JPS59219253A - Production of hexamethylenediamine - Google Patents

Production of hexamethylenediamine

Info

Publication number
JPS59219253A
JPS59219253A JP58094064A JP9406483A JPS59219253A JP S59219253 A JPS59219253 A JP S59219253A JP 58094064 A JP58094064 A JP 58094064A JP 9406483 A JP9406483 A JP 9406483A JP S59219253 A JPS59219253 A JP S59219253A
Authority
JP
Japan
Prior art keywords
reaction
water
aminocapronitrile
nitrile
reaction system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58094064A
Other languages
Japanese (ja)
Other versions
JPS6246535B2 (en
Inventor
Tsutomu Setsuda
説田 勉
Ryozo Kondo
近藤 良三
Fumio Ichimura
市村 文男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP58094064A priority Critical patent/JPS59219253A/en
Publication of JPS59219253A publication Critical patent/JPS59219253A/en
Publication of JPS6246535B2 publication Critical patent/JPS6246535B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound useful as a raw material for the polymerization of polyamide, in high yield and purity, suppressing the side reactions, by hydrogenating aminocapronitrile under specific condition. CONSTITUTION:The objective compound can be produced by reacting aminocapronitrile with hydrogen under hydrogen-pressure of 1-50kg/cm<2> at 50-140 deg.C in the presence of a cobalt/alumina catalyst and 0.2-4, preferably 0.5-2pts.wt. of water, based on 100pts.wt. of the nitrile. Preferably, the reaction is carried out by adding 0.01-1pts.wt., based on 100pts.wt. of the nitrile, of a caustic alkali, e.g. caustic soda, etc. to the reaction system. EFFECT:The catalytic activity can be remarkably increased by the presence of water in the reaction system, and the rate of reaction can be doubled compared with the anhydrous reaction system.

Description

【発明の詳細な説明】 本発明は、アミノカプロニトリルを水素添加してヘキサ
メチレンジアミンを製造する方法に関するものであり、
さらに詳しくは前記水緊添刀口の反応速度を加速し、副
反応を抑制することにより高純度のへキサメチレンジア
ミンを効率的に製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing hexamethylene diamine by hydrogenating aminocapronitrile,
More specifically, the present invention relates to a method for efficiently producing high-purity hexamethylene diamine by accelerating the reaction rate of the water-added knife and suppressing side reactions.

脂肪族ニトリル、特にアミノカプロニトリルは、ポリア
ミド重合用原料として重要なヘキサメチレンジアミン製
造の前駆物質であり、このアミノカプロニトリルは一般
に水素化触媒の存在下、分子状水素によって水素添加し
て合成される。ニトリル基の還元水素化は下式のように
アルジミンを経由する反応であるため一級アミンへの還
元主反応に並行して分子内および分子間の脱アミノ化反
応を惹起して二級アミンを副生ずることがある(第一の
副反応)。
Aliphatic nitrile, especially aminocapronitrile, is an important precursor for the production of hexamethylene diamine as a raw material for polyamide polymerization, and this aminocapronitrile is generally hydrogenated with molecular hydrogen in the presence of a hydrogenation catalyst. be synthesized. Since the reductive hydrogenation of nitrile groups is a reaction via aldimine as shown in the formula below, in parallel with the main reaction of reduction to primary amines, intramolecular and intermolecular deamination reactions are induced to convert secondary amines into secondary amines. may occur (first side reaction).

R−C=N  + H2→ R−CH=NH(アルジミ
ン)・・・(1)R−CH=NH十 H2→ R−CH
2・NH2←級アミシアミン・(2)また、第二の副反
応としてはニトリル基あるいは中間体の加水分解による
酸アミド、アルデヒドあるいはカルボン酸の生成反応が
あり、この副反応防止のために望ましくは反応系内を無
水状態にすべきである。
R-C=N + H2→ R-CH=NH (aldimine)...(1) R-CH=NH+ H2→ R-CH
2-NH2←-class amicyamine (2) In addition, the second side reaction is the production of acid amide, aldehyde, or carboxylic acid by hydrolysis of the nitrile group or intermediate, and in order to prevent this side reaction, it is desirable to The reaction system should be kept in an anhydrous state.

