JPS59218335A - Fuel feed controller of gas turbine - Google Patents
Fuel feed controller of gas turbineInfo
- Publication number
- JPS59218335A JPS59218335A JP9348383A JP9348383A JPS59218335A JP S59218335 A JPS59218335 A JP S59218335A JP 9348383 A JP9348383 A JP 9348383A JP 9348383 A JP9348383 A JP 9348383A JP S59218335 A JPS59218335 A JP S59218335A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- control valve
- signal
- pressure
- switching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
- F02C9/40—Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Feeding And Controlling Fuel (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は一系統の気体燃料を有するガスタービン発電設
備における、気体燃料供給制御装置に関するものである
。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gaseous fuel supply control device in a gas turbine power generation facility having one system of gaseous fuel.
従来ガスタービン用の燃料としては、軽油、灯油等の液
体燃料が多く用すられているが、エネルギー資源の輸送
技術の進歩により液化天然ガス(LNG )を使用し、
LNG専焼、あるいはLNG/液体燃料混焼のガスター
ビンが運用されるようになりてきている。さらに昨今で
は、エネルギー資源消費比率において、気体燃料の占め
る割合が大きくなっていることから、気体燃料のみを使
用する傾向が強まシ、また気体燃料の種類が多くなって
きていることから、複数種の気体燃料を用いるガスター
ビン設備が増えている。そして、ガスタービンによる電
力供給を安定させるため、気体燃料を2種類の系統から
構成しく例えばLNGとLPG )、一方の燃料系統に
異常が生じた場合に、他方の系統に短時間に容易に切替
えられるシステムの実現が望まれている。また、同種の
気体燃料の供給設備が2系統用意され、これを交互に使
うような場合にも、同様の要求がある。本発明はこの要
求に応えようとするものである。Conventionally, liquid fuels such as diesel oil and kerosene are often used as fuel for gas turbines, but with advances in energy resource transportation technology, liquefied natural gas (LNG) is now being used.
Gas turbines that burn exclusively with LNG or co-fire with LNG/liquid fuel are coming into use. Furthermore, in recent years, the proportion of gaseous fuels in the energy resource consumption ratio has increased, so there is a growing tendency to use only gaseous fuels, and the number of types of gaseous fuels has increased. The number of gas turbine installations using various types of gaseous fuels is increasing. In order to stabilize the power supply from the gas turbine, the system uses two types of gaseous fuel systems (for example, LNG and LPG), so that if an abnormality occurs in one fuel system, it can be easily switched to the other system in a short time. It is desired to realize a system that can Further, similar requirements exist when two systems of supply equipment for the same type of gaseous fuel are prepared and used alternately. The present invention seeks to meet this need.
以下従来の燃料供給系および制御装置の一例に列の燃料
供給設備を持つ場合のもので、ガスタービンlにネ二°
いて、空気2は圧縮機3に入り昇圧された後、燃焼器弘
に人シ、ここにおいて燃料ラインjから送られてくる気
体燃料6を燃焼させ、高温ガス7となシ、ガスタービン
rで仕事をし、排気ガスタとして、大気、排気回収ボイ
ラ(図示せず)等に送られる。ガスタービンtには圧縮
機3と発電機10が一軸上に直結され、発電システムが
構成されている。The following is an example of a conventional fuel supply system and control device that has a column fuel supply facility, and is connected to a gas turbine l.
After the air 2 enters the compressor 3 and is pressurized, it is transferred to the combustor, where it burns the gaseous fuel 6 sent from the fuel line j, converts it into high-temperature gas 7, and then burns it in the gas turbine r. The exhaust gas is sent to the atmosphere, an exhaust gas recovery boiler (not shown), etc. as an exhaust gas generator. A compressor 3 and a generator 10 are directly connected on one axis to the gas turbine t, forming a power generation system.
ガスタービンの制御装置1/は、起動制御回路lコ、速
度負荷制御回路13、温度制御回路/μを備える。The gas turbine control device 1/ is equipped with a startup control circuit l, a speed load control circuit 13, and a temperature control circuit /μ.
