JPS59219854A - Lead storage battery - Google Patents

Lead storage battery

Info

Publication number
JPS59219854A
JPS59219854A JP58093807A JP9380783A JPS59219854A JP S59219854 A JPS59219854 A JP S59219854A JP 58093807 A JP58093807 A JP 58093807A JP 9380783 A JP9380783 A JP 9380783A JP S59219854 A JPS59219854 A JP S59219854A
Authority
JP
Japan
Prior art keywords
battery
grid
plate
internal resistance
lead storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58093807A
Other languages
Japanese (ja)
Inventor
Mitsuru Koseki
満 小関
Ryosuke Morinari
森成 良佐
Hideo Sekiguchi
関口 日出夫
Shiro Hirota
四郎 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP58093807A priority Critical patent/JPS59219854A/en
Publication of JPS59219854A publication Critical patent/JPS59219854A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To reduce the electric resistance of a lead storage battery without increasing the weight of the plate by adjusting the ratio (A/B) of the height (A) of the plate to its width (B) to be within a specified range. CONSTITUTION:In a lead storage battery, a plate 3 is installed in which the ratio (A/B) of its height (A) to its width (B) is 0.67-0.76. As a result, the internal resistance of the battery can be minimized without increasing the weight of a grid, thereby enabling the voltage of the battery during its high-rate discharge to be increased. Consequently, a light battery having a good starting performance can be obtained.

Description

【発明の詳細な説明】 本発明は鉛蓄電池の改良に関するもので、とくに鉛蓄電
池用極板、例えばエキスバンド格子を用いた極板の形状
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in lead-acid batteries, and in particular to the shape of plates for lead-acid batteries, for example plates using expanded lattices.

従来より鉛蓄電池の極板はブックモールドタイプの鋳造
格子体を用いてきたが、近年、電池の小形軽量化の要求
に対応するため、極板の薄形化がはかられるようになり
、薄形化に不向きな鋳造方式に変えてエキスバンド方式
による格子体製造法が採用されつつある。エキスバンド
方式による格子体ではエキスバンド加工に用いる鉛合金
シートの厚さを変えるたけて所望の厚さの格子体が得ら
れるので、格子体の薄形化をつうじて極板の薄形化が容
易になる。
Conventionally, lead-acid batteries have used book mold type cast grids for their electrode plates, but in recent years, in order to meet the demand for smaller and lighter batteries, electrode plates have become thinner. In place of the casting method, which is unsuitable for forming objects into shapes, an expanded lattice manufacturing method is being adopted. With the grid made by the expanded method, the desired thickness of the grid can be obtained by changing the thickness of the lead alloy sheet used in the expanded process, so the electrode plate can be made thinner by making the grid thinner. becomes easier.

しかし、薄形のエキスバンド極板を用いた電池では、軽
量化は達成出来るものの、高率放電時の電圧特性が従来
の電池に較べ劣るという欠点があった。とくに自動車用
電池のような始動性を重視する用途に対してはきわめて
重大な欠点てあった。これは格子体を薄形にすることに
よって、格子体の骨の断面積が減少するため電気抵抗が
増大することと、活物、質層の厚さが薄形極板では減少
するため活物質層の電気抵抗増加に原因がある。したが
って、軽量化を達成しつつ、該fllE特性を向上させ
ることが現在重要な課題になっている。
However, although batteries using thin expanded electrode plates can achieve weight reduction, they have the disadvantage that voltage characteristics during high rate discharge are inferior to conventional batteries. This is a very serious drawback, especially for applications where startability is important, such as automobile batteries. This is due to the fact that by making the lattice body thinner, the cross-sectional area of the bones of the lattice body is reduced, which increases the electrical resistance, and also because the thickness of the active material layer is reduced in the thin electrode plate, so the active material The cause is an increase in the electrical resistance of the layer. Therefore, it is currently an important issue to improve the fullE characteristics while achieving weight reduction.

本発明の目的とするところは上記欠点を除去し、極板の
重量増加を伴わないで、電気抵抗を低下させ得る極板を
備えた鉛蓄電池を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a lead-acid battery equipped with electrode plates that can reduce electrical resistance without increasing the weight of the electrode plates.