さらに第三の副反応による生成物としては、   ゛複
雑な反応経路を通って生成する環状ジアミン、環状イミ
ン、アミノ酸、ラクタムその他がある。
Furthermore, products resulting from the third side reaction include cyclic diamines, cyclic imines, amino acids, lactams, etc., which are produced through complex reaction routes.

これらの副反応を減少させ、−級アミンの収量を増加さ
せるためには主反応を加速することが肝要であり、高度
の水素化活性と選択性のよい触媒が要求される。この観
点から水素化触媒としてニッケル系触媒、待にラネーニ
ッケルが高活性であるか、−級アミンへの選択率からは
コバルト系触媒が好適である。
In order to reduce these side reactions and increase the yield of -class amines, it is important to accelerate the main reaction, and a catalyst with high hydrogenation activity and good selectivity is required. From this point of view, nickel-based catalysts, especially Raney nickel, are highly active as hydrogenation catalysts, and cobalt-based catalysts are preferred from the viewpoint of selectivity to -class amines.

また、(3)式による二級アミン生成を抑制するためア
ンモニア(液体アンモニアを溶媒とする例が多い)ある
いは苛性アルカリを加える方法が知られているが、水分
の存在は(4)式によやニトリルの損失を免れがたい。
In addition, a method of adding ammonia (liquid ammonia is often used as a solvent) or caustic alkali is known to suppress the formation of secondary amines according to equation (3), but the presence of water can be avoided according to equation (4). It is difficult to avoid the loss of nitrile and nitrile.

さらに、炭化水素、アルコールあるいはエーテルを単独
にあるいは上記アンモニア、苛性アルカリあるいは水と
混合併用する方法なども提案されている。ところが、炭
化水素、アルコールなどを加えるこれら方法では、使用
する触媒の種類が特定されており一般的な方法ではない
。たとえば、ドイツ特許848.654号ではアン・モ
ニアとトルエンの混合液を溶媒とする方法であるが、触
媒はコバルト−亜鉛である。さらに、水以外のアンモニ
アや有機溶媒を使用する方法では、反応後の生成物回収
設備に多額の費用を要し経済的ではない。
Furthermore, methods have been proposed in which hydrocarbons, alcohols, or ethers are used alone or in combination with ammonia, caustic alkali, or water. However, in these methods of adding hydrocarbons, alcohols, etc., the type of catalyst used is specified and is not a general method. For example, German Patent No. 848.654 uses a mixture of ammonia and toluene as a solvent, but the catalyst is cobalt-zinc. Furthermore, methods using ammonia or organic solvents other than water are not economical because they require a large amount of equipment for recovering the product after the reaction.

