JPS62281846A - Production of n,n,n',n'-tetramethyl-1,6-hexanediamine - Google Patents

Production of n,n,n',n'-tetramethyl-1,6-hexanediamine

Info

Publication number
JPS62281846A
JPS62281846A JP61124298A JP12429886A JPS62281846A JP S62281846 A JPS62281846 A JP S62281846A JP 61124298 A JP61124298 A JP 61124298A JP 12429886 A JP12429886 A JP 12429886A JP S62281846 A JPS62281846 A JP S62281846A
Authority
JP
Japan
Prior art keywords
reaction
hydrogen
water
methanol
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61124298A
Other languages
Japanese (ja)
Other versions
JPH078839B2 (en
Inventor
Takanobu Goudou
郷道 堯信
Takehisa Miyamoto
宮本 武久
Yukio Hashimoto
幸雄 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP61124298A priority Critical patent/JPH078839B2/en
Publication of JPS62281846A publication Critical patent/JPS62281846A/en
Publication of JPH078839B2 publication Critical patent/JPH078839B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the titled compound which is a raw material for dispersing agents, emulsifying agents, foaming accelerators, etc., in high yield, by reacting hexanediamine with (para)formaldehyde and hydrogen in the presence of a noble metal catalyst in an alcoholic solvent. CONSTITUTION:1,6-Hexanediamine (HA) is reacted with formaldehyde and/or paraformaldehyde in an amount of 3.5-5.0 molar equivalents based on 1mol HA and hydrogen in the presence of a noble metal catalyst, e.g. Pd-active carbon, Pt-active carbon, etc., in a 1-4C aliphatic alcohol solvent or a mixed solvent of water and the alcohol containing >=30wt% above-mentioned alcohol at room temperature-150 deg.C, preferably 50-120 deg.C under pressure of hydrogen (3-9 atm gauge) to afford the aimed compound.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は貴金属触媒の存在下、1.6−ヘキサノンアミ
ノ(以下、HAと略す)にネルミル化剤と水素とを反応
させて、N、N、N′,N′−テトラメチル−1,6−
ヘキサルアミン(以下、TM)(Aと略す)を製造する
方法に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Industrial Field of Application] The present invention involves the addition of a nermylating agent and hydrogen to 1,6-hexanone amino (hereinafter abbreviated as HA) in the presence of a noble metal catalyst. to form N,N,N',N'-tetramethyl-1,6-
This invention relates to a method for producing hexalamine (hereinafter referred to as TM) (abbreviated as A).

TMHAは分散剤、乳化剤および発泡促進剤などの原料
として有用である。
TMHA is useful as a raw material for dispersants, emulsifiers, foam promoters, and the like.

〔従来の技術〕[Conventional technology]

従来、TMHAの製造方法としては、HA+こホルマリ
ンとギ酸並びに塩基性有機酸とを反応させる方法(特開
昭56−166152号公報)が知られている。
Conventionally, as a method for producing TMHA, a method in which HA+formalin is reacted with formic acid and a basic organic acid (Japanese Unexamined Patent Publication No. 166152/1982) is known.

一方、水素圧下、液相に維持された水素添加触媒を含有
する脂肪族第1級アミン並びに脂肪族第2級アミンにホ
ルムアルデヒドを徐々に加える脂肪族第3級アミンの製
造において、反応に対する追加的な触媒として、脂肪族
第1級アミンまたは脂肪族第2級アミンに対して約05
〜3重量%の塩基性有機酸を使用する脂肪族第3級メチ
ルアミンの改良製造法(特公昭39−17905号公報
)および第1級アミ、ノまたは第2級アミンにパランラ
ムまrこは白金触媒の存在下、3〜5 Q kt) /
 Cj(ゲージ圧)の水素圧下、温度80〜180 ’
Cで、ホルムアルデヒドを反応させろ第3級アミンの製
造方法(特開昭60−130551号公報)など長鎖脂
肪族第1級または第2級アミンを水素添加触媒の存在下
、ホルミル化剤と水素と反応させて、第3級アミンを製
造する方法は知られている。
On the other hand, in the production of aliphatic tertiary amines, formaldehyde is gradually added to aliphatic primary amines and aliphatic secondary amines containing hydrogenation catalysts maintained in the liquid phase under hydrogen pressure. For aliphatic primary amines or aliphatic secondary amines, about 0.05
An improved method for producing aliphatic tertiary methylamine using ~3% by weight of a basic organic acid (Japanese Patent Publication No. 39-17905) and the use of paranram in primary, secondary, or secondary amines. In the presence of platinum catalyst, 3-5 Q kt) /
Under hydrogen pressure of Cj (gauge pressure), temperature 80-180'
In the presence of a hydrogenation catalyst, a long-chain aliphatic primary or secondary amine is reacted with a formylating agent and hydrogen. A method for producing a tertiary amine by reacting with is known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来のTMHAの製造方法において、ま
ずHAにホルマリンとギ酸並びに塩基性有機酸とを反応
させる方法はアミン基のジメチル化に際し、還元剤とし
て作用するギ酸(1モルのHAに対して約4モルのギ酸
が必要である)のほかに、造塩剤として作用する塩基性
有機酸が1モルのHAに対して約2当量必要である。さ
らに、反応生成物から遊離のT M HAを取得するた
めに、1モルのTMHAに対して約2当量のアルカリを
用いて、造塩剤を中和する工程が必要である。
However, in the conventional method for producing TMHA, a method in which HA is first reacted with formalin, formic acid, and a basic organic acid is a method in which formic acid, which acts as a reducing agent (approximately 4 In addition to the basic organic acid that acts as a salt-forming agent, approximately 2 equivalents per mole of HA are required. Furthermore, in order to obtain free T M HA from the reaction product, it is necessary to neutralize the salt-forming agent using about 2 equivalents of alkali per 1 mol of TMHA.

すなわら、この方法の欠点は還元剤として高価なギ酸を
用いるほかに、さらに多量の塩基性有機酸とアルカリを
使用する点にある。このため、中和工程から多量の塩基
性有機酸のアルカリ塩を含む排水が発生し、排水処理費
が高くつく欠点を有している。
In other words, the drawback of this method is that, in addition to using expensive formic acid as a reducing agent, large amounts of basic organic acids and alkalis are also used. For this reason, the neutralization process generates wastewater containing a large amount of alkali salts of basic organic acids, which has the drawback of increasing wastewater treatment costs.

