor.
A diffusion layer 23 is formed, and the n-type substrate 21 is set at, for example, +5. In such a device, a potential barrier is formed between the iqi n-type substrate 21 and the p-well 41J) (↓ region 22). The generated portion is stored in the p-well region 22.
I can't get inside. Only the portion of Itf induced in the p-well region 22 is involved in soft errors, and the incidence of soft errors can be reduced.

〔背景技術の問題点〕[Problems with background technology]

ところで、最近の半4Cネ体素子の集積度の向上に伴な
い、素子の発熱の間:+’lJおよびT(i源″r11
、圧低下の要求により、SRAMIさらにはDRAMに
おいても周辺回路のCM、O3化が検討されている。
By the way, with the recent improvement in the degree of integration of semi-4C linear elements, during the heat generation of the element: +'lJ and T (i source "r11
Due to the demand for voltage reduction, CM and O3 peripheral circuits are being considered for SRAMI and even DRAM.

しかしながら、周辺回路をCMO8化した場合にLmX
CMO8特有のウェルti“・V造による縦型および横
型の寄生トランジスタが構成さり、この寄生トランジス
タのpnpnスイッチによるランチアンプ現象が問題と
なってくる。このラッチアップ現象は、特に素子の微細
化が進むにつれて寄生トランジスタの電流増幅率が大き
くなり問題となってくるため、ウェル領域の接合深さを
一定以上にに″、(i < してラッチアップが容易に
引き起こされないような構造にする必要がある。
However, when the peripheral circuit is CMO8, LmX
Vertical and horizontal parasitic transistors are formed due to the well ti"/V structure unique to CMO8, and the launch amplifier phenomenon caused by the pnpn switch of this parasitic transistor becomes a problem. This latch-up phenomenon is particularly important as the miniaturization of elements increases. As the process progresses, the current amplification factor of the parasitic transistor increases and becomes a problem, so it is necessary to increase the junction depth of the well region to a certain level (i <) to create a structure that does not easily cause latch-up. There is.

ところが、前述したーように、ウェル領域を深くすると
、飛程の短かいα線がpウェル領域内で消滅する舘率が
品くなり、効果的にα線ソフトエラーを防止することが
できなくなる。
However, as mentioned above, when the well region is made deeper, the probability that α-rays with a short range disappear within the p-well region decreases, making it impossible to effectively prevent α-ray soft errors. .

〔発明の目的〕[Purpose of the invention]

この発明に上記のような点に鑑みなされたもので’t 
CMO8回路部におけるラッチアップの発生を増大さぜ
ること々くメモリセルのα線ソフトエラーの発生を効果
的に防止できる半導体装置を提供しようとするものであ
る。
This invention was made in view of the above points.
It is an object of the present invention to provide a semiconductor device that can effectively prevent the occurrence of α-ray soft errors in memory cells, which often increase the occurrence of latch-up in the CMO8 circuit section.

〔発明の概吸〕[Summary of the invention]