鉛蓄電池の高率放電における電圧特性は電池の内部抵抗
にほぼ依存しており、とくに放電初期の5秒目程度まで
なら、内部抵抗と電池電圧は直線関係になることを見出
した。電池内部抵抗を構成する主なものは陽極板、陰極
板、電解液のそれぞれの内部抵抗であり、これらが直列
に配置されていると見なし得る。電池の内部抵抗を低下
させるため、極板の外形寸法に着目し検討した結果、極
板の全高さAと全幅Bの比率A/Bにおいて電池内部抵
抗が最小になる範囲のあることを見い出した。
It has been found that the voltage characteristics of lead-acid batteries during high-rate discharge almost depend on the internal resistance of the battery, and that there is a linear relationship between internal resistance and battery voltage, especially up to about 5 seconds at the beginning of discharge. The main components of a battery's internal resistance are the internal resistances of the anode plate, cathode plate, and electrolyte, and these can be considered to be arranged in series. In order to reduce the internal resistance of the battery, we focused on the external dimensions of the electrode plate and found that there is a range in which the internal resistance of the battery is minimized at the ratio A/B of the total height A and width B of the electrode plate. .

したがって、上記目的を達成するため本発明の要点は、
極板の全高さAと全幅Bの比率A/Bか067〜076
 である極板を備えることである。
Therefore, in order to achieve the above object, the main points of the present invention are as follows:
The ratio A/B of the total height A and total width B of the electrode plate is 067 to 076
It is to have an electrode plate that is

以下、実施例に従い説明する。Examples will be explained below.

第1図にエキスバンド格子体を用いた極板の概要を示し
た。ここでlは極板の集電耳部、2はエキスバンド格子
体の骨、3は活物質、Aは極板の全高さ、Bは極板の全
幅、Cは極板の一方端から集電耳部の中央までの距離で
ある。
Figure 1 shows an outline of the electrode plate using an expanded lattice. Here, l is the current collecting ear of the electrode plate, 2 is the bone of the expanded lattice body, 3 is the active material, A is the total height of the electrode plate, B is the total width of the electrode plate, and C is the current collected from one end of the electrode plate. This is the distance to the center of the electric ear.

陽極板、陰極板、電解液のそれぞれの内部抵抗を求める
ため、先ず定電流モデルに基づいて格子体の電気抵抗を
数学的に求め、その格子体を用いて常法に従かい開路電
圧約2■の電池を組立て、−15°Cにおいて該電池の
内部抵抗を交流ブリッジ法で測定した。種々の電気抵抗
を有する陽極格子体に対する該電池での内部抵抗変化を
示したのが第2図である。ここで陰極格子体は一定の電
気抵抗を有するものを使用した。
In order to determine the internal resistance of each of the anode plate, cathode plate, and electrolyte, first calculate the electrical resistance of the grid body mathematically based on the constant current model, and then use the grid body to calculate the open circuit voltage of approximately 2 using the conventional method. The battery (2) was assembled and the internal resistance of the battery was measured at -15°C by the AC bridge method. FIG. 2 shows internal resistance changes in the battery for anode grids having various electrical resistances. Here, the cathode grid used had a certain electrical resistance.

格子寸法はAが120m、BがI 05 mmで、陽極
格子重量は349、陰極格子重量は23gである。電解
液の比重は1.280(20°C)である。第2図から
れかるように、きわめて良い直線関係が得られ、定電流
モデルに基づいて求めた格子体の電気抵抗値は実用に供
し得ることが証明されている。
The grid dimensions are 120 m for A and I 05 mm for B, the anode grid weight is 349, and the cathode grid weight is 23 g. The specific gravity of the electrolyte is 1.280 (20°C). As can be seen from FIG. 2, an extremely good linear relationship was obtained, proving that the electrical resistance value of the grid body determined based on the constant current model can be put to practical use.

定電流モデルに基づく電気抵抗の求めかたを簡単に説明
すると、格子体の骨2の交点(以下格子点と呼ぶ)全て
に一定電流が流入あるいは流出するものとし、各格子点
間の、骨の抵抗は測定出来るので、各格子点での電位の
みを未知数としてキルヒホンフの法則により方程式をた
て、各格子点についてこれを解けば各格子点の電位が求
まる。各格子点の電位と各格子点間の電気抵抗を用いて
各格子点間の損失(ワット)の合旧を求め、更に各格子
点に流れる電流の合計の2乗で割れば格子体の電気抵抗
が求まる。
To briefly explain how to calculate the electrical resistance based on the constant current model, it is assumed that a constant current flows into or out of all the intersection points of the bones 2 of the lattice body (hereinafter referred to as lattice points). Since the resistance at each grid point can be measured, the potential at each grid point can be found by formulating an equation using Kirchhonff's law with only the potential at each grid point as an unknown, and solving this for each grid point. Using the potential of each grid point and the electrical resistance between each grid point, find the sum of the losses (watts) between each grid point, and then divide by the square of the sum of the currents flowing through each grid point. Find resistance.