一方、長鎖脂肪族第1級アミンまたは第2級アミンに水
素添加触媒の存在下、ホルマリンと水素とを反応させて
、長鎖脂肪族第3級アミンを製造する従来の方法はいず
れも特殊な溶媒を使用せず、原料長鎖脂肪族第1級アミ
ンまたは第2級アミンをほとんど無溶媒に近い状態で反
応器に仕込み、ホルマリンを供給して、還元ジメチル化
する方法である。
On the other hand, conventional methods for producing long-chain aliphatic tertiary amines by reacting long-chain aliphatic primary amines or secondary amines with formalin and hydrogen in the presence of a hydrogenation catalyst are all special methods. In this method, the raw material long-chain aliphatic primary amine or secondary amine is charged in a nearly solvent-free state into a reactor, formalin is supplied, and reductive dimethylation is performed without using any solvent.

このように、はとんど無溶媒に近い状態で長鎖脂肪族第
1級アミンまたは第2級アミンを還元ジメチル化して、
T M HAを製造する方法は、十分な反応成績を達成
するために、高圧の水素を必要とする。かかる方法を工
業的規模で実施する場合、耐圧反応器が必要1こなり、
設備費が高くつく欠点を有している。また、運転管理面
でも高度な技術が要求されろ。
In this way, long-chain aliphatic primary amines or secondary amines are reductively dimethylated in almost solvent-free conditions.
The method of producing T M HA requires high pressure hydrogen to achieve sufficient reaction performance. When carrying out such a method on an industrial scale, a pressure-resistant reactor is required;
It has the disadvantage of high equipment costs. Also, advanced technology is required in terms of operation management.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、前記従来技術の欠点を解決するため・鋭
意検討を重ねた結果、貴金慎触媒の存在下、ホルムアル
デヒドおよび/まナニはパラホルムアルデヒド並びに水
素を用いて、HAを通元しメチル化する反応を炭素数1
〜4の脂肪族アルコール溶媒中または前記アルコールを
30重量%以上含む水とアルコールの混合溶媒中で行な
わしめろことによって、低圧の水素を用い1−場合でも
、高品位のTMHAを高収率で製造できろことを見い出
し、本発明に到達した。
In order to solve the drawbacks of the above-mentioned prior art, the present inventors have made extensive studies and found that formaldehyde and/or hydrogen permeates HA using paraformaldehyde and hydrogen in the presence of a Kikanishin catalyst. Methylation reaction with 1 carbon number
By carrying out the reaction in an aliphatic alcohol solvent of ~4 or a mixed solvent of water and alcohol containing at least 30% by weight of the alcohol, high-quality TMHA can be produced in high yield even when using low pressure hydrogen. They discovered that it could be manufactured and arrived at the present invention.

す1.(わら、本発明は、HAを炭素数1〜4の脂肪族
アルコール溶媒中まt二は前記アルコールを30重量%
以上含む水とアルコールの混合溶媒中において、貴金属
触媒の存在下、ホルムアルデヒドおよび/まtこはパラ
ホルムアルデヒド並びに水素と反応せしめろことを特徴
とするTMH’Aの製造方法である。
1. (In the present invention, HA is dissolved in an aliphatic alcohol solvent having 1 to 4 carbon atoms, and the alcohol is 30% by weight.
The method for producing TMH'A is characterized in that formaldehyde and/or alcohol are reacted with paraformaldehyde and hydrogen in the presence of a noble metal catalyst in a mixed solvent of water and alcohol containing the above.

り下、本発明の詳細な説明する。Below, the present invention will be described in detail.

本発明(こ共される主原料のHAは、アレピノ酸法、ア
クリロニトリル電解2@化法、ブクレエノ法およびε−
カプロラクタム法など、公知の方法で製造できる。本発
明はこれらいずれの方法で製造されるHAを使用しても
円滑に実施できる。また反応に共されるHAは無水の形
態および水/8液の形態など、どのような形態であって
も本発明に使用できろ。
The main raw material HA used in this invention is the arepino acid method, the acrylonitrile electrolysis method, the bucleeno method and the ε-
It can be produced by a known method such as the caprolactam method. The present invention can be smoothly carried out using HA produced by any of these methods. Furthermore, HA used in the reaction can be used in the present invention in any form, including anhydrous form and water/8 liquid form.

本発明においては、反応系におけろHAの初期濃度が通
常5〜50重量%であり、好ましくは10〜40重量%
となるようにHA%共給する。ここでいうHAの初期濃
度とは、反応初期に、液相に存在するHA、水および炭
素数1〜4の脂肪族アルコールの合計量に対して、液相
に存在するHAの量を重量%で表わした値である。HA
の初期濃度が5重量%以下の場合は生産性が低いので実
用的でなく、一方、HAの初期濃度が50重1%以上の
場合は、反応成績が低下する傾向が認められるので好ま
しくない。
In the present invention, the initial concentration of HA in the reaction system is usually 5 to 50% by weight, preferably 10 to 40% by weight.
HA% will be shared so that The initial concentration of HA here refers to the amount of HA present in the liquid phase in weight% relative to the total amount of HA, water, and aliphatic alcohol having 1 to 4 carbon atoms present in the liquid phase at the initial stage of the reaction. This is the value expressed as . H.A.
If the initial concentration of HA is less than 5% by weight, it is not practical because the productivity is low.On the other hand, if the initial concentration of HA is more than 50% by weight, it is not preferable because the reaction results tend to deteriorate.

なお本発明において反応系へHAを供給する方式として
は、回分および連続式のいずれの方式も採用できる。
In the present invention, as a method for supplying HA to the reaction system, either a batch method or a continuous method can be adopted.

本発明で使用するホルムアルデヒドおよび/またはパラ
ホルムアルデヒドはホルミル化剤として作用する。本発
明においては、通常、ホルムアルデしドとパラホルムア
ルデヒドはそれぞれ単独で用いられるが、場合によって
は、ホルムアルデヒドとパラホルムアルデヒドの混合物
を用いてもよい。またこれらのホルミル化剤は、通常、
例えば水および/またはアルコールとの混合物の形態と
なっている市販品をそのまま使用できろ。特に本発明に
おいては、アルコールとの混合物の形態となっているホ
ルムアルデヒドおよび/またはパラホルムアルデヒドの
使用が好ましい。
Formaldehyde and/or paraformaldehyde used in the present invention acts as a formylating agent. In the present invention, formaldehyde and paraformaldehyde are usually used alone, but in some cases, a mixture of formaldehyde and paraformaldehyde may be used. These formylating agents are also usually
For example, commercially available products in the form of mixtures with water and/or alcohol can be used as is. Particularly preferred in the present invention is the use of formaldehyde and/or paraformaldehyde in the form of a mixture with alcohol.