これら3つの制御回路の出力信号を低値優先回路/7で
選択したものが最小燃料指令信号/Aであり、これは燃
料弁位置制御回路/gに送られる。この制御回路lざは
燃料制御弁/3を制御するものである。The output signals of these three control circuits selected by the low value priority circuit /7 are the minimum fuel command signal /A, which is sent to the fuel valve position control circuit /g. This control circuit 1 controls the fuel control valve/3.
起動制御回路lコはガスタービンの起動時に用いられる
もので、ガスタービンの着火信号lり、暖機、加速に必
要な燃料弁開度要求信号20,2/をシーケン7ャルに
発生する回路で、閉ループ制御は行わなり。速度負荷制
御回路13は、ガスタービンの回転数−を速度設定信号
力と比較し、所定の回転数とするための閉ループ制御を
行なう。ガスタービン発電機の俳人後は速度設定信号力
は負荷設定信号となる。温度制御回路1attまガスタ
ービン排気温度Jを検出し、排気温度が設定値Δを越え
ないよう燃料要求信号に制限を加える。The startup control circuit is used when starting the gas turbine, and is a circuit that sequentially generates the fuel valve opening request signal 20, 2/ necessary for the ignition signal, warm-up, and acceleration of the gas turbine. Therefore, closed loop control is not performed. The speed load control circuit 13 compares the rotational speed of the gas turbine with a speed setting signal force and performs closed-loop control to set the rotational speed to a predetermined rotational speed. After the output of the gas turbine generator, the speed setting signal force becomes the load setting signal. The temperature control circuit 1att detects the gas turbine exhaust temperature J and limits the fuel request signal so that the exhaust temperature does not exceed a set value Δ.
燃料弁位置制御回路7gでは、最小燃料指令信号l乙に
応じた弁開度に燃料制御弁isを開く。その弁位置は、
位置検出器Δによυ″帰項れ、この閉ループによる位置
制御が行なわれる。In the fuel valve position control circuit 7g, the fuel control valve IS is opened to a valve opening degree corresponding to the minimum fuel command signal lO. The valve position is
υ'' is returned to the position detector Δ, and position control is performed by this closed loop.
一方、燃料止め弁易は、ガスタービンの非常時に燃料を
しゃ断するとともに、燃料制御弁isの上流側の燃料気
体の圧力27を回転数nに応じた値にし、燃料制御弁の
制御性の向上を計っている。これをなすため、燃料止め
弁制御回路Uによシ、弁開度指令が算出され、弁位置検
出器29によシ弁位置が帰環され、閉ループによる位置
制御が行なわれる。On the other hand, the fuel stop valve shuts off the fuel in the event of an emergency for the gas turbine, and also sets the fuel gas pressure 27 on the upstream side of the fuel control valve is to a value corresponding to the rotation speed n, improving the controllability of the fuel control valve. is being measured. To accomplish this, the fuel stop valve control circuit U calculates a valve opening command, the valve position is returned to the valve position detector 29, and position control is performed in a closed loop.
上記のような従来の単一燃料系ガスタービンの制御装置
では、制御定数等は、気体燃料の特性(特に発熱量)に
よシ定められている。従って、異なる気体燃料でガスタ
ービンを運転する場合は、制御定数のみならず、燃料止
め弁、制御弁、燃焼ノズル等ハード構成品も変更しなけ
ればならなへしかも、このような場合、燃料切替のため
のガスタービンの休止時間は多大なものとなる。In the conventional single-fuel gas turbine control device as described above, control constants and the like are determined by the characteristics (particularly the calorific value) of the gaseous fuel. Therefore, when operating a gas turbine with a different gaseous fuel, it is necessary to change not only the control constants but also the hard components such as fuel stop valves, control valves, and combustion nozzles. Therefore, the downtime of the gas turbine is considerable.
本発明の目的は、燃料系統間の切替が容易で、かつ短時
間になし5るガスタービンの燃料供給制御装置を提供す
ることにある。An object of the present invention is to provide a fuel supply control device for a gas turbine that allows switching between fuel systems to be performed easily and in a short period of time.