さらにまた、コバルト−アルミニウム合金の存在下、水
分、アルコールあるいはそのアルカリ溶液と共にアミノ
カプロニトリルを分子状水素によって水素化し、ヘキサ
メチレンジアミンを製造するとと)にコバルト/アルミ
ナ触媒を製造する方法は公知(特公昭43−1.505
9号公報、特公昭44−13484号公報)であるが、
これら公知方法における水、アルコールの役割はコバル
ト−アルミニウム合金の展開によって水素化触媒となる
コバルト−アルミナを生成せしめること、従ってその添
加量は合金の展開、すなわち、アルミニウムの溶出に十
分な量である必要があるので、水、アルコールをアミノ
カプロニトリルに対して10重量%以上と多く使用する
のであった。このような多量の水、アルコールの存在下
でコバルト/アルミナ触媒によりアミノカプロニトリル
の水素化反応を行なってみたところ、副反応生成物の量
が多くて収率が低いのであった。そこで、コバルト/ア
ルミナ触媒によるアミノカプロニトリルの水素化反応に
おいて、さらに高活性、高選択率の発現方法を検討した
結果、アミノカプロニトリル100重量部に対し4重量
部以下の少量の水を存在させた場合では水による副反応
は問題とならないほど小さく、むしろ、触媒活性の増進
効果が著しく大きいことを見い出し、本発明に到達した
ものである。その特徴は、ニトリル100重量部に対し
0.2〜4重凰部の水分、最も好ましくは0.5〜2重
量部の水を反応系内に存在させることにより、触媒活性
を著しく増進させることにある。この水による触媒活性
の増進効果は、無水の反応系と比較して反応速度が2倍
にもなるほどのものである。この効果によって水素圧力
は50kq/d以下たとえば1okq/cA、120℃
以下たとえば110℃においても短時間に反応!完結し
て行なうことができるので、ニトリルの加水分解その他
の副反応を著しく低減することも可能となる。
Furthermore, a method for producing a cobalt/alumina catalyst is known, in which hexamethylene diamine is produced by hydrogenating aminocapronitrile with molecular hydrogen in the presence of a cobalt-aluminum alloy together with water, alcohol, or an alkaline solution thereof. (Special Public Interest Publication 43-1.505
9, Japanese Patent Publication No. 13484/1984),
The role of water and alcohol in these known methods is to develop cobalt-aluminum alloy to produce cobalt-alumina, which becomes a hydrogenation catalyst, and therefore, the amount of water and alcohol added is sufficient for the development of the alloy, that is, the elution of aluminum. Because of this necessity, water and alcohol were used in large quantities, at least 10% by weight based on aminocapronitrile. When the hydrogenation reaction of aminocapronitrile was carried out using a cobalt/alumina catalyst in the presence of such large amounts of water and alcohol, the yield was low due to the large amount of side reaction products. Therefore, in the hydrogenation reaction of aminocapronitrile using a cobalt/alumina catalyst, we investigated a method for achieving even higher activity and higher selectivity.As a result, we found that a small amount of water (4 parts by weight or less) was added to 100 parts by weight of aminocapronitrile. The present invention was achieved based on the discovery that when water is present, side reactions due to water are so small that they do not pose a problem, and in fact, the effect of enhancing the catalytic activity is significantly large. Its feature is that the catalytic activity is significantly enhanced by the presence of 0.2 to 4 parts of water, most preferably 0.5 to 2 parts by weight of water, in the reaction system per 100 parts by weight of nitrile. It is in. This effect of increasing the catalytic activity by water is such that the reaction rate is doubled compared to an anhydrous reaction system. Due to this effect, the hydrogen pressure is 50kq/d or less, for example, 1okq/cA, 120℃
For example, it reacts in a short time even at 110℃! Since the process can be carried out completely, it is also possible to significantly reduce nitrile hydrolysis and other side reactions.

系内に存在させる水の量が二l・ツル1O0重凰に対し
0.2重量部以下では上記効果が認められず、一方、4
重量部を超えると副反応生成物の量が著増して収率が低
下する。もつとも好適な添加量は0.5〜2重量部であ
る。
If the amount of water present in the system is less than 0.2 parts by weight per 2 liters/100 tons of water, the above effect is not observed;
When the amount exceeds 1 part by weight, the amount of side reaction products increases significantly and the yield decreases. The most preferable addition amount is 0.5 to 2 parts by weight.

系内への水の添加方法については特に制限はない。例え
ば、水単独で又は苛性アルカリ水溶液として添加すれば
良く、また、あらかじめアミノカプロニトリル、触媒に
含ませておいても良い。
There are no particular restrictions on the method of adding water into the system. For example, it may be added to water alone or as an aqueous caustic solution, or it may be included in aminocapronitrile and the catalyst in advance.

なお、反応速度を速める必要のない場合には水による反
応促進にみあう分、触媒使用量を低減させたり水素圧力
を低下させて、反応速度を調整しても良い。
In addition, when there is no need to accelerate the reaction rate, the reaction rate may be adjusted by reducing the amount of catalyst used or lowering the hydrogen pressure to match the reaction acceleration by water.

また、系内には苛性ソータのごとき苛性アルカリを存在
させることが、ヘキサメチレンジアミンの品質向上のた
めに好ましい。この苛性アルカリはアミノカプロニトリ
ル100重量部に対し0.0l−1ffiffi部が好
ましい。さらに、系内の水素圧i、t 1−50 kq
/cA、温度i、i 50− ]、 40部程度であれ
ばよい。
Further, it is preferable that a caustic alkali such as a caustic sorter be present in the system in order to improve the quality of hexamethylene diamine. The caustic alkali is preferably used in an amount of 0.0 l to 1 ffiffi part per 100 parts by weight of aminocapronitrile. Furthermore, the hydrogen pressure in the system i, t 1-50 kq
/cA, temperature i, i50- ], about 40 parts is sufficient.