本発明においては、ホルムアルデヒドおよび/またはパ
ラホルムアルデヒドの使用量は、通常HAIモル当り3
.5〜5.0モル当量である。
In the present invention, the amount of formaldehyde and/or paraformaldehyde used is usually 3 per mole of HAI.
.. It is 5 to 5.0 molar equivalent.

ここでパラホルムアルデヒド1モル当量とは。What is 1 molar equivalent of paraformaldehyde here?

パラホルムアルデヒドを構成するホルムアルデヒド1単
位をいう。
One unit of formaldehyde that constitutes paraformaldehyde.

本発明においては、ホルムアルデヒドおよび/またはパ
ラホルムアルデヒドの使用量がHA1モル当り3.5モ
ル当量未満の場合は、未反応HAが反応液中に残存する
傾向となり、特に工業的に本発明を実施する際には、未
反応HAの回収費が増大し、経済的なTMHAの製造方
法とはいえない。
In the present invention, if the amount of formaldehyde and/or paraformaldehyde used is less than 3.5 molar equivalents per mole of HA, unreacted HA tends to remain in the reaction solution, making it particularly difficult to carry out the present invention industrially. In some cases, the cost of recovering unreacted HA increases, and this cannot be said to be an economical method for producing TMHA.

一方、使用量がHA■モル当り5.0モル当量を越える
と、高沸化合物の副生が増大し、製品TMI(Aの品質
を低下させる傾向となる。最も好ましいホルムアルデヒ
ドおよび/またはパラホルムアルデヒドの使用量はHA
zモル当り3.9〜4.5モル当量、すなわち4.0モ
ル当量近辺である。
On the other hand, if the amount used exceeds 5.0 molar equivalent per mole of HA, the by-product of high-boiling compounds will increase and the quality of the product TMI (A) will tend to deteriorate. Usage amount is HA
It is 3.9 to 4.5 molar equivalents per z mole, that is, around 4.0 molar equivalents.

本発明においては、反応系へのホルムアルデヒドおよび
/まtこはパラホルムアルデヒドの供給方式は任意であ
る。ホルムアルデヒドの供給方式ハ、通常、ホルムアル
デヒドの形態が液状であることから、間歇または連続式
のいずれの方式にも適している。一方、パラホルムアル
デヒドの供給方式は、通常パラホルムアルデヒドの形態
が粉末であることから、回分式に適している。
In the present invention, formaldehyde and/or paraformaldehyde may be supplied to the reaction system in any manner. As for the formaldehyde supply method, since formaldehyde is usually in a liquid form, it is suitable for either an intermittent or continuous method. On the other hand, since paraformaldehyde is usually in the form of powder, a batch method is suitable for supplying paraformaldehyde.

本発明においては、HAの還元ジメチル化を炭素数1〜
4の脂肪族アルコール溶媒中または水と前記アルコール
との混合溶媒中で行なうことが重要である。ここで用い
る炭素数1〜4の脂肪族アルコールとしては、例えば、
メタノール、エタノール、n−プロパツール、1so−
プロパツール、n−ブタノール、1so−ブタノール、
5ec−ブタノール、tert−ブタノールなどが挙げ
られる。これらのフルコールは単独または混合して使用
できる。工業的には安価なメタノールを使用するのが好
ましい。
In the present invention, the reductive dimethylation of HA is carried out with a carbon number of 1 to
It is important to carry out the reaction in an aliphatic alcohol solvent or a mixed solvent of water and the alcohol described above. Examples of the aliphatic alcohol having 1 to 4 carbon atoms used here include:
Methanol, ethanol, n-propertool, 1so-
propatool, n-butanol, 1so-butanol,
Examples include 5ec-butanol and tert-butanol. These furcols can be used alone or in combination. Industrially, it is preferable to use inexpensive methanol.

また本発明においては、HAの還元レメチル化を水と炭
素数1〜4の脂肪族アルコールの混合溶媒中で行なう場
合、溶媒が炭素数1〜4の脂肪族アルコールを30重量
%以上含むものであることが重要である。
Furthermore, in the present invention, when the reductive remethylation of HA is carried out in a mixed solvent of water and an aliphatic alcohol having 1 to 4 carbon atoms, the solvent must contain 30% by weight or more of an aliphatic alcohol having 1 to 4 carbon atoms. is important.

すなわち、本発明においては、溶媒が実質的1こ炭素数
1〜4の脂肪族アルコールからなる単独溶媒か、または
炭素数1〜4の脂肪族アルコールを30重量%以上含む
水との混合溶媒であることが必要である。
That is, in the present invention, the solvent is a single solvent consisting essentially of an aliphatic alcohol having 1 to 4 carbon atoms, or a mixed solvent with water containing 30% by weight or more of an aliphatic alcohol having 1 to 4 carbon atoms. It is necessary that there be.

本発明においては、水とアルコールの混合溶媒が30重
量%以北の炭素数1〜4の脂肪族アルコールを含むとは
、反応系中の液相に実質的に存在する水と実質的に存在
する炭素数1〜4の脂肪族アルコールの合計量(これら
は反応系中で溶媒として作用している)に対する実質的
に存在する炭素数1〜4の脂肪族アルコールの量を重量
%で表わした時、それが30%以上であることを意味し
ている。
In the present invention, when the mixed solvent of water and alcohol contains 30% by weight or more of aliphatic alcohol having 1 to 4 carbon atoms, it means that the mixed solvent of water and alcohol contains 30% by weight or more of aliphatic alcohol having 1 to 4 carbon atoms. The amount of aliphatic alcohols having 1 to 4 carbon atoms substantially present relative to the total amount of aliphatic alcohols having 1 to 4 carbon atoms (these act as a solvent in the reaction system) is expressed in weight%. This means that it is more than 30%.

本発明においては、水との混合溶媒中の炭素数1〜4の
脂肪族アルコールの量が30重−%未満の場合は、TM
HAの生成率が著しく低下するので好ましくない。
In the present invention, when the amount of aliphatic alcohol having 1 to 4 carbon atoms in the mixed solvent with water is less than 30% by weight, TM
This is not preferable because the production rate of HA is significantly reduced.