すなわちこの発明に係る半導体装置では、半導体基板O
CA’lO3回1d25部には、通常の接合深さを有す
る基板と逆導電型のCΔios用ウェル領域内に基板と
同一導電型の拡散層をソース、ドレインとするトランジ
スタと、0MO8用ウェル領域の形成されない部位に適
宜基板と逆導電型の拡散層をソース、ドレインとするト
ランジスタとを形成し、メモリセル回路部には、上記C
MO3用ウェルウエル領域接合深さが浅く基板と逆n電
型のα線ソフトエラー防止用ウェル領域を形成し、この
α線ソフトエラー防止用ウェル領域内に基板と同一導電
型のセルトランジスタ用拡散層を形成したものである。
That is, in the semiconductor device according to the present invention, the semiconductor substrate O
In the CA'lO3 times 1d25 section, there is a transistor whose source and drain are diffusion layers of the same conductivity type as the substrate in the well region for CΔios, which has a conductivity type opposite to that of the substrate and has a normal junction depth, and a well region for 0MO8. A transistor whose source and drain are a diffusion layer of a conductivity type opposite to that of the substrate is appropriately formed in a portion where the above C is not formed.
MO3 well well region A well region for preventing α-ray soft errors with shallow junction depth and reverse n-type conductivity to the substrate is formed, and within this well region for preventing α-ray soft errors, diffusion for cell transistors of the same conductivity type as the substrate is formed. It is made up of layers.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参116シてこの発明の一実施例につき説明
する。第5図において、工1は装置値のメモリセル回路
部を、LノはCMO8構成の周辺回路部をそれぞれ示し
、これらは勿論同一のpを半導体基板4ノに形成されて
いる。まず、p型半導体基板41の周辺回路部3ノに深
い、例えば接合深さdiが4μ?)Lのn型のCMO8
用ウェルウエル領域42し、メモリセル回路部30には
浅い、接合深さd、が例えば2μmのn型のソフトエラ
ー防止用ウェル領域43を形成する。これらウェル領域
への不純物の導入は、通常のCMO8素子の製造工程で
用いられている熱拡散、イオン注入により行う。そして
、周辺回路部3ノのフィールド酸化膜44で分離さh、
だ素子領域には、例えばy −ト酸化llI445上に
形成した第1ポリシリコン電杼等によるダート電極46
Gfマスクとした不純物の注入等によりトランジスタの
ソース・ ドレイン(第5図ではp拡散層47)を形成
する。尚、図では半導体基板41−ヒに形成した酸化膜
等の絶縁膜は省略し図示していない。甘だ、第5図の周
辺回路部31では++ ’J、j、すのウェル領域にp
 拡散層47の形成されたpチャ不ルトランソスタしか
示していないが、n型CMO8用ウェル領域42以外の
部位にはグー上電極をはさんで基板41にn+拡散層の
形成されたnチャ坏ルトランソスタが形成さオLる。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 5, 1 indicates the memory cell circuit section of the device value, and L indicates the peripheral circuit section of the CMO8 configuration, and these are of course formed on the same semiconductor substrate 4. First, if the peripheral circuit portion 3 of the p-type semiconductor substrate 41 has a deep junction depth di, for example, 4μ? ) L n-type CMO8
A shallow n-type soft error prevention well region 43 having a junction depth d of 2 μm, for example, is formed in the memory cell circuit portion 30. Impurities are introduced into these well regions by thermal diffusion and ion implantation, which are used in the normal CMO8 element manufacturing process. Then, it is separated by a field oxide film 44 in the peripheral circuit section 3.
In the element region, a dirt electrode 46 is formed, for example, by a first polysilicon electrode formed on the y-doped oxide llI445.
The source and drain of the transistor (p diffusion layer 47 in FIG. 5) are formed by implanting impurities using a Gf mask. Note that an insulating film such as an oxide film formed on the semiconductor substrate 41-A is omitted and not shown in the figure. That's naive, in the peripheral circuit section 31 of FIG.
Although only the p-channel inverter transistor in which the diffusion layer 47 is formed is shown, the n-channel inverter transistor in which the n+ diffusion layer is formed on the substrate 41 with a goo upper electrode sandwiched in the region other than the n-type CMO8 well region 42 is shown. is formed.

−万、メモリセル一部30には、セルトランソスタのソ
ース・1・゛レインとなりメモリセルコンデンサの一万
電極な」1〔ねるセルトランノスク用p−拡散層48を
形成し、このp−拡散層48上にはダートrR化jJQ
45等を介してセルコンデンザの他方電極となる第1ポ
リシリコン電極46を形成する。また、メモリセル用ト
ランジスタのチャネル上にはダート酸化膜45を介し第
2ポリシリコン電極49を形成し、上記チャネルを介し
p−拡散ノー48と対向した部位に1幻えはデータ線を
兼ねるセルトランソスタ用p十拡散層5゜を形成する。
A p-diffusion layer 48 is formed in a part of the memory cell 30, which serves as the source/rain of the cell transistor and serves as the electrode of the memory cell capacitor. On the 48 is a dirt rR jJQ
A first polysilicon electrode 46, which will become the other electrode of the cell capacitor, is formed via 45 and the like. Further, a second polysilicon electrode 49 is formed on the channel of the memory cell transistor via a dirt oxide film 45, and a cell transistor which also serves as a data line is formed at a portion facing the p-diffusion node 48 via the channel. A p-type diffusion layer of 5° is formed.

以上のようにして、例えば電源回路等の周辺回路部−3
1−のウェル領域の接合深さを深くし、メモリセル部旦
のウェル領域の接合深さを浅くして、所定の各領域を形
成し、層間絶縁膜、金属配線層等を順次被着して装置を
構成する。
In the above manner, for example, the peripheral circuit section-3 such as a power supply circuit, etc.
The junction depth of the well region 1- is made deep, and the junction depth of the well region 1- is made shallow, and each predetermined region is formed, and an interlayer insulating film, a metal wiring layer, etc. are sequentially deposited. and configure the device.