第2図における直線において、直線の傾きは陽極板の内
部抵抗を格子体の電気抵抗から求めるための係数であり
、直線の傾−きに格子体の電気抵抗を乗じたものが該格
子体を使用したときの陽極板の内部抵抗そのものである
。また該直線のy切片は陰極板の内部抵抗と電解液の内
部抵抗の合算されたものである。
In the straight line in Figure 2, the slope of the straight line is a coefficient for determining the internal resistance of the anode plate from the electrical resistance of the grid, and the slope of the straight line multiplied by the electrical resistance of the grid is the coefficient for determining the internal resistance of the anode plate from the electrical resistance of the grid. This is the internal resistance of the anode plate itself when in use. The y-intercept of the straight line is the sum of the internal resistance of the cathode plate and the internal resistance of the electrolyte.

上記と同様な方法で陽極格子体に一定の電気抵抗を有す
るものを使用し、種々の電気抵抗を有する陰極格子体を
用いた電池での内部抵抗をIf定し、第2図のような関
係を求めるとやはり直線関係が求まり、その直線の傾き
から陰極板の内部抵抗が求まる。したがって、第2図に
示す直線のy切片から電解液の内部抵抗が分離され求ま
る。
Using the same method as above, use an anode grid with a certain electrical resistance, and determine the internal resistance If of a battery using cathode grids with various electrical resistances, and obtain the relationship shown in Figure 2. After finding a linear relationship, the internal resistance of the cathode plate can be found from the slope of that straight line. Therefore, the internal resistance of the electrolyte can be separated and found from the y-intercept of the straight line shown in FIG.

第3図に極板の全高さAを変えた場合の一15℃におけ
る陽極板ta+、陰極板(bl、電解液(C)のそれぞ
れの内部抵抗変化の一例を示した。ここで極板の全幅B
はIO’5+imで一定、陽極及び陰極格子体の重電は
それぞれ349.23.9で一定である。電解液比重は
1.280(20°C)である。
Figure 3 shows an example of the internal resistance changes of the anode plate ta+, the cathode plate (bl), and the electrolyte (C) at -15°C when the total height A of the electrode plate is changed. Overall width B
is constant at IO'5+im, and the heavy charges of the anode and cathode grids are constant at 349.23.9, respectively. The specific gravity of the electrolyte is 1.280 (20°C).

第3図かられかるように、陽極、陰極板共に全高さAか
低下するにつれて内部抵抗は減少しているが、電解液(
c+の内部抵抗は逆に増加している。
As can be seen from Figure 3, as the total height A of both the anode and cathode plates decreases, the internal resistance decreases, but the electrolyte (
On the contrary, the internal resistance of c+ is increasing.

電池の内部抵抗は上記のようにこの3者を合算したもの
であるから、極板の全高さAと全幅Bの比率A/Bて示
すと第1表のようになる。
Since the internal resistance of the battery is the sum of these three factors as described above, Table 1 shows the ratio A/B of the total height A and the total width B of the electrode plate.

第    1    表 第1表かられかるようにA/Bが067〜076て最小
になる。従来から使用されている格子体のA/Bが1.
05〜1.20程度であることから、かなり電池の内部
抵抗が低下したことになる。また第1表に示したデータ
は極板の全幅Bに対する集電耳部の位置Cの比率C/B
が0.04の場合であるが、C/Bが増えても電池の内
部抵抗の絶対値は低下するが最小となるA/Bの範囲は
変わらない。同様に極板の全幅、格子体の重量が変化し
てもA / Hの範囲は変わらない。
Table 1 As can be seen from Table 1, A/B becomes the minimum at 067 to 076. The A/B of the lattice body conventionally used is 1.
Since it is about 0.05 to 1.20, it means that the internal resistance of the battery has decreased considerably. In addition, the data shown in Table 1 is the ratio C/B of the position C of the current collecting ear to the total width B of the electrode plate.
is 0.04. Even if C/B increases, the absolute value of the internal resistance of the battery decreases, but the minimum A/B range remains unchanged. Similarly, even if the total width of the electrode plate and the weight of the grid body change, the A/H range does not change.

なお本実施例はエキスバンド格子体についてのみ述べた
が、他の集電耳部を有する格子体について適用しても何
ら効果を減するものではない。
Although this embodiment has been described only with respect to an expanded grid body, the effect will not be reduced in any way even if the present invention is applied to a grid body having other current collecting ears.