本発明に用いられろ貴金属触媒は通常の水素添加触媒と
して用いられるものが使用でき、例えば、パラジウム、
白金およびルテニウムが挙げられる。本発明では通常、
市販されている木炭系活性炭やヤノガラ活性炭に担持さ
れたバラレウムー活性炭触媒および白金−活性炭触媒が
好ましく用いられる。貴金属触媒におけろ貴金属の担持
量は持に制限はないが、通常、担体に対して0.1〜I
O重量%の貴金属が担持されたものが用いられろ。
As the noble metal catalyst used in the present invention, those used as ordinary hydrogenation catalysts can be used, such as palladium,
Mention may be made of platinum and ruthenium. In the present invention, usually
Commercially available charcoal-based activated carbons, balaraeumu activated carbon catalysts supported on Yanogara activated carbon, and platinum-activated carbon catalysts are preferably used. There is no limit to the amount of noble metal supported in the noble metal catalyst, but it is usually 0.1 to I
A material having 0% by weight of noble metal supported thereon should be used.

本発明においては、貴金属触媒は、通常、反応系の液相
に懸潤させて使用される。HAの還元レメチル化を円滑
に進行させるために、反応系の液相をよく攪拌し、貴金
属触媒をできる限り均一になるよう分散させることが重
要である。
In the present invention, the noble metal catalyst is usually used suspended in the liquid phase of the reaction system. In order to smoothly proceed with the reductive remethylation of HA, it is important to thoroughly stir the liquid phase of the reaction system and disperse the noble metal catalyst as uniformly as possible.

HAに対する貴金属触媒の使用量は、より多く使用すれ
ば反応が円滑に進行し、一方、少量すぎろとTMHAの
生成率が低下する傾向となる。
Regarding the amount of noble metal catalyst used relative to HA, if the amount is too large, the reaction will proceed smoothly, whereas if it is too small, the production rate of TMHA will tend to decrease.

通常、例えば5重量%パラレウムを含む活性炭触媒を使
用した場合、原料HA I O0重量部に対して5重量
%バラレウムー活性炭触媒の使用量は約1〜50重量部
の範囲であり、好ましくは約3〜30重量部である。一
度使用された反応生成液中の触媒は固液分離され、必要
に応じて水、アルコールまたは水とアルコールの混合溶
媒で洗浄された後、循環再使用されることができろ。
Usually, when an activated carbon catalyst containing 5% by weight of paraleum is used, the amount of the 5% by weight activated carbon catalyst used is in the range of about 1 to 50 parts by weight, preferably about 3 parts by weight, based on 0 parts by weight of the raw material HA I O. ~30 parts by weight. Once used, the catalyst in the reaction product liquid can be separated into solid and liquid, washed with water, alcohol, or a mixed solvent of water and alcohol as necessary, and then recycled and reused.

本発明にわいては、水素の加圧下に反応を行なう。すな
わち、反応系は水素で加圧される。
In the present invention, the reaction is carried out under pressure of hydrogen. That is, the reaction system is pressurized with hydrogen.

圧力の範囲は副反応が喚起されない限り制限されないが
、全圧で10気圧(ゲージ圧)以下で十分であり、通常
、全圧は3〜9気圧(ゲージ圧)で行なわれる。反応系
への水素の供給は、圧力計の変化を監視しながら、間歇
まtコは連続式のいずれかの方式で行なわれろ。
The range of pressure is not limited as long as side reactions are not induced, but a total pressure of 10 atm (gauge pressure) or less is sufficient, and the total pressure is usually 3 to 9 atm (gauge pressure). Hydrogen is supplied to the reaction system either intermittently or continuously while monitoring changes in the pressure gauge.

本発明における反応温度は、通常、室温から150℃の
範囲であり、好ましくは50〜120℃である。反応温
度が高温すぎると副反応が喚起される傾向が認められ、
一方、低温すぎると満足できる反応速度が得られず、実
用的でない。
The reaction temperature in the present invention is usually in the range of room temperature to 150°C, preferably 50 to 120°C. It has been observed that if the reaction temperature is too high, side reactions tend to occur.
On the other hand, if the temperature is too low, a satisfactory reaction rate cannot be obtained and it is not practical.

本発明(こおいて、反応液から目的物のTMHAを取得
する方法としては、通常、反応液中の触媒を固液分離し
tこ後、アルコールと水を蒸発させて、得られた濃縮液
中のT M HA t、、減圧蒸留で留出させる方法が
採用されろ。
In the present invention, the method for obtaining the target product TMHA from the reaction solution is usually to separate the catalyst in the reaction solution into solid and liquid, and then evaporate the alcohol and water to obtain a concentrated solution. A method of distilling the T M HA t, under reduced pressure, should be adopted.

〔実施例〕〔Example〕

以下の実施例により、本発明を更に具体的に詳細に説明
するが、本発明は以下の実施例により限定されるもので
ない。
The present invention will be explained in more detail with reference to the following examples, but the present invention is not limited to the following examples.

実施例1 還流冷却管、攪拌装置、ホルマリン供給ポツプ、温度計
、ガス導入口およびガス排出口を設けた容積+6のオー
トクレーブに65%HA水溶液580ダ (032モル
)、メタノール111、 Oyおよび5%バラレウムー
カーボン粉末(50%含水晶)1.25F CHA10
0重量部に対し、5%バラレウムーカーボン粉末(50
%含水晶)として33重量部〕を仕込んjご。
Example 1 In a volume +6 autoclave equipped with a reflux condenser, a stirrer, a formalin supply pot, a thermometer, a gas inlet, and a gas outlet, 580 da (0.32 mol) of a 65% HA aqueous solution, 111 methanol, Oy, and 5% Balaleumu carbon powder (50% quartz crystal) 1.25F CHA10
5% Balareum carbon powder (50 parts by weight)
33 parts by weight (% quartz-containing crystal).

仕込み時のHA濃度は22%(a:込んjごHA、水お
よびメタノールの合計電に対し)であり、仕込み時の混
合溶媒中のメタノール量は84重1%(仕込んtご水お
よびメタノールの合計爪に対し)であつtこ。
The HA concentration at the time of preparation was 22% (a: based on the total amount of HA, water and methanol), and the amount of methanol in the mixed solvent at the time of preparation was 84% by weight (based on the total amount of HA, water and methanol). (total nails).

オートクレーブの窒素置換を2回、水素置換を1回それ
ぞれ行なっtコ後、100°Cまで昇温し8〜9kq/
d−G(ゲージ圧)の水素圧を維持するように水素ガス
を導入しながら、37%ホルマリン水溶液113.0y
(水溶液組成。
After the autoclave was replaced with nitrogen twice and once with hydrogen, the temperature was raised to 100°C and 8 to 9 kq/
113.0y of 37% formalin aqueous solution while introducing hydrogen gas to maintain hydrogen pressure of d-G (gauge pressure).
(Aqueous solution composition.