本発明の燃料供給制御装置は、各系統の燃料止め弁の位
置制御回路の飽和信号を受けて燃料切替信号を発生させ
る回路と、この燃料切替信号に基込て時間とともに連続
的に変化する信号を発生する切替関数発生器と、コ種類
の気体燃料の特性に応じて異なる値の燃料制御弁開度指
令を発生する回路と、切替時に燃料制御弁二次側圧力を
燃焼器内圧力に均衡させるためのバイアスを発生する回
路とを備え前記切替関数発生器の出力信号、前記燃料制
御弁開度指令および前記バイアスに基いて、各系統の燃
料制御弁に対する操作信号を定めることを特徴とするも
のである。The fuel supply control device of the present invention includes a circuit that generates a fuel switching signal in response to a saturation signal of a position control circuit of a fuel stop valve in each system, and a signal that continuously changes with time based on this fuel switching signal. A switching function generator that generates a switching function generator, a circuit that generates fuel control valve opening commands with different values depending on the characteristics of the different types of gaseous fuel, and a circuit that generates fuel control valve opening commands with different values depending on the characteristics of the different types of gaseous fuel, and balances the fuel control valve secondary pressure with the combustor internal pressure at the time of switching. and a circuit for generating a bias for controlling the switching function generator, and determining an operation signal for the fuel control valve of each system based on the output signal of the switching function generator, the fuel control valve opening command, and the bias. It is something.
第2図はλ系統の気体燃料供給系統を有するガスタービ
ン発電設備を示したものであシ、この例は、LNGとL
PGの切替をなしうるものである。Figure 2 shows a gas turbine power generation facility with a λ system gas fuel supply system.
It is possible to switch PG.
第1図と同様の部材は、同一の符号または−11−2を
添えて示しである。第2図において燃料供給はLNG用
系統j−/とLPG用系統!−λの2つの系統から為さ
れ、各々のラインに気体燃料止め弁!−/、g−コ、気
体燃料制御弁/!;−1゜1s−xが設けられ、これら
を通して別個のノズルによシ燃焼器≠へ燃料が送られる
。一方の燃料ラインにより運転されているときは、他方
のラインの燃料止め弁、燃料制御弁は全閉の状態となっ
ている。また、LNGとLPGでは単位重量当シの発熱
量が異なるため、燃料止め弁のサイズ、弁リフト、燃焼
ノズル口径は両系統で異なシ、また制御装置の定数も異
なったものとする必要がある。Components similar to those in FIG. 1 are designated with the same reference numerals or -11-2. In Figure 2, fuel is supplied to the LNG system j-/ and the LPG system! - It is made from two systems of λ, and a gaseous fuel stop valve is installed in each line! -/, g-co, gaseous fuel control valve/! ;-1°1s-x are provided, through which fuel is delivered to the combustor≠ by separate nozzles. When operating with one fuel line, the fuel stop valve and fuel control valve of the other line are in a fully closed state. In addition, since LNG and LPG have different calorific values per unit weight, the size of the fuel stop valve, valve lift, and combustion nozzle diameter must be different for both systems, and the constants of the control device must also be different. .
第3図は第2図の発電設備の制御に用いられる制御装置
//を示したものである。FIG. 3 shows a control device used to control the power generation equipment shown in FIG. 2.
起動制御回路12はLNGXLPGλ種類の燃料の弁開
度要求信号が、設定器/9.20X2/で設定できるよ
うになつており、例えば電動機で駆動されるボテンシ目
メータ30を燃料切替信号3tで駆動し、LNG側、L
PG側に設定値を変更することが可能となっている。The activation control circuit 12 is configured such that a valve opening request signal for LNGXLPGλ type fuel can be set using a setting device /9.20X2/, and for example, a potentiometer 30 driven by an electric motor is driven by a fuel switching signal 3t. , LNG side, L
It is possible to change the setting value on the PG side.
最小燃料指令信号/6は、LNGとLPGで発熱量が異
なるため、各々ゲイン変換器410.tiicそれぞれ
α、βなる定数を持つ)を通してLNG用燃料弁位置制
御回路1tr−/、LPG用弁位置制御回路lざ−2に
送られる。更に詳しく言うと、ゲイン変換器グOの出力
信号は、掛算器3/により、燃料切換関数発生器3コの
出力と掛算され、出力信号が加算器弘3を経由してI、
NG用燃料弁位置制御回路1t−7に送られるとともに
、ゲイン変換器’A2を介して加算器33へ送られる。Since the calorific value of LNG and LPG is different, the minimum fuel command signal /6 is determined by the gain converter 410. tiic (each having constants α and β) are sent to the LNG fuel valve position control circuit 1tr-/ and the LPG valve position control circuit 1tr-2. More specifically, the output signal of the gain converter OG is multiplied by the output of the fuel switching function generator 3 by the multiplier 3/, and the output signal is passed through the adder 3 to I,
The signal is sent to the NG fuel valve position control circuit 1t-7, and is also sent to the adder 33 via the gain converter 'A2.
