JPS59218214A - Manufacture of tapered rod - Google Patents

Manufacture of tapered rod

Info

Publication number
JPS59218214A
JPS59218214A JP4325184A JP4325184A JPS59218214A JP S59218214 A JPS59218214 A JP S59218214A JP 4325184 A JP4325184 A JP 4325184A JP 4325184 A JP4325184 A JP 4325184A JP S59218214 A JPS59218214 A JP S59218214A
Authority
JP
Japan
Prior art keywords
axial direction
tapered
less
temperature gradient
metal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4325184A
Other languages
Japanese (ja)
Other versions
JPH0316209B2 (en
Inventor
Tetsuo Kato
哲男 加藤
Shozo Abeyama
阿部山 尚三
Makoto Saito
誠 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP4325184A priority Critical patent/JPS59218214A/en
Publication of JPS59218214A publication Critical patent/JPS59218214A/en
Publication of JPH0316209B2 publication Critical patent/JPH0316209B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/04Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Wire Processing (AREA)

Abstract

PURPOSE:To manufacture a tapered rod with a high productivity in a very short time by prescribing a distortion speed of a metallic base material within a prescribed range with regard to the minimum diameter part, when forming a tapered part whose diameter is varied in the axial direction by giving a temperature gradient in the axial direction to the metallic base material and applying a tensile force. CONSTITUTION:A prescribed temperature gradient is given in the aial direction to a metallic base material such as an iron and steel wire rod, etc. by a well-known heating means such as direct electric conduction heating method, a high frequency induction method, etc. Subsequently, by applying a tensile force of the axial direction to the metallic base material of this state, the diameter is varied in the axial direction in accordance with a pattern of said temperature gradient, and a desired tapered shape is obtained. In this case, it is necessary to control a distortion speed (working distortion speed) of the metallic base material in case of said drawing operation as follows; that is the base material part corresponding to the minimum diameter part (uniform maximum narrowed part) of a tapered rod is drawn and deformed so that the working distortion speed (i) in the maximum heating temperature part generally becomes 0.5- 1,000%/ sec. As a result, a tapered rod of an object shape can be manufactured efficiently without causing such a problem as breakdown, etc.

Description

【発明の詳細な説明】 本発明はテーパーロッドの製造方法に係り、特に軸方向
に直径の変化するテーパーロッドを所定の金属素材から
材料のロスなく且つ生産性よく製造する方法における改
良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a tapered rod, and more particularly to an improvement in a method for manufacturing a tapered rod whose diameter changes in the axial direction from a predetermined metal material without material loss and with high productivity. be.

近年、自動車や鉄道車両などの乗心地改善のために、従
来の線径が一定なコイルばねに代わって、テーパーロッ
ドを使用した非線型特性を持つテーパーコイルばねが普
及してきた。このようなテーパーコイルばねに用いられ
るテーパーロッドは、その軸方向の中央部に線径の大な
る部分を、両端側に向かって線径が連続的に減少するテ
ーパ一部分を有しており、これによって非線型的な高さ
変化を行なうばね特性が与えられて、前述した乗心地の
改善に大きく寄与しているのである。
In recent years, tapered coil springs that use tapered rods and have non-linear characteristics have become popular in place of conventional coil springs with a constant wire diameter to improve the riding comfort of automobiles and railway vehicles. A tapered rod used in such a tapered coil spring has a large wire diameter portion in the center in the axial direction and a tapered portion where the wire diameter continuously decreases toward both ends. This provides a spring characteristic that allows for non-linear height changes, which greatly contributes to the aforementioned improvement in riding comfort.