HCHO41,8F (1,39モル)、水63.3y
、メタノール(安定剤)7.91’〕を1.33時間で
添加し、還元アルキル化反応を行なっrコ。
HCHO41,8F (1,39 mol), water 63.3y
, methanol (stabilizer) 7.91'] was added over 1.33 hours to perform a reductive alkylation reaction.

反応終了後、0.5時間熟成した後、40°Cまで冷却
し、触媒を?戸別して得た反応液をガスクロマトグラフ
ィー(GC)法により分析した結果、HA転化率および
仕込みHAに対するTMHA生成率は共に100%であ
った。
After the reaction was completed, the mixture was aged for 0.5 hours, cooled to 40°C, and the catalyst was removed. As a result of analyzing the reaction solution obtained from each house by gas chromatography (GC), the HA conversion rate and the TMHA production rate relative to the charged HA were both 100%.

実施例2 実施例1と同じ装置にHA結晶(無水)250y(0,
22モル)、95%バラホルムアルテヒド粉末28.6
y(0,90モル)、メタノール225、 Oyおよび
5%バラじラム−カーボン粉末(50%含水晶)3.7
5yを仕込んtご。仕込み時のHA Q度は10%(仕
込んtごHA 、水およびメタノールの合計量に対し)
であり、仕込み時の混合溶媒中のメタノールの量は99
%(仕込んtご水およびメタノールの合計量に対し)で
あった。
Example 2 HA crystal (anhydrous) 250y (0,
22 mol), 95% rose formaldehyde powder 28.6
y (0.90 mol), methanol 225, Oy and 5% Balajiram-carbon powder (50% quartz) 3.7
Prepare 5y. HA Q degree during preparation is 10% (based on the total amount of HA, water and methanol during preparation)
The amount of methanol in the mixed solvent at the time of preparation is 99
% (based on the total amount of water and methanol charged).

オートクレーブの窒素置換を2回、水素置換を1回それ
ぞれ行なつtこ後、loo’cまで昇温し8〜gtg7
ci−G(ゲージ圧)の水素圧を維持するように水素ガ
スを導入しながら、3時間還元アルキル化反応を行なっ
た。
After replacing the autoclave with nitrogen twice and replacing it with hydrogen once, the temperature was raised to loo'c and the temperature was increased to 8~gtg7.
Reductive alkylation reaction was carried out for 3 hours while introducing hydrogen gas to maintain hydrogen pressure of ci-G (gauge pressure).

反応終了後、40℃まで冷却し、触媒をン戸別して得た
反応液をGC法で分析した結果、HA転化率は100%
、TMHA生成率は95.5%であった。
After the reaction was completed, the reaction solution was cooled to 40°C and the catalyst was separated, and the resulting reaction solution was analyzed by GC method. As a result, the HA conversion rate was 100%.
, the TMHA production rate was 95.5%.

実施例3 実施例1と同じ装置に65%HA水溶液70.01’(
0,39モル)、メタノールs o、 o yおよび5
%バランウムーカーボン粉末(50%含水晶)4.50
yを仕込んtご。仕込み時のHA濃度は30%(仕込ん
tごHA、水およびメタノールの合計量に対し)であり
、仕込み時の混合溶媒中のメタノールの量は75%(仕
込んtご水およびメタノールの合計量に対し)であった
Example 3 A 65% HA aqueous solution 70.01' (
0,39 mol), methanol so, o y and 5
% Balanumu carbon powder (50% quartz crystal) 4.50
Prepare y and t. The HA concentration at the time of preparation was 30% (relative to the total amount of HA, water, and methanol in the preparation), and the amount of methanol in the mixed solvent at the time of preparation was 75% (relative to the total amount of water and methanol in the preparation). ).

オートクレーブの窒素置換を2回、水素置換を1回それ
ぞれ行なった後、80℃まで昇温し8〜9に9/cj−
G(ゲージ圧)の水素圧全維持するように水素ガスを導
入しながら、37%ホルマリン水溶液140.0f(水
溶液組成: HCHO51,8y(1,72モル)、水
78.49およびメタノール(安定剤39.8f)を1
.25時間で添加し、還元アルキル化反応を行なった。
After the autoclave was replaced with nitrogen twice and once with hydrogen, the temperature was raised to 80°C and the temperature was increased to 8-9 with 9/cj-
While introducing hydrogen gas to maintain the full hydrogen pressure of G (gauge pressure), add 140.0 f of a 37% formalin aqueous solution (aqueous solution composition: HCHO51,8y (1,72 mol), water 78,49 and methanol (stabilizer). 39.8f) to 1
.. It was added for 25 hours to carry out a reductive alkylation reaction.

反応終了後、0.5時間熟成した後、40℃まで冷却し
触媒はP別回収した。
After the reaction was completed, the mixture was aged for 0.5 hours, cooled to 40° C., and the catalyst was recovered separately from P.

以後、触媒以外は初回反応条件で、触媒は回収触媒に仕
込み量の1/36(0,125y)の新品触媒を補充し
てリサイクル使用する方式で、初回反応も含め計5回還
元アルキル化反応を行なった。反応成績はHA転化率お
よびTMHA生成率は共に全て100%であり、触媒活
性の失活傾向は認められなかった。
After that, the reaction conditions other than the catalyst were the same as the first reaction, and the catalyst was recycled by replenishing the recovered catalyst with 1/36 (0,125y) of the charged amount of new catalyst, and the reductive alkylation reaction was carried out five times in total, including the first reaction. I did it. As for the reaction results, both the HA conversion rate and the TMHA production rate were 100%, and no tendency to deactivation of the catalyst activity was observed.

次に前記5回の還元アルキル化反応、即ち、初回反応と
触媒リサイクル反応の第1〜4回目までの反応液を混合
し、減圧下口−タリー・エバポレーターを用いて濃縮し
、得られた濃縮液をさらに減圧上分別蒸留して、121
”c/60mHgの主留分290. l yを得た。得
られた主留分の純度は100%(GC法)であり、仕込
みHAに対するTMHA生成率は860%であった。尚
、混合した反応液中の水分をカールフイノヤー法で測定
した結果、メタノールと水分の重量比は40対60であ
った。
Next, the reaction liquids of the five reductive alkylation reactions, that is, the first reaction and the first to fourth reaction of the catalyst recycling reaction, were mixed and concentrated using a vacuum bottom-tally evaporator. The liquid was further fractionally distilled under reduced pressure to obtain 121
A main fraction of 290.1 mHg was obtained. The purity of the obtained main fraction was 100% (GC method), and the TMHA production rate with respect to the charged HA was 860%. As a result of measuring the water content in the reaction solution by Karl Finoyer method, the weight ratio of methanol to water was 40:60.