ゲイン変換器弘2の定数は、LNG燃料の特性(特に発
熱量)とLPG燃料の特性の比によシ決定される値β/
αである。燃料切替関数発生器3コは、燃料切替信号3
qを受け、時間とともKOからlまでのアナログ信号を
連続的に発生するものであシ、切替前後、切替中におり
て、常に弁位置制御回路lざ−1,1g−2への人力信
号の和は低値優先回路17の出力信号に等しい。The constant of the gain converter Hiro2 is a value β/ determined by the ratio of the characteristics of LNG fuel (especially calorific value) and the characteristics of LPG fuel.
It is α. The three fuel switching function generators generate three fuel switching signals.
It receives q and continuously generates analog signals from KO to l over time, and there is no manual input to the valve position control circuits lza-1 and lg-2 before, during and after switching. The sum of the signals is equal to the output signal of the low value priority circuit 17.
例えばLNG運用の場合を考えると、燃料切替関数発生
器3コからのW力信号は!であり、従りてLPG用弁位
置制御回路/ざ−2への入力信号はOである。また、切
替中で、関数発生器32の出力信号を0.≠、低値優先
回路17の出力信号な100%信号とすると、LNG用
弁位置制御回路/g−/への人力信号はll−0αチで
あ、9、LPG用弁位置制御回路1tr−、zへの人力
信号はAOlチとなる。For example, considering the case of LNG operation, the W force signal from the three fuel switching function generators is! Therefore, the input signal to the LPG valve position control circuit/za-2 is O. Also, during switching, the output signal of the function generator 32 is set to 0. ≠, If the output signal of the low value priority circuit 17 is a 100% signal, the human input signal to the LNG valve position control circuit /g-/ is ll-0αchi, 9, LPG valve position control circuit 1tr-, The human signal to z becomes AOlchi.
燃料の切替開始時点、例えばLNGよfiLPGに切替
わる場合、LNG燃料ラインの燃料制御弁is−λのλ
次側ラインt−2は、霧吹き効果のため、燃焼器≠の器
内圧力に対し、負圧になっている。従って、LPG燃料
を切替時に燃焼器に送入するためには、ある程度LPG
燃料制御弁/3−コを開ける必要がある。これは、LP
G燃料かつLNG燃料に切替る場合も同しである。しか
るに、これまでに述べた回路でLNG燃料よfiLPG
燃料への切替を開始すると、ガス燃料制御弁−次側圧力
A−一が燃焼器l器内圧力よシ高くなるまでの燃料開度
変化分は、負荷への影響がない。従って、切替る際、L
NG燃料制御弁15−/が絞殴込み、その分LPG燃料
制御弁is −,2が開いても、負荷増分がないため、
全体としては負荷減少をきたす。At the start of fuel switching, for example, when switching from LNG to fiLPG, λ of the fuel control valve is-λ of the LNG fuel line
The next line t-2 has a negative pressure with respect to the internal pressure of the combustor due to the atomizing effect. Therefore, in order to send LPG fuel to the combustor at the time of switching, it is necessary to use a certain amount of LPG fuel.
It is necessary to open the fuel control valve/3. This is LP
The same applies when switching to G fuel and LNG fuel. However, in the circuit described so far, it is possible to use fiLPG instead of LNG fuel.
When switching to fuel is started, the amount of change in fuel opening until the pressure A-1 on the next side of the gas fuel control valve becomes higher than the internal pressure of the combustor has no effect on the load. Therefore, when switching, L
Even if the NG fuel control valve 15-/ is throttled and the LPG fuel control valve is-,2 opens accordingly, there is no load increase, so
Overall, this results in a load reduction.