ところで、このような優れた特性を示すテーパーコイル
ばね等に用いられるテーパーロッドは、従来より、主と
して切削加工手法にて所定の線材あるいは棒材などの金
属素材を所望のテーパー形状に切削することによって製
造されているが、あくまでも金属素材を切削するもので
あるが故に、材料のロスが大(約15%)となることは
避けられず、またその切削加工に長時間を要してその生
産性を著しく悪化せしめているのである。また、その他
、スウエーシングマシンを使用したロータリースウエー
ジング方式と称される熱間鍛造手法による製造方法も一
部では採用されているが、この方法でも、材料のロスが
少なくなる利点はあるものの、依然として加工時間が長
い問題は解決されていなかったのである。
By the way, taper rods used in tapered coil springs and the like that exhibit such excellent properties have traditionally been manufactured by cutting a metal material such as a wire or bar into a desired tapered shape using a cutting method. However, because it involves cutting metal materials, it is inevitable that there will be a large amount of material loss (approximately 15%), and the cutting process will take a long time, reducing productivity. This has significantly worsened the situation. In addition, a manufacturing method using a hot forging method called the rotary swaging method using a swaging machine is also used in some cases, but although this method also has the advantage of reducing material loss, However, the problem of long processing time still remained unsolved.

このため、本発明者らは、かかるテーパーロッドを製造
する従来法における問題を解消せんとして種々検討した
結果、温度勾配を付与した金属素材を軸方向に引張変形
せしめることによって所定のテーパーロッドを極めて短
時間にて製造し得る新規な手法を見い出し、これを、先
に特願昭55−3,4345として特許出願した。この
出願された方法に従えば、金属素材のテーパーを形成せ
しめるべき部分にだけ、所定のパターンの温度勾配を付
与し、引張せしめることのみによって、所望のテーパ一
部が形成され得るので、従来の切削加工手法の如き切削
による材料ロスや時間のかかる切削作業がなく、また熱
間鍛造手法の如き複雑な、且つ長時間の非能率な鍛造作
業も必要でなくなり、極めて短時間でテーパー成形加工
を完了し得て、その生産性を著しく高め、ひいてはかか
るテーパーロッドの製造コストを効果的に低下せしめ得
たのである。
For this reason, the present inventors conducted various studies in an attempt to resolve the problems in the conventional methods of manufacturing such tapered rods, and as a result, the inventors of the present invention have developed a method for producing a predetermined tapered rod by tensile deformation in the axial direction of a metal material to which a temperature gradient has been applied. We discovered a new method that could be manufactured in a short time and filed a patent application for this in Japanese Patent Application No. 3,4345/1983. According to this patented method, a desired taper can be formed by applying a temperature gradient in a predetermined pattern only to the part of the metal material where the taper is to be formed and by tensioning it. There is no need for material loss or time-consuming cutting work as in the cutting method, and there is no need for complex, long and inefficient forging work as in the hot forging method, allowing taper forming to be performed in an extremely short time. This could significantly increase the productivity and, in turn, effectively reduce the manufacturing cost of such tapered rods.

本発明者らは、かかる優れた特徴を有する、先に出願し
た手法について更に検討を進めた結果、金属素材をその
軸方向に引張変形せしめる場合にあっては、変形部分の
歪速度、すなわち単位時間当たりの素材断面の変形割合
が重要であり、しかもそれが最小直径部分において所定
の範囲内となるように引張変形せしめる必要があって、
これにより所望のテーパーロッドが効果的に製造され得
ることを見い出したのである。
As a result of further studies on the previously filed method which has such excellent features, the present inventors found that when a metal material is tensilely deformed in its axial direction, the strain rate of the deformed part, that is, the unit The rate of deformation of the cross section of the material per time is important, and it is necessary to cause tensile deformation so that it is within a predetermined range at the smallest diameter part.
It has been found that a desired tapered rod can be effectively manufactured by this method.

すなわち、本発明は、かかる知見に基づいて完成された
ものであって、その特徴とするところは、金属素材にそ
の軸方向に温度勾配を付与して引張力を加えることによ
り、かかる温度勾配に応じて該素材の軸方向に直径の変
化したテーパ一部分を形成せしめるに際して、該金属素
材の歪速度がその最小直径部分において0.5%/se
c〜1000%/secの範囲内となるように、引張変
形せしめるようにしたことにあり、これによって、所定
の温度勾配に応じた所望のテーパーロッドが、局部収縮
に基因する破断などの問題を付箋惹起することなく、効
率的に且つ容易に製造し得ることとなったのである。
That is, the present invention was completed based on this knowledge, and its feature is that by applying a tensile force to a metal material by creating a temperature gradient in its axial direction, the temperature gradient is Accordingly, when forming a tapered portion of the metal material whose diameter changes in the axial direction, the strain rate of the metal material is 0.5%/sec at the minimum diameter portion.
The tensile deformation is performed within the range of c to 1000%/sec, and this allows the desired tapered rod to be formed in accordance with a predetermined temperature gradient to avoid problems such as breakage due to local shrinkage. This means that it can be manufactured efficiently and easily without creating sticky notes.