実施例4 実施例1と同じ装置にHA結晶(無水)5Q、0ダ (
0,43モル)、エタノール95. Ofおよび5%白
金−カーボン粉末1.259を仕込んtご。
Example 4 HA crystal (anhydrous) 5Q, 0 da (
0.43 mol), ethanol 95. Charge 1.259 kg of 5% platinum-carbon powder.

仕込み時のHAa度は35%(仕込んtごHAおよびエ
タノールの合計量に対し)であり、反応溶媒は実質的に
エタノール1.00%であった。
The HAa degree at the time of charging was 35% (based on the total amount of HA and ethanol during charging), and the reaction solvent was substantially 1.00% ethanol.

オートクレーブの窒素置換を2回、水素置換を1回それ
ぞれ行なった後、100℃まで昇温し8〜9kq/ca
−G(ゲージ圧)の水素圧を維持するように水素ガスを
導入しながら、37%ホルマリン水溶液138.oy(
水溶液組成:HCHO5−L I I (170モル)
、水77.2 fおよびメタノール(安定剤)9.7y
lを1.75時間で添加し、還元アルキル化反応を行な
つt:。
After the autoclave was replaced with nitrogen twice and once with hydrogen, the temperature was raised to 100℃ and the temperature was increased to 8 to 9 kq/ca.
- While introducing hydrogen gas to maintain the hydrogen pressure of -G (gauge pressure), 37% formalin aqueous solution 138. oy(
Aqueous solution composition: HCHO5-L I I (170 mol)
, water 77.2 f and methanol (stabilizer) 9.7 y
1 is added over 1.75 hours to carry out the reductive alkylation reaction.

反応終了後、0.5時間熟成した後、40゛Cまで冷却
し、触媒を戸別して得た反応液をGC法で分析した結果
、HA転化率およびTMHA生成率は共に100%であ
った。
After the completion of the reaction, the mixture was aged for 0.5 hours, cooled to 40°C, and the catalyst was removed separately.The reaction solution obtained was analyzed by GC, and the HA conversion rate and TMHA production rate were both 100%.

実施例5 実施例1と同じ装置に65%HA水溶液58,0f(0
,32モル)、メタノール55.Ofおよび5%パラジ
ウムーカーボ/粉末(50%含水晶)2.50fを仕込
んだ。仕込み時のHAI度は33%(仕込んだHA、水
およびメタノールの合計量に対し)であり、仕込み時の
混合溶媒中のメタノールの量は72%(仕込んtご水お
よびメタノールの合計量に対し)であった。
Example 5 A 65% HA aqueous solution 58,0f (0
, 32 mol), methanol 55. Of and 2.50f of 5% palladium-carb/powder (50% quartz) were charged. The HAI degree at the time of charging was 33% (relative to the total amount of HA, water and methanol charged), and the amount of methanol in the mixed solvent at the time of charging was 72% (relative to the total amount of water and methanol charged). )Met.

オートクレーブの窒素置換を2回、水素置換を1回それ
ぞれ行なった後、100℃まで臂温し8〜gkq/d−
G(ゲージ圧)の水素圧を維持するように水素ガスを導
入しながら、37%ホルマリン水溶液をメタノールで希
釈し濃度調整した25%ホルマリン−水−メタノール溶
液167.6 y (HCHO41,9f (1,40
モル)。
After replacing the autoclave with nitrogen twice and once with hydrogen, warm the autoclave to 100°C and heat it to 8~gkq/d-
While introducing hydrogen gas to maintain a hydrogen pressure of G (gauge pressure), 167.6 y of a 25% formalin-water-methanol solution (HCHO41.9f (1 ,40
mole).

水63.49およびメタノール62.31 ]を、1.
33時間で添加し還元フルキル化反応を行なつt:。
63.49 water and 62.31 methanol], 1.
t: was added for 33 hours to carry out the reductive fullkylation reaction.

反応終了後、0.5時間熟成しtコ後、40°Cまで冷
却し、触媒を戸別して得た反応液をGC分析した結果、
HA転化率およびTMHA生成率は共に100%であっ
た。
After the reaction was completed, the mixture was aged for 0.5 hours, cooled to 40°C, and the catalyst was removed from each house.The result of GC analysis of the reaction solution obtained was as follows.
Both the HA conversion rate and the TMHA production rate were 100%.

比較例1 実施例1と同じ装置に65%HA水溶液76.9y<o
。43モル)、水64. Orおよび5%バラレウムー
カーボン粉末(50%含水晶) 2.502を仕込んt
ご。仕込み時のHA濃度は35%(仕込んtごHAおよ
び水の合計量に対し)であり、反応溶媒中にはアルコー
ルは存在していなかつtこ。
Comparative Example 1 65% HA aqueous solution 76.9y<o in the same apparatus as Example 1
. 43 mol), water 64. Or and 5% Balareumu carbon powder (50% quartz crystal) 2.502 were charged.
Go. The HA concentration at the time of charging was 35% (based on the total amount of HA and water charged), and no alcohol was present in the reaction solvent.

オートクレーブの窒素置換を2回、水素置換を1回それ
ぞれ行なった後、100℃まで昇温し8〜gkg7CA
−G(、ゲージ圧)の水素圧を維持するように水素ガス
を導入しながら、37%ホルマリン水溶液154.0g
(水溶液組成:HCHO57,o y (1,90モル
)、水86.29およびメタノール(安定剤310.8
y)を1.5時間で添加し、還元アルキル化反応を行な
った。
After replacing the autoclave with nitrogen twice and with hydrogen once, the temperature was raised to 100°C and 8-gkg7CA
-154.0 g of 37% formalin aqueous solution while introducing hydrogen gas to maintain the hydrogen pressure of G (gauge pressure).
(Aqueous solution composition: HCHO57,0 y (1,90 mol), water 86,29 and methanol (stabilizer 310,8
y) was added over 1.5 hours to carry out a reductive alkylation reaction.