水素添加を行なう出発物質としてはアミノカプロニトリ
ルの他に、水素添加によりヘキサメチレンジアミンとす
ることのできる他の化合物をも併用してもよいが、反応
を単純化して、副反応生成物の皿類を減らすことにより
精製を容易化するためには、他の化合物は併用しないこ
とが好ましい。また、メタノールのごときアルコールも
併用しないことが好ましい。
In addition to aminocapronitrile, other compounds that can be converted into hexamethylenediamine by hydrogenation may be used in combination as starting materials for hydrogenation; In order to facilitate purification by reducing the number of dishes, it is preferable not to use other compounds in combination. Further, it is preferable not to use an alcohol such as methanol in combination.

以下、実施例をもって具体的に示すが本発明はこれらに
よって制限されるものではない。
The present invention will be specifically described below with examples, but the present invention is not limited thereto.

実施例1 500 mlのオートクレーブにコバルト−アルミナ触
媒22.5 f/とアミノカプロニトリル150gおよ
び25%苛性ソーダ水溶液0.3Fを仕込んだ。さらに
表1の52〜8に示すように、ニトリル100重量部に
対し0.15〜10.15部の水分率になるように必要
量だけ水を加えた。苛性ソーダ水溶液の代りに固体苛性
フープを0.075g加える場合(41)および全く苛
性ソーダおよび水を加えない場合(A9)についても比
較実験した。オートクレーブは圧力センサーを備え、充
分I’d拌しつつ水素圧10 kq/c−の定圧下、1
30℃における水素吸収速度を追跡した。水素吸収が完
全に停止したのを確認したのち、反応混合物から触媒を
分離し、真空蒸留(5**HQし、留分のガスクロ純度
および高沸点残渣率(残渣量/仕込量)を求めた。
Example 1 A 500 ml autoclave was charged with 22.5 f/ of cobalt-alumina catalyst, 150 g of aminocapronitrile, and 0.3 F of a 25% aqueous solution of caustic soda. Further, as shown in Tables 52 to 8 in Table 1, water was added in the required amount to give a moisture content of 0.15 to 10.15 parts per 100 parts by weight of nitrile. Comparative experiments were also carried out in the case where 0.075 g of solid caustic hoop was added instead of the aqueous caustic soda solution (41) and in the case where no caustic soda or water was added at all (A9). The autoclave is equipped with a pressure sensor and is heated under a constant hydrogen pressure of 10 kq/c- with sufficient stirring.
The hydrogen absorption rate at 30°C was followed. After confirming that hydrogen absorption had completely stopped, the catalyst was separated from the reaction mixture and vacuum distilled (5**HQ) to determine the gas chromatography purity and high boiling point residue ratio (residue amount/charged amount) of the fraction. .

釆 l この結果から、水分率が少なすぎると触媒活性を充分に
増進できず反応速度が低いことが、また、水分率が4w
t%を超えると反応速度の上昇はほとんどなくなり、む
しろ残虐率が急激に大きくなってくるので収率が低下す
ることがわかる。
From this result, it is clear that if the moisture content is too low, the catalyst activity cannot be sufficiently increased and the reaction rate is low.
It can be seen that when the amount exceeds t%, there is almost no increase in the reaction rate, and the cruelty rate increases rapidly, resulting in a decrease in yield.

実施例2 実施例11表1における実験名2と56について、コバ
ルト−アルミナ触媒の添加量を変化させた以外は実施例
1と同様に反応を行なった場合および水素圧を変えた以
外は実施例1と同様の実験を行なった結果を表2および
3に示す。
Example 2 Example 11 Regarding experiment names 2 and 56 in Table 1, the reaction was carried out in the same manner as in Example 1 except that the amount of cobalt-alumina catalyst added was changed, and Example 1 except that the hydrogen pressure was changed. Tables 2 and 3 show the results of an experiment similar to 1.

表 2  触媒添加量と相対反応速度 表 3  水素圧力と相対反応速度 この結果は反応系の水分率が、反応圧力や触媒添加率以
上に反応速度を支配していることがわかる。
Table 2: Catalyst addition amount and relative reaction rate Table 3: Hydrogen pressure and relative reaction rate These results show that the water content of the reaction system controls the reaction rate more than the reaction pressure and catalyst addition rate.