さて、かくの如き本発明において使用される金属素材は
、一般に、線材乃至は棒材の形態を為し、また通常鋼材
からなるものtあるが、他の非鉄金属系の材料からなる
ものであっても何等差支えない。尤も、テーパーコイル
ばねに好適に用いられ得るテーパーロッドを得るには、
該金属素材として、重量で0.35〜1.10%の炭素
(C)を含み、且つ必要に応じて2,5%以下のケイ素
(Si)、1.5%以下のマンガン(Mn) 、3.0
%以下の銅(Cu)、3.0%以下のニッケル(Ni)
、5.0%以下のクロム(Cr)、1.0%以下のモリ
ブテン(Mo) 、1.0%以下のバナジウム(V) 
、0゜05%以下のホウ素(B)、0.1%以下のアル
ミニウム(Aβ)並びに、それぞれ0.5%以下のチタ
ン(Ti)、ニオブ(Nb)、ジルコニウム(Zr)、
タンタル(Ta)、タングステン(W)及びハフニウム
(Hf)を含む、残部が鉄からなる鉄鋼線材を用いるこ
とが望ましい。
Now, the metal materials used in the present invention are generally in the form of wires or bars, and are usually made of steel, but may be made of other non-ferrous metal materials. It doesn't make any difference. However, in order to obtain a tapered rod that can be suitably used in a tapered coil spring,
The metal material contains 0.35 to 1.10% carbon (C) by weight, and if necessary, 2.5% or less silicon (Si), 1.5% or less manganese (Mn), 3.0
% or less copper (Cu), 3.0% or less nickel (Ni)
, 5.0% or less chromium (Cr), 1.0% or less molybdenum (Mo), 1.0% or less vanadium (V)
, 0°05% or less boron (B), 0.1% or less aluminum (Aβ), and 0.5% or less each of titanium (Ti), niobium (Nb), zirconium (Zr),
It is desirable to use a steel wire containing tantalum (Ta), tungsten (W), and hafnium (Hf), with the remainder being iron.

かかる好ましい鉄鋼線材における各成分の含量範囲の決
定理由は、次の通りである。
The reason for determining the content range of each component in such a preferable steel wire is as follows.

C: 0.35%未満では、コイル成形後の熱処理に際
し、焼入カタサが出に<<、充分なばね特性が得られな
い。また、1.10%を超えるようになると、初析炭化
物が巨大化して疲れ寿命を劣化せしめるので好ましくな
St :Siは、多いほど、ばねの耐ヘタリ性を向上さ
せるので好ましい元素であるが、2.5%を超えるとS
tの偏析が大となり、焼入加熱時に初析フェライトが残
留し、疲れ寿命を劣化させるので好ましくない。
C: If it is less than 0.35%, quenching roughness will occur during heat treatment after coil forming, and sufficient spring properties will not be obtained. In addition, if it exceeds 1.10%, the pro-eutectoid carbide becomes huge and deteriorates the fatigue life, so it is preferable.St:Si is a preferable element because the more it is, the more it improves the fatigue resistance of the spring. S if it exceeds 2.5%
This is not preferable because the segregation of t becomes large and pro-eutectoid ferrite remains during quenching and heating, which deteriorates fatigue life.

Mn:Mnは、脱酸元素であると共に、焼入性を向上さ
せるので好ましい元素であるが、1゜5%を超えると焼
入操作時に焼ワレを生し易(するので、1.5%以下が
望ましい。
Mn: Mn is a preferable element because it is a deoxidizing element and improves hardenability. However, if it exceeds 1.5%, it tends to cause burn cracks during the hardening operation. The following are desirable.