反応終了後、L5時間熟成した後、40゛Cまで冷却し
、触媒を戸別して得た反応液をGC分析した結果、HA
転化率は100%、TM)IA生成率は44.2%であ
った。
After the reaction was completed, the reaction solution was aged for 5 hours, cooled to 40°C, and the catalyst was separated. As a result of GC analysis of the obtained reaction solution, HA
The conversion rate was 100%, and the TM)IA production rate was 44.2%.

比較例2 実施例1と同じ装置に65%HA水溶液60.0f(0
,34モル)および5%パラジウム−カーボン粉末(5
0%含水晶)2.50yを仕込んtご。
Comparative Example 2 A 65% HA aqueous solution 60.0 f (0
, 34 mol) and 5% palladium-carbon powder (5%
Pour 2.50y of 0% quartz crystal.

仕込み時のHAa度は64%(仕込んtごHAおよび水
の合計量に対し)であり、反応溶媒中にはアルコールは
存在していなかった。
The HAa degree at the time of charging was 64% (based on the total amount of HA and water during charging), and no alcohol was present in the reaction solvent.

オートクレーブの窒素置換を2回、水素置換を1回それ
ぞれ行なった後、t o o ’cまで昇温し8〜gt
g7ci−G(ゲージ圧)の水素圧を維持するように水
素ガスを導入しながら、37%ホルマリン水溶液をメタ
/−ルで希釈し濃度調整した19%ホルマリン〜水−メ
タノール溶液228、Oy CHCHO43,4y (
1,45モル)、水657yおよびメタノール118.
9f)を、1.92時間で添加し還元アルキル化反応を
行なった。
After the autoclave was replaced with nitrogen twice and once with hydrogen, the temperature was raised to 8-gt.
While introducing hydrogen gas to maintain a hydrogen pressure of g7ci-G (gauge pressure), dilute a 37% formalin aqueous solution with methanol to adjust the concentration. 19% formalin-water-methanol solution 228, Oy CHCHO43, 4y (
1,45 mol), 657 y of water and 118 mol of methanol.
9f) was added over 1.92 hours to perform a reductive alkylation reaction.

反応終了後、0,5時間熟成した後、40゛cまで冷却
し、触媒を戸別して得た反応液をGC分析した結果、H
A転化率は100%、TMHA生戒率は69.0%であ
った。
After the reaction was completed, the reaction solution was aged for 0.5 hours, cooled to 40°C, and the catalyst was removed. As a result of GC analysis of the reaction solution obtained, H
The A conversion rate was 100%, and the TMHA survival rate was 69.0%.

比較例3 実施例1と同じ装置にHA結晶(無水)100り(08
6モル)および5%パラジウム−カーボン粉末(50%
含水品)2.50yrごけを仕込み、反応溶媒としてア
ルコールおよび水は仕込まなかつtこ。
Comparative Example 3 100 HA crystals (anhydrous) were placed in the same apparatus as in Example 1 (08
6 mol) and 5% palladium-carbon powder (50%
Water-containing product) 2.50 yr of moss was charged, but no alcohol or water was used as a reaction solvent.

オーj−クレープの窒素置換を2回、水素置換を1回そ
れぞれ行なった後、100℃まで昇温し8〜9に9/c
i−G(ゲージ圧)の水素圧を維持するように水素ガス
を導入しながら、37%ホルマリン水溶液307.0y
(水溶液組成HCHO113,6y (3,78モル)
、水171.9ノおよびメタノール(安定剤)21.5
y〕を4.0時間で添加し、還元アルキル化反応を行な
つtこ。
After replacing the Au J-Crepe with nitrogen twice and with hydrogen once, the temperature was raised to 100°C and the temperature was increased to 8-9 to 9/c.
While introducing hydrogen gas to maintain the hydrogen pressure of i-G (gauge pressure), add 307.0 y of 37% formalin aqueous solution.
(Aqueous solution composition HCHO113,6y (3,78 mol)
, water 171.9 and methanol (stabilizer) 21.5
y] was added over 4.0 hours to carry out the reductive alkylation reaction.

反応終了後、0,5時間熟成した後、40°Cまで冷却
し、触媒を戸別して得た反応液をGC法で分析した結果
、HA転化率は100%、T MHA生成率は51.8
%であった。
After the reaction was completed, the mixture was aged for 0.5 hours, cooled to 40°C, and the catalyst was separated.The reaction solution obtained was analyzed by GC, and the results showed that the HA conversion rate was 100%, and the T MHA production rate was 51.8.
%Met.

比較例4 実施例1と同じ装置に65%HA水溶液700F(0,
39モル)、メタノール32. Oy 1水48、Oy
および5%パラジウム−カーボッ粉末(50%含水晶)
4:50gを仕込んtご。仕込み時のHAa度は30%
(仕込んtごE(A、水およびメタノールの合計量に対
し)であり、仕込み時の混合溶媒中のメタノールの蚤は
30%(仕込んtご水およびメタノールの合計量に対し
)であった。
Comparative Example 4 A 65% HA aqueous solution 700F (0,
39 mol), methanol 32. Oy 1 water 48, Oy
and 5% palladium-carbohydrate powder (50% quartz)
4: Prepare 50g. HAa content during preparation is 30%
(based on the total amount of A, water and methanol), and the amount of methanol in the mixed solvent at the time of charging was 30% (based on the total amount of water and methanol).

オートクレーブの窒素置換を2回、水素置換を1回それ
ぞれ行なった後、100°Cまで昇温し8〜9hq/c
i−G<ゲージ圧)の水素圧を維持するように水素ガス
を導入しながら、37%ホルマリン水溶液133.5f
(水溶液組成:HCH○49.4y(1,65モル)、
水74.8yおよびメタノール(安定剤)9.3f)を
1.50時間で添加し、還元アルキル化反応を行なった
After the autoclave was replaced with nitrogen twice and once with hydrogen, the temperature was raised to 100°C and the temperature was increased to 8 to 9 hq/c.
While introducing hydrogen gas to maintain the hydrogen pressure of i-G<gauge pressure), add 133.5f of 37% formalin aqueous solution.
(Aqueous solution composition: HCH○49.4y (1.65 mol),
74.8y of water and 9.3f of methanol (stabilizer) were added over 1.50 hours to carry out a reductive alkylation reaction.