バイアス回路!−/、件−一はこれを補正するものであ
シ、差圧検出器’As −/ 、’A3−コは燃料制御
弁2次圧力と、圧縮機吐出圧力を検出し、この差圧が燃
料の燃焼器への送υ込みが可能となる値まで燃料制御弁
を開かせるバイアスを発生させる。Bias circuit! -/, case-1 is to correct this, and the differential pressure detector 'As -/, 'A3- detects the fuel control valve secondary pressure and the compressor discharge pressure, and this differential pressure A bias is generated to open the fuel control valve to a value that allows fuel to be delivered to the combustor.
LPG燃料切替の場合、切替指令信号37によりバイア
ス回路が働き、前記差圧が所定の値となると、バイアス
は固定され、その後切替か開始される。In the case of LPG fuel switching, the bias circuit is activated by the switching command signal 37, and when the differential pressure reaches a predetermined value, the bias is fixed, and switching is then started.
切替完了時点では、LNGバイアス回路のパイアス回路
のバイアス固定が解かれ、バイアス回路停−/の出力信
号は零となる。LPGからLNGへの切替も同様にして
行なわれる。At the time of completion of switching, the bias circuit of the LNG bias circuit is no longer fixed in bias, and the output signal of the bias circuit stop becomes zero. Switching from LPG to LNG is performed in a similar manner.
第1図は、LNGからLPGへの切替わ時の、燃料制御
弁/!;−/、!!−一ならびにバイアス回路桿−/
、件−jの出力信号の変化を示したものであシ、時刻A
が切替シ開始、時刻Bが切替シ終了である。Figure 1 shows the fuel control valve /! when switching from LNG to LPG. ;-/,! ! −1 and bias circuit rod−/
, shows the change in the output signal of case-j, and time A.
is the start of switching, and time B is the end of switching.
燃料切替信号31Aの発生は、運転員による手動の切替
指令信号33′または自動切替指令信号37に基いて行
なわれる。自動切替指令信号37は、使用中の燃料系統
に異常が発生し、燃料圧力が低下すると、燃料制御弁1
.3の上流側の圧力27が規定値を満足したくなシ、燃
料止め弁、26が全開し、燃料止め弁位置制御回路、2
1:が飽和するため、これが電圧比較器36で検出され
たときに、発生される。The fuel switching signal 31A is generated based on a manual switching command signal 33' by an operator or an automatic switching command signal 37. The automatic switching command signal 37 causes the fuel control valve 1 to switch when an abnormality occurs in the fuel system in use and the fuel pressure decreases.
.. If the pressure 27 on the upstream side of 3 does not satisfy the specified value, the fuel stop valve 26 is fully opened, and the fuel stop valve position control circuit 2
1: is saturated and is therefore generated when this is detected by the voltage comparator 36.
燃料切替信号3ψに基く燃料の切替が終了すると、不使
用となった燃料系統の燃料止め弁位置制御回路u1燃料
制御弁位置制御回路lざに、各々全閉バイアス信号3g
、 39が接点り、弘lを通して加えらム燃料止め弁易
と燃料制御弁/3を全開の状態に保ち、不使用となった
燃料系統を完全にしゃ断する。また、切替開始時点では
、前記の接点は動作動作せず、従って全閉バイアス信号
は解除される、しかし、不使用側燃料制御弁位置制御回
路人力信号は零のため、全閉状態が保たれる。一方、不
使用側燃料止め弁13は、全閉バイアス信号が解除され
るため、燃料制御弁コロの上流側の燃料圧力制御の動作
に入る。これを図式化したのが、第5図である。When the fuel switching based on the fuel switching signal 3ψ is completed, a fully closed bias signal 3g is sent to each of the fuel stop valve position control circuits u1 and fuel control valve position control circuits l of the unused fuel systems.
, 39 are in contact, and the fuel stop valve 1 and the fuel control valve 3, which are applied through the valve, are kept fully open, completely shutting off the unused fuel system. Furthermore, at the start of switching, the above-mentioned contact does not operate, and therefore the fully closed bias signal is released.However, since the manual signal of the unused side fuel control valve position control circuit is zero, the fully closed state is maintained. It will be done. On the other hand, the unused side fuel stop valve 13 starts operating to control the fuel pressure on the upstream side of the fuel control valve roller because the fully closed bias signal is released. This is illustrated in Figure 5.