Cu : Cuは、耐候性を増すと共に、熱間加熱中の
脱炭防止に有効な元素であるが、3%を超えると、赤熱
脆性を起こし、熱間加工性を阻害するので、その上限を
3%とする。
Cu: Cu is an element that increases weather resistance and is effective in preventing decarburization during hot heating, but if it exceeds 3%, it causes red brittleness and inhibits hot workability, so its upper limit should not be exceeded. 3%.

N i : N iは、焼入性を増し、且つ鞭性を高め
るのに有効な元素であるが、3%を超えると焼入操作時
に残留オーステナイトが発生し、耐力の低下をきたすの
で、その上限を3%とした。
Ni: Ni is an effective element for increasing hardenability and whipping properties, but if it exceeds 3%, retained austenite will be generated during the hardening operation, resulting in a decrease in yield strength. The upper limit was set at 3%.

Cr:Crは、焼入性を増すと共に、焼もどし軟化抵抗
を高めるので、同−力タサを得るのに、より高温度での
焼もどしが可能であり、このため耐力比を高めることが
出来、ばねの設計応力を高くとることが出来る。しかし
、5%を超えると、熱間圧延後の冷却時に割れを生じ易
いので、上限を5%とする。
Cr: Cr not only increases hardenability but also increases temper softening resistance, so it is possible to temper at a higher temperature to obtain the same strength, and therefore the yield strength ratio can be increased. , the design stress of the spring can be increased. However, if it exceeds 5%, cracks are likely to occur during cooling after hot rolling, so the upper limit is set at 5%.

M o : M oは、焼入性および焼もどし軟化抵抗
のいずれをも高めるので好ましい元素であるが、熱間圧
延後の冷却時に割れを生じ易くするので、上限を1%と
する。
Mo: Mo is a preferable element because it increases both hardenability and temper softening resistance, but it tends to cause cracks during cooling after hot rolling, so the upper limit is set to 1%.

■:■ば、結晶粒を微細化し、鞭性を向上させるので好
ましい元素であり、さらに高温強度特性を向上させるの
で耐熱用途にその効果を発揮する。しかし、1%を超え
ると、その効果は飽和するので、上限を1%と子る。
(2): (2) is a preferable element because it refines crystal grains and improves whipping properties, and it also improves high-temperature strength properties, so it is effective in heat-resistant applications. However, if it exceeds 1%, the effect is saturated, so the upper limit is set at 1%.

BIBは、微量の添加で著しく焼入性を増大させるので
、有効な元素である。しかし、過剰に加えると、Fe5
13を生じて赤熱脆性を起こすので、上限を0.05%
とする。
BIB is an effective element because it significantly increases hardenability even when added in a small amount. However, if excessively added, Fe5
13 and causes red heat brittleness, the upper limit is set at 0.05%.
shall be.

A6−この元素は、脱酸材として鋼中の酸素を低減し、
比金属介在物を少なくするので、疲れ寿命向上に有効で
あり、また結晶粒度を微細化し、衝撃遷移温度を低める
。しかし、0.1%を超えると鞭性を劣化させるので、
上限を0.1%とする。
A6 - This element reduces oxygen in steel as a deoxidizer,
Since it reduces specific metal inclusions, it is effective in improving fatigue life, and it also refines the grain size and lowers the impact transition temperature. However, if it exceeds 0.1%, the whipping properties will deteriorate, so
The upper limit is set to 0.1%.

Ti、Nb、Zr、Ta、W、Hf :これらの元素は
微細な炭化物を形成し、焼もどし抵抗性を増すので好ま
しい元素であるが、0.5%を超えると鞭性を害するの
で、各々その上限を0.5%とする。
Ti, Nb, Zr, Ta, W, Hf: These elements form fine carbides and increase tempering resistance, so they are preferable elements, but if they exceed 0.5%, they impair whipping properties, so each The upper limit is set at 0.5%.