反応終了後、0.5時間熟成した後、40℃まで冷却し
、触媒を戸別して得た反応液をGC法で分析した結果、
HA転化率は100%、TMHA生成率は61.2%で
あった。又、カールフイシャー法で水分測定した結果、
反応液中のメタノールと水分の重量比は19対81であ
った。
After the reaction was completed, it was aged for 0.5 hours, cooled to 40°C, and the catalyst was removed from each house.The reaction solution obtained was analyzed using the GC method.
The HA conversion rate was 100%, and the TMHA production rate was 61.2%. In addition, as a result of moisture measurement using the Karl Fischer method,
The weight ratio of methanol to water in the reaction solution was 19:81.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高価なギ酸の代りに安価な水素を還元
剤に用い、かつ過剰な塩基性有機酸およびアルカリを使
用することな(、さらに従来、公知の貴金属触媒、ホル
ミル化剤および水素を用いる還元ジメチル化によるT 
M HAの製造方法に比べて、低い反応圧力でも高品位
のTM)IAを高収率で取得できる。従って、本発明は
工業的に実用化することの可能な優れたTMHA製造方
法である。
According to the present invention, inexpensive hydrogen is used as a reducing agent instead of expensive formic acid, and excessive basic organic acids and alkalis are not used (in addition, conventionally known noble metal catalysts, formylating agents, and hydrogen T by reductive dimethylation using
Compared to the method for producing MHA, high-grade TM)IA can be obtained in high yield even at low reaction pressure. Therefore, the present invention is an excellent method for producing TMHA that can be put into practical use industrially.

Claims (1)

【特許請求の範囲】[Claims] 1,6−ヘキサンジアミンを、炭素数1〜4の脂肪族ア
ルコール溶媒中または前記アルコールを30重量%以上
含む水とアルコールの混合溶媒中において、貴金属触媒
の存在下、ホルムアルデヒドおよび/またはパラホルム
アルデヒド並びに水素と反応せしめることを特徴とする
N,N,N′,N′−テトラメチル−1,6−ヘキサン
ジアミンの製造方法。
1,6-hexanediamine in an aliphatic alcohol solvent having 1 to 4 carbon atoms or in a mixed solvent of water and alcohol containing 30% by weight or more of the alcohol in the presence of a noble metal catalyst, formaldehyde and/or paraformaldehyde and A method for producing N,N,N',N'-tetramethyl-1,6-hexanediamine, which comprises reacting with hydrogen.
JP61124298A 1986-05-29 1986-05-29 Method for producing N, N, N ', N'-tetramethyl-1.6-hexanediamine Expired - Lifetime JPH078839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61124298A JPH078839B2 (en) 1986-05-29 1986-05-29 Method for producing N, N, N ', N'-tetramethyl-1.6-hexanediamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61124298A JPH078839B2 (en) 1986-05-29 1986-05-29 Method for producing N, N, N ', N'-tetramethyl-1.6-hexanediamine

Publications (2)

Publication Number Publication Date
JPS62281846A true JPS62281846A (en) 1987-12-07
JPH078839B2 JPH078839B2 (en) 1995-02-01

Family

ID=14881870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61124298A Expired - Lifetime JPH078839B2 (en) 1986-05-29 1986-05-29 Method for producing N, N, N ', N'-tetramethyl-1.6-hexanediamine

Country Status (1)

Country Link
JP (1) JPH078839B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290995A (en) * 2006-04-24 2007-11-08 Ube Ind Ltd Method for producing 4-aminotetrahydropyran compound
WO2010012885A1 (en) * 2008-07-28 2010-02-04 Ifp Process for removing acid compounds from a gaseous effluent with an absorbent solution based on n,n,n',n'-tetramethylhexane-1,6-diamine
JP2011168566A (en) * 2010-02-22 2011-09-01 Nagoya Industrial Science Research Inst Method for monomethylating aliphatic primary amine
CN110627654A (en) * 2019-09-28 2019-12-31 四川之江高新材料股份有限公司 Process for the methylation of amines

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290995A (en) * 2006-04-24 2007-11-08 Ube Ind Ltd Method for producing 4-aminotetrahydropyran compound
WO2010012885A1 (en) * 2008-07-28 2010-02-04 Ifp Process for removing acid compounds from a gaseous effluent with an absorbent solution based on n,n,n',n'-tetramethylhexane-1,6-diamine
JP2011168566A (en) * 2010-02-22 2011-09-01 Nagoya Industrial Science Research Inst Method for monomethylating aliphatic primary amine
CN110627654A (en) * 2019-09-28 2019-12-31 四川之江高新材料股份有限公司 Process for the methylation of amines
CN110627654B (en) * 2019-09-28 2022-05-06 四川之江高新材料股份有限公司 Process for the methylation of amines

Also Published As

Publication number Publication date
JPH078839B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
CA1214788A (en) Preparation of p-nitrosodiphenylamine
US5663444A (en) Preparation of a pure dialkylaminoethanol stable against discoloration
EP2987785A1 (en) Method for the production of 3-(methylthio)propanal
JP2002532455A (en) Method for preparing 4-aminodiphenylamine
US4448999A (en) Process for the preparation of 2-aminopropanediol-1,3(serinol)
US3435074A (en) Process for producing nitrodiarylamines
JPS62281846A (en) Production of n,n,n&#39;,n&#39;-tetramethyl-1,6-hexanediamine
EP1182184B1 (en) Process for producing tetrafluoro benzenecarbaldehydes and tetrafluoro benzenemethanols
US2515306A (en) Process for producing esters of omega, omega, omega-trihalo aliphatic carboxylic acids
JPS6048501B2 (en) Method for producing N-alkyl aromatic amine
EP0007738B1 (en) Process for producing 2-amino-4-acylaminophenyl ether and 2,4-diaminophenyl ether
JPH048426B2 (en)
JPH0710808A (en) Preparation of methyl ester of chlorine-free cyclo- propanecarboxylic acid
JPH03279336A (en) Production of branched dimerized alcohol
EP0190667B1 (en) Process for the preparation of methyl n-methylanthranilate
JPH01157938A (en) Production of diemthylaminoethanol
US4137268A (en) Method of preparing aminoacetaldehyde acetals by the hydrogenation of dialkoxyacetonitrile
JPS62185032A (en) Production of 1-(1-hydroxyethyl)-alkylcyclohexane
GB2149790A (en) Process for producing aminobenzylamines
JPS648611B2 (en)
JPH0246022B2 (en)
EP0663394B1 (en) Process for preparing 5-aminodihydropyrrole, intermediate thereof and process for preparing said intermediate
US6362372B2 (en) Process for producing trifluoromethylbenzylamines
JPS62120360A (en) Production of n-alkyllactam
GB1575860A (en) Process for the manufacture of m-aminophenols