尚、上記実施例では、p型シリコン基板を用いて装置を
形成する場合について述べたが、こh、はn型シリコン
基板を用い各部の導電型を上記実施例と逆型にしてCM
O8用ウェルウエル領域42ソフトエラー防止用ウェル
領域43をp型ウェルで形成し、メモリセル用トランジ
スタをnチャネルトランジスタで構成しても良く、また
’I  0MO8構成の回路部が電源回路等の周辺回路
部である場合につき述べたが、同一半導体基板にメモリ
セル部とCMO8回路部とを有する装置であればどのよ
うなものであってもよい。
In the above embodiment, a case was described in which the device was formed using a p-type silicon substrate, but in this case, an n-type silicon substrate was used and the conductivity type of each part was reversed to that of the above embodiment, and the CM was fabricated.
The O8 well well region 42 and the soft error prevention well region 43 may be formed of a p-type well, and the memory cell transistor may be an n-channel transistor. Although the case of a circuit section has been described, any device may be used as long as it has a memory cell section and a CMO8 circuit section on the same semiconductor substrate.

〔発明の効果〕〔Effect of the invention〕

第6図にはシリコン結晶中のα粒子による電子正孔対の
生成数(DS、 Yaney et、 at、 ;” 
Alpha Particle Tracksin 5
ilicon andTheir Effect on
 Dynamic MOS RAM Re1iabll
ity”IEEE Trans、 Electron 
Devices ED・26 + 1〜2(1979)
より抜粋)が示されておシ、これから明らかなように、
生成される電子正孔対はα粒子が消滅(第6図の飛程が
Oとなった場合)する直前に最大となる。
Figure 6 shows the number of electron-hole pairs generated by α particles in silicon crystal (DS, Yaney et al.;
Alpha Particle Tracksin 5
ilicon andTheir Effect on
Dynamic MOS RAM Re1iabl
ity"IEEE Trans, Electron
Devices ED・26 + 1-2 (1979)
As is clear from this,
The number of electron-hole pairs generated reaches its maximum just before the α particle disappears (when the range in FIG. 6 becomes O).

ネルギ分布(金メツキ金属キャップのα線放出エネルギ
スペクトルで、日立評論Vo1.64 JPN 7(1
982−7)P23〜26 よシ抜砕)を示す。これら
よシ、エネルギが31VLeV以下すなわち飛程がおよ
そ10μnL以下のα粒子もかなり多数存在している。
Energy distribution (α-ray emission energy spectrum of gold-plated metal cap, Hitachi Review Vol. 1.64 JPN 7 (1
982-7) P23-26 (Yoshishi crush) is shown. In addition to these particles, there are also quite a large number of α particles having an energy of 31 VLeV or less, that is, a range of about 10 μnL or less.

従ってメモリセル部のソフトエラー防止用ウェル領域の
深さを浅くしてやることによす、特に飛程の短いα線に
よるソフトエラーを効果的に防ぐことができる。
Therefore, by reducing the depth of the soft error prevention well region in the memory cell portion, soft errors caused by alpha rays, which have a particularly short range, can be effectively prevented.

以上のようにこの発明によれば、CMO8回路部のウェ
ル領域の接合深さを十分に深くする一万、メモリセル回
路部を浅いウェル領域内に形成するため、6MO8構成
の回路部におけるラッチアップの発生を増大させること
なく、メモリセルのα線ソフトエラーの発生を効果的に
防止できる半導体装置を提供することができる。
As described above, according to the present invention, since the junction depth of the well region of the CMO8 circuit section is made sufficiently deep, and the memory cell circuit section is formed in the shallow well region, latch-up in the circuit section of the 6MO8 configuration is achieved. It is possible to provide a semiconductor device that can effectively prevent the occurrence of α-ray soft errors in memory cells without increasing the occurrence of α-ray soft errors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はα線ソフトエラーの発生原理を説明する断面図
、第2図は第1図の装置のポテンシャルを示す図、第3
図はI/を来のメモリセルを説明する断面図、第4図は
第3図の装置のポテンシャルを示す図、第5区はこの発
明の一実施例に係る半導体装置を説明する断面図、第6
図はシリコン結晶中のα粒子による電子正孔対の生成数
を示すグラフ、第7図はα粒子のエネルギとシリコン中
での飛程との13q係を示すグラフ、第8図は自然界で
のα粒子のエネルギ分布を示すグラフである。 3θ・・・メモリセル回路、31・・・周辺回路部、4
ノ・・・半導体基板、42・・・CMOS用ウェル領域
、43・・・α糾jソフトエラー防止用ウェル領域、4
4・・・フィールド酸化膜、45・・・ダート酸化膜、
46・・・第1ポリシリコン電極、46G・・・r−上
電極、47・・・p 拡散層、48・・・セルトランジ
スタ用p−拡散ハク、49・・・第2ポリシリコン電極
、50・・・セルトランジスタ用p拡散層。 出細大代理人  弁理士 鈴 江 武 彦第 6 目 第 7 図 °I          / (pm) 刺 程 第 8 図 (個) / 月、工ゎ、+ −(MeV)
Figure 1 is a cross-sectional view explaining the principle of α-ray soft error generation, Figure 2 is a diagram showing the potential of the device in Figure 1, and Figure 3 is a diagram showing the potential of the device in Figure 1.
FIG. 4 is a diagram showing the potential of the device of FIG. 3, Section 5 is a cross-sectional diagram explaining a semiconductor device according to an embodiment of the present invention, 6th
The figure is a graph showing the number of electron-hole pairs generated by α particles in silicon crystal, Figure 7 is a graph showing the 13q relationship between the energy of α particles and the range in silicon, and Figure 8 is a graph showing the number of electron-hole pairs generated by α particles in silicon crystal. It is a graph showing the energy distribution of α particles. 3θ...Memory cell circuit, 31...Peripheral circuit section, 4
ノ...Semiconductor substrate, 42...Well region for CMOS, 43...Well region for preventing soft errors, 4
4...Field oxide film, 45...Dart oxide film,
46... First polysilicon electrode, 46G... r-upper electrode, 47... p diffusion layer, 48... p-diffusion layer for cell transistor, 49... second polysilicon electrode, 50 ...P diffusion layer for cell transistor. Takehiko Suzue, patent attorney