なお、これらの元素の他、前記鉄鋼線材の工業的レベル
での製造に際して不可避的に混入する燐、硫黄、ヒ素、
スズ、アンチモン、亜鉛、セレンを始めとする微量不純
物元素が、該鉄鋼線材に含まれるようになっても同等差
支えない。また、前記各元素のうち、Cが必須的に該鉄
鋼線材に含まれる他、他の元素は、目的とするテーバー
ロンドに要求される性能により、必要に応じて、その所
定量範囲において含有せしめられることとなるのである
In addition to these elements, phosphorus, sulfur, arsenic, and
There is no problem even if trace impurity elements such as tin, antimony, zinc, and selenium are included in the steel wire. Further, among the above-mentioned elements, in addition to C being essentially included in the steel wire rod, other elements may be contained within a predetermined amount range as necessary depending on the performance required of the target Taber Rond. The result is that

そして、かかる鉄鋼線材などの金属素材には、その軸方
向に所定の温度勾配が付与せしめられることとなるが、
該温度勾配のパターンは、該素材の材質、寸法、加熱温
度、引張条件などや、目的とするテーパー形状によって
種々異なり、一義的に限定することは出来ず、それぞれ
の具体的場合に応じて、適宜決定されることとなる。し
かし、一般的には、該金属素材の高温部分は、後の引張
操作によってより細くなる一方、低温部分は、該高温部
分に比してそれほど細くならない。それ故、中央部に最
小直径部分を有し、且つ該最小直径部分の両側に、それ
から離れるに従って直径の漸次増大するテーパ一部分を
有するテーパー材を形成せしめる場合には、金属素材の
軸方向において中央部で温度が高く、該中央部より離れ
るに従って温度が低くなる山形形状のパターンの温度勾
配が、好適に採用されるのである。尤も、かかる温度勾
配の付与に際しては、該金属素材の最高加熱温度が60
0〜1000℃の範囲内となるようにすることが望まし
い。最高加熱温度が600°C未満では、金属素材の破
断伸びが低くなり(例えば、前記鉄鋼線材で、40%以
下の破断伸びとなる)、目的とする最終テーパー形状に
成形される以前に局部絞りを惹起して破断してしまう虜
があり、また最高加熱温度が1000°Cを超えるよう
になると、素材表面の酸化および脱炭が著しくなり、最
終的にばね等の製品にした場合に、疲れ寿命が劣化する
等の好ましくない現象を惹起する。
A predetermined temperature gradient is then applied to the metal material such as the steel wire in its axial direction.
The pattern of the temperature gradient varies depending on the material, dimensions, heating temperature, tensile conditions, etc. of the material, and the desired taper shape, and cannot be unambiguously limited, and depends on each specific case. A decision will be made as appropriate. However, in general, the hot portion of the metal material becomes thinner due to subsequent stretching operations, while the cold portion becomes less thin than the hot portion. Therefore, when forming a tapered material that has a minimum diameter portion at the center and has tapered portions on both sides of the minimum diameter portion whose diameter gradually increases as the distance from the minimum diameter portion increases, the center in the axial direction of the metal material is A temperature gradient with a chevron-shaped pattern in which the temperature is high in the central part and the temperature decreases as the distance from the central part decreases is suitably adopted. However, when providing such a temperature gradient, the maximum heating temperature of the metal material is 60°C.
It is desirable that the temperature be within the range of 0 to 1000°C. If the maximum heating temperature is less than 600°C, the elongation at break of the metal material will be low (for example, the elongation at break of the above-mentioned steel wire will be 40% or less), and local drawing will be required before forming into the desired final tapered shape. If the maximum heating temperature exceeds 1000°C, oxidation and decarburization of the surface of the material will become significant, causing fatigue when it is finally made into products such as springs. This causes undesirable phenomena such as a decrease in service life.