以上のように本発明によれば格子体の重量を増加させる
ことなく、高率放電時の電池電圧を向上出来、軽景でし
かも始動性に優れた電池を可能ならしめるもので工業的
価値は非常に高い。
As described above, according to the present invention, the battery voltage during high rate discharge can be improved without increasing the weight of the lattice body, and it is possible to create a battery that is lightweight and has excellent startability, and has no industrial value. Very expensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はエキスバンド格子体の概要図、第2図は陽極格
子体の電気抵抗と一15°Cにおける電池の内部抵抗と
の関係図、第3図は極板の全高さと一15°Cにおける
陽極板、陰極板、電解液の内部抵抗との関係図である。 Aが極板の全高さ、Bが極板の全幅 特許出願人
Figure 1 is a schematic diagram of the expanded grid, Figure 2 is a diagram of the relationship between the electrical resistance of the anode grid and the internal resistance of the battery at -15°C, and Figure 3 is the relationship between the total height of the electrode plate and the battery's internal resistance at -15°C. FIG. 3 is a relationship diagram between the internal resistance of the anode plate, cathode plate, and electrolyte in FIG. A is the total height of the plate, B is the total width of the plate, and the patent applicant

Claims (1)

【特許請求の範囲】[Claims] 極板の全高さAと全幅Bの比率A/Bが0.67〜07
6である極板を備えることを特徴とする鉛蓄電池。
The ratio A/B of the total height A and total width B of the electrode plate is 0.67 to 07
6. A lead-acid battery comprising: 6 electrode plates.
JP58093807A 1983-05-27 1983-05-27 Lead storage battery Pending JPS59219854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58093807A JPS59219854A (en) 1983-05-27 1983-05-27 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58093807A JPS59219854A (en) 1983-05-27 1983-05-27 Lead storage battery

Publications (1)

Publication Number Publication Date
JPS59219854A true JPS59219854A (en) 1984-12-11

Family

ID=14092672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58093807A Pending JPS59219854A (en) 1983-05-27 1983-05-27 Lead storage battery

Country Status (1)

Country Link
JP (1) JPS59219854A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100213A1 (en) * 2018-11-13 2020-05-22 日立化成株式会社 Electrode plate, lattice body, and lead storage cell
JP2021111493A (en) * 2020-01-08 2021-08-02 古河電池株式会社 Liquid type lead storage battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5873960A (en) * 1981-10-27 1983-05-04 Shin Kobe Electric Mach Co Ltd Paste paper for lead-acid storage battery electrode plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5873960A (en) * 1981-10-27 1983-05-04 Shin Kobe Electric Mach Co Ltd Paste paper for lead-acid storage battery electrode plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100213A1 (en) * 2018-11-13 2020-05-22 日立化成株式会社 Electrode plate, lattice body, and lead storage cell
JPWO2020100213A1 (en) * 2018-11-13 2021-10-07 昭和電工マテリアルズ株式会社 Electrode plate, grid and lead-acid battery
JP2021111493A (en) * 2020-01-08 2021-08-02 古河電池株式会社 Liquid type lead storage battery

Similar Documents

Publication Publication Date Title
KR19980024846A (en) Positive grid for lead storage battery, and battery and storage battery using the grid
JP4884748B2 (en) Lattice substrate for lead acid battery
JPS59219854A (en) Lead storage battery
JPH1069900A (en) Pole plate for lead-acid battery
JPH07105238B2 (en) Manufacturing method of current collector for lead battery
CN210956878U (en) Battery structure with high rate performance
JP2001185157A (en) Lead acid battery
JPS6010560A (en) Substrate for lead storage battery plate
JPS60212958A (en) Hydrogen absorption electrode
JP2004079198A (en) Lead accumulator
JPH03176965A (en) Sealed lead-acid battery
JPH0745274A (en) Lead acid battery use positive plate and manufacture thereof
JPS63152871A (en) Sealed lead-acid battery
JPH08162119A (en) Lattice body for lead-acid battery
JPWO2016125230A1 (en) Solid electrolyte and all-solid battery
JPS58198860A (en) Lead storage battery
JPS635864B2 (en)
JP2553858B2 (en) Lead acid battery
JP4765154B2 (en) Lead acid battery
JPH1167218A (en) Perforated current collector used in secondary battery
JPH07192751A (en) Lead-acid battery
JPH10302784A (en) Manufacture of paste positive electrode plate
JPS5769672A (en) Solid lithiu manganese-dioxide battery and its manufacture
JPS59139568A (en) Height type electrode plate for lead storage battery
JP2005149788A (en) Collector for lead-acid battery