Claims (1)

【特許請求の範囲】[Claims] 同一半導体基板に、基板と反対導電型の0MO8用ウェ
ル領域内に基板と四−導電型のソース・ドレインを設け
たトランジスタを具倫するCMO8回路部と、基板と反
対導電型のウェル領域内に基板と同一導電型の領域が形
成されたセルトランジスタを共(1i1iするメモリ回
路部とが形成された半導体装置において、上記メモリセ
ル回路部のウェル領域の接合深さはα線ソフトエラーを
軽減スる如< 0MO8用ウェルの接合深さより浅くさ
れていることを!1″Haとする半導体装置。
On the same semiconductor substrate, a CMO8 circuit section incorporating a transistor with a source/drain of a four-conductivity type is provided in a well region for OMO8 of a conductivity type opposite to that of the substrate, and a transistor is provided in a well region of a conductivity type opposite to that of the substrate. In a semiconductor device in which a memory circuit section is formed in which a cell transistor is formed with a region of the same conductivity type as the substrate, the junction depth of the well region of the memory cell circuit section is set to reduce α-ray soft errors. A semiconductor device in which the depth of the junction is shallower than the junction depth of the well for MO8.
JP58094609A 1983-05-28 1983-05-28 Semiconductor device Pending JPS59219958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58094609A JPS59219958A (en) 1983-05-28 1983-05-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58094609A JPS59219958A (en) 1983-05-28 1983-05-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS59219958A true JPS59219958A (en) 1984-12-11

Family

ID=14114987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58094609A Pending JPS59219958A (en) 1983-05-28 1983-05-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS59219958A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19952742C2 (en) * 1998-11-02 2003-04-17 Seiko Epson Corp Semiconductor memory component, in particular an SRAM, and method for its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19952742C2 (en) * 1998-11-02 2003-04-17 Seiko Epson Corp Semiconductor memory component, in particular an SRAM, and method for its production

Similar Documents

Publication Publication Date Title
US6500705B2 (en) Semiconductor memory device and method of manufacturing the same
US20110156160A1 (en) Metal Oxide Semiconductor (MOS) Type Semiconductor Device And Manufacturing Method Thereof
EP0145606A2 (en) Semiconductor memory device
JPH05129429A (en) Semiconductor device and manufacture thereof
US4497043A (en) Semiconductor memory device
JP2634163B2 (en) Semiconductor storage device
JP2689923B2 (en) Semiconductor device and manufacturing method thereof
JPS59219958A (en) Semiconductor device
US4910161A (en) Method of making a semiconductor memory device
JP2550119B2 (en) Semiconductor memory device
JPH073811B2 (en) Semiconductor memory device
JPS62145859A (en) Semiconductor memory
JP2702999B2 (en) Semiconductor storage device
JP2509930B2 (en) Semiconductor integrated circuit device
JPH10189771A (en) Semiconductor device and fabrication thereof
JP2011054772A (en) Semiconductor device
JP3243885B2 (en) Semiconductor storage device
KR950010286B1 (en) Semiconductor memory device
KR100486205B1 (en) Semiconductor memory device and fabrication method thereof
JPH0536909A (en) Semiconductor integrated circuit
KR900002887B1 (en) Semiconductor memory device
JPS602780B2 (en) semiconductor equipment
JPS63237462A (en) Static type semiconductor memory and manufacture thereof
JPS58182863A (en) Semiconductor device
JP2006140325A (en) Semiconductor device