同図は、LNGからLPGへの切替えを示したもので、
横軸は時間軸で、時刻Aにおいて切替シ開始指令が発せ
られると、LPG燃料系統の燃料止め弁、制御弁の各位
置制御回路/g−21,11−λの全閉バイアス信号3
9−2.3g−一は解除される。The figure shows switching from LNG to LPG.
The horizontal axis is the time axis, and when the switching start command is issued at time A, the fully closed bias signal 3 of each position control circuit/g-21, 11-λ of the fuel stop valve and control valve of the LPG fuel system is issued.
9-2.3g-1 is canceled.
LNG燃料系統からLPG燃料系統への切替シが完了し
た時刻Bにおいては、LNG燃料系統の燃料止め弁、制
御弁の各位置制御回路/ざ−/、コーlに全閉バイアス
信号39−/、3g−7が印加される。At time B when the switching from the LNG fuel system to the LPG fuel system is completed, a fully closed bias signal 39-/, 3g-7 is applied.
以上のように、本発明によれば、λつの燃料系統によシ
構成される燃料供給設備において、手動または自動で燃
料系統の切替えを円滑に(即ち負荷変動を生じさせるこ
となし)、かつ速やかに行なうことができる。As described above, according to the present invention, in a fuel supply facility configured with λ fuel systems, the fuel systems can be switched manually or automatically (that is, without causing load fluctuations) and quickly. can be done.
第1図は従来のガスタービン燃料供給系およびその制御
装置を示す図、第2図は一系統から成る燃料供給系を示
す図、第3図は本発明に係る制御装置の一実施例を示す
ブロック図、第1図および第5図は燃料系統切替時の各
記の信号、状態の変化を示すタイムチャート′である。
3・・・圧縮機、 グ・・・燃焼器、 ♂・・・ガスタ
ービン、ll・・・ガスタービンflail ’0i4
1装置、lS・・・燃料制御弁、7g・・・燃料制御弁
位置1tiIJ御回路、 易・・・燃料止め弁、 d・
・・燃料止め弁位置制御回路、3/・・・掛算器、3コ
・・・燃料切替関数発生器、 辞・・・燃料切替信号、
36・・・比較器、3.g、 39・・・弁全閉バイア
ス信号。
出願人代理人 猪 股 清Fig. 1 is a diagram showing a conventional gas turbine fuel supply system and its control device, Fig. 2 is a diagram showing a fuel supply system consisting of one system, and Fig. 3 is a diagram showing an embodiment of the control device according to the present invention. The block diagram, FIGS. 1 and 5 are time charts showing changes in the respective signals and states at the time of fuel system switching. 3...Compressor, G...Combustor, ♂...Gas turbine, ll...Gas turbine flail '0i4
1 device, lS... fuel control valve, 7g... fuel control valve position 1tiIJ control circuit, easy... fuel stop valve, d.
... Fuel stop valve position control circuit, 3/... Multiplier, 3... Fuel switching function generator, Di... Fuel switching signal,
36... comparator, 3. g, 39... Valve fully closed bias signal. Applicant's agent Kiyoshi Inomata
Claims (1)
止め弁および燃料制御弁を設けたガスタービン発電設備
の燃料供給制御装置において、各系統の燃料止め弁の位
置制御回路の飽和信号を受けて燃料切替信号を発生する
回路と、前記燃料切替信号に基いて時間とともに連続的
に変化する信号を発生する燃料切替関数発生器と、2種
類の気体燃料の特性に応じて異なる値の燃料制御弁開度
指令を発生する起動制御回路と、切替時に燃lI′4i
ff!I御弁二次側圧力を燃焼器内圧力に均衡させるた
めのバイアス、前記切替関数発生器の出力信号および前
記燃料制御弁開度指令に基いて、各系統の燃料制御弁に
対する操作信号を定めるλつの燃料制御弁位置制御回路
とを備えたガスタービン燃料供給制御装置。 (2、特許請求の範囲第7項記載の装置におりて、前記
燃料制御弁開度指令が第1の定数αを持つゲイン変換器
を介して一方の燃料制御弁位置制御回路に与えられると
ともに、第1の定数とは異なる第2の定数βを持つゲイ
ン変換器を介して他方の燃料制御弁位置制御回路に与え
られることを特徴とする装置。 (3)特許請求の範囲第1項記載の装置において、前記
燃料制御弁開度指令と前記切換関数発生器の出力との積
に基いて、少くとも一方の燃料制御弁位置制御回路の人
力が定められることを特徴とする装置。[Scope of Claims] (1) In a fuel supply control device for a gas turbine power generation facility that has two gaseous fuel supply systems and each system is provided with a fuel stop valve and a fuel control valve, a fuel stop valve for each system is provided. a circuit that generates a fuel switching signal in response to the saturation signal of the position control circuit; a fuel switching function generator that generates a signal that continuously changes over time based on the fuel switching signal; A starting control circuit that generates a fuel control valve opening command with a different value depending on the characteristics, and a fuel lI'4i