Claims (1)

【特許請求の範囲】[Claims] アミノカプロニトリルに、コバルト/アルミナ触媒の存
在下で水素添加を行なうことによりヘキサメチレンジア
ミンを製造する方法において、前記水素添加の反応系内
に、前記アミノカプロニトリル100重量部に対して0
,2〜4重量部の水を存在させることを特徴とするヘキ
サメチレンジアミンの製造方法。
In a method for producing hexamethylene diamine by hydrogenating aminocapronitrile in the presence of a cobalt/alumina catalyst, 0% is added to the hydrogenation reaction system based on 100 parts by weight of the aminocapronitrile.
, a method for producing hexamethylene diamine, characterized in that 2 to 4 parts by weight of water is present.
JP58094064A 1983-05-30 1983-05-30 Production of hexamethylenediamine Granted JPS59219253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58094064A JPS59219253A (en) 1983-05-30 1983-05-30 Production of hexamethylenediamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58094064A JPS59219253A (en) 1983-05-30 1983-05-30 Production of hexamethylenediamine

Publications (2)

Publication Number Publication Date
JPS59219253A true JPS59219253A (en) 1984-12-10
JPS6246535B2 JPS6246535B2 (en) 1987-10-02

Family

ID=14100089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58094064A Granted JPS59219253A (en) 1983-05-30 1983-05-30 Production of hexamethylenediamine

Country Status (1)

Country Link
JP (1) JPS59219253A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009514834A (en) * 2005-11-03 2009-04-09 ビーエーエスエフ ソシエタス・ヨーロピア Method for synthesizing N, N-dimethyl-1,3-diaminoplan (DMAPA)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009514834A (en) * 2005-11-03 2009-04-09 ビーエーエスエフ ソシエタス・ヨーロピア Method for synthesizing N, N-dimethyl-1,3-diaminoplan (DMAPA)
JP4755692B2 (en) * 2005-11-03 2011-08-24 ビーエーエスエフ ソシエタス・ヨーロピア Method for synthesizing N, N-dimethyl-1,3-diaminoplan (DMAPA)

Also Published As

Publication number Publication date
JPS6246535B2 (en) 1987-10-02

Similar Documents

Publication Publication Date Title
KR20080026197A (en) Process for the reductive amination of aldehydes and ketones via the formation of macrocyclic polyimine intermediates
US4053515A (en) Catalytic hydrogenation of unsaturated dinitriles employing high purity alumina
JPH0769999A (en) Preparation of primary amine from aldehyde
US6696609B2 (en) Process for producing diamines
US3998881A (en) Hydrogenation of phthalonitriles using rhodium catalyst
JP3001685B2 (en) Diamine production method
US5789620A (en) Process for the preparation of 1,4-bis(aminomethyl) cyclohexane
SK281672B6 (en) Process for preparation of primary amines from aldehydes
CA1099291A (en) Process for the production of diamines
JP2598848B2 (en) Bis (3-cyano-3,5,5-trimethyl-cyclohexylidene) -azine, a method for producing the compound and a method for producing 3- (aminomethyl) -3,5,5-trimethylcyclohexylamine
JPS59219253A (en) Production of hexamethylenediamine
JP3347185B2 (en) Method for producing serine or a derivative thereof
KR20000062670A (en) Process for the Preparation of Bistrifluoromethylbenzylamines
JP4709352B2 (en) Method for purifying 3-aminopropanol
GB731819A (en) Improvements in or relating to the production of hexamethylene diamine and salts thereof
JP3481950B2 (en) Preparation of 1-alkyl-3-methylpiperidone-2 and 1-alkyl-5-methylpiperidone-2
JPS62281846A (en) Production of n,n,n&#39;,n&#39;-tetramethyl-1,6-hexanediamine
JP4326921B2 (en) Method for producing 3-buten-1-ol
JPH07157453A (en) Production of n-(3-amono-propyl)amine
US5808078A (en) Process for preparation of 1-alkyl-3-methylpiperidone-2 and 1-alkyl-5-methylpiperidone-2
JPH0637481B2 (en) Method for producing piperidine
GB2149790A (en) Process for producing aminobenzylamines
JPH05255210A (en) Preparation of tetramethyl diamino-polyoxyethylene
JPH03127752A (en) Production of methylcyclohexanone
JP2004083495A (en) Method for preparing 2-aminomethylpyrimidine and its salt