ff! An operation signal for the fuel control valve of each system is determined based on a bias for balancing the I control valve secondary side pressure with the combustor internal pressure, the output signal of the switching function generator, and the fuel control valve opening command. A gas turbine fuel supply control device comprising λ fuel control valve position control circuits. (2. In the device according to claim 7, the fuel control valve opening command is given to one of the fuel control valve position control circuits via a gain converter having a first constant α, and , is applied to the other fuel control valve position control circuit via a gain converter having a second constant β different from the first constant. (3) Claim 1: 2. The device according to claim 1, wherein the human power of at least one fuel control valve position control circuit is determined based on the product of the fuel control valve opening command and the output of the switching function generator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9348383A JPS59218335A (en) | 1983-05-27 | 1983-05-27 | Fuel feed controller of gas turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9348383A JPS59218335A (en) | 1983-05-27 | 1983-05-27 | Fuel feed controller of gas turbine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59218335A true JPS59218335A (en) | 1984-12-08 |
JPH0324574B2 JPH0324574B2 (en) | 1991-04-03 |
Family
ID=14083590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9348383A Granted JPS59218335A (en) | 1983-05-27 | 1983-05-27 | Fuel feed controller of gas turbine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59218335A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104863717A (en) * | 2015-01-28 | 2015-08-26 | 北京华清燃气轮机与煤气化联合循环工程技术有限公司 | Control method for gas turbine fuel switching, and system thereof |
-
1983
- 1983-05-27 JP JP9348383A patent/JPS59218335A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104863717A (en) * | 2015-01-28 | 2015-08-26 | 北京华清燃气轮机与煤气化联合循环工程技术有限公司 | Control method for gas turbine fuel switching, and system thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0324574B2 (en) | 1991-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07503769A (en) | Turbine engine control system | |
NO155674B (en) | FUEL SUPPLY CONTROL SYSTEM FOR A TURBINE TYPE ENGINE FOR ACCELERATION OF THE ENGINE FROM TURNTIME TO OPERATING OPERATION. | |
JPH076416B2 (en) | Fuel switching device for gas turbines that uses two types of fuel | |
JPS598654B2 (en) | Control system for gas turbine gas generator | |
JPS62174539A (en) | Gas turbine controller | |
JPS59218335A (en) | Fuel feed controller of gas turbine | |
JP3716586B2 (en) | Gas turbine combustor | |
JPH05113137A (en) | Gas-turbine engine and its method of operation | |
JPS62218628A (en) | Fuel control device for double gas fuel combustion turbine | |
US5209056A (en) | Stored energy, wide energy range turbine starting engine | |
US5136838A (en) | Stored energy, wide energy range turbine starting system | |
JPH07102998A (en) | Fuel supply control method for gas turbine | |
JP3242239B2 (en) | Fuel gas control method and device | |
JP4025206B2 (en) | Control device for biomass gas turbine | |
JPH10185185A (en) | Fuel control method of gas turbine | |
JP3703615B2 (en) | Gas turbine equipment | |
JPH11117769A (en) | Fuel oil control device for gas turbine oil combustion chamber | |
JPH0461168B2 (en) | ||
CN118067403A (en) | Temperature distortion heat flow generation and supply adjusting system and control method thereof | |
JP3960814B2 (en) | Gas turbine equipment | |
JPS6133978B2 (en) | ||
JPH02153238A (en) | Control device for duplex fuel diesel engine | |
JPH08312378A (en) | Gas turbine water injection control method and device | |
JPH10169467A (en) | Gas turbine and gas turbine operating method | |
JPS60230519A (en) | Gas turbine and starting method thereof |