なお、所定のパターンの温度勾配を付与するための金属
素材の加熱手法としては、直接通電加熱法、高周波誘導
加熱法、ガス加熱法の他、赤外線加熱法、電気炉を使用
する傍熱加熱法などの公知のあらゆる加熱手法が採用さ
れ得、それらの中から、適当な加熱手段が適宜に選択さ
れることとなる。そして、この選択された加熱手法によ
る所定の温度勾配の付与方法としては、一般に、(1)
金属素材の軸方向に所定の温度勾配が形成されるように
該素材を加熱する方法や、(2)金属素材を所定の高温
度に加熱せしめた後あるいは加熱せしめつつ、その軸方
向に所定の温度勾配が形成されるように冷却せしめるこ
とによって温度調整する方法などが、好適に採用される
のである。より具体的には、加熱領域内において金属素
材に所定の温度勾配を付与するために、該素材の軸方向
の各位置における加熱量または冷却量を、目的とするテ
ーパー形状に従って変化せしめるものであって、例えば
、形成されるテーパ一部の中央部から両端部(両側)に
向かって複数個に分割された各分割位置における送風量
を増減せしめて、冷却の程度を変化せしめたり、高周波
誘導加熱において、素材軸方向の各位置におけるコイル
径またはピッチを変化させたり、ガス加熱において、素
材軸方向の各位置におけるガス流量を変化せしめたり、
複数列の抵抗加熱素子の電気入力を調整したりする等の
方法が、有効に用いられる。
In addition, heating methods for metal materials to impart a predetermined pattern of temperature gradient include direct current heating, high-frequency induction heating, gas heating, infrared heating, and indirect heating using an electric furnace. Any known heating method may be employed, and an appropriate heating means is appropriately selected from among them. The method of applying a predetermined temperature gradient using this selected heating method is generally (1)
(2) A method of heating a metal material so that a predetermined temperature gradient is formed in the axial direction of the metal material, and (2) a method of heating the metal material so that a predetermined temperature gradient is formed in the axial direction. A method of adjusting the temperature by cooling so as to form a temperature gradient is preferably employed. More specifically, in order to impart a predetermined temperature gradient to the metal material within the heating region, the amount of heating or cooling at each position in the axial direction of the material is changed according to the desired taper shape. For example, the degree of cooling can be changed by increasing or decreasing the amount of air blown at each divided position from the center of the formed taper part to both ends (both sides), or by high-frequency induction heating. In this method, the coil diameter or pitch at each position in the material's axial direction is changed, or in gas heating, the gas flow rate at each location in the material's axial direction is changed,
Methods such as adjusting the electrical input of multiple rows of resistive heating elements may be used to advantage.

ついで、この所定の温度勾配が付与された金属素材には
、該素材の軸方向の引張力が加えられ、これによって該
温度勾配のパターンに応じて、該素材は、その軸方向に
直径を変化せしめて、所望のテーパー形状が形成される
のである。即ち、一般に、高温部分はより小さな直径と
され、また低温部分では、それほど直径は変化しない。
Next, a tensile force in the axial direction of the metal material is applied to the metal material to which the predetermined temperature gradient has been applied, causing the material to change its diameter in the axial direction according to the pattern of the temperature gradient. At the very least, the desired tapered shape is formed. That is, the hotter portion generally has a smaller diameter, and the colder portion does not vary significantly in diameter.

なお、この引張力は、一般に、金属素材の材質、形状、
目的とするテーパー形状に応じて所定の歪速度を与える
ように、前記温度勾配の付与された金属素材に対して加
えられることとなるが、本発明者らのその後の検討によ
って、目的とするテーパー形状のテーパーロッドを効率
的に得るためには、かかる引張操作における金属素材の
歪速度(加工歪速度)を制御することが重要であり、し
かもかかる加工歪速度は、形成されるテーパーロッドの
最小直径部分(均一最大絞り部分)において所定の範囲
内に制御する必要があることが、明らかとなったのであ
る。
Note that this tensile force generally depends on the material, shape, and
The temperature gradient is applied to the metal material to which a predetermined strain rate is applied depending on the desired taper shape. In order to efficiently obtain a tapered rod shape, it is important to control the strain rate (processing strain rate) of the metal material during this tensile operation. It became clear that it was necessary to control the diameter portion (uniform maximum aperture portion) within a predetermined range.

このため、本発明にあっては、テーパーロッドの最小直
径部分(均一最大絞り部分)に相当する金属素材部分は
、一般に最高加熱温度部分における加工歪速度(2)が
0.5%/sec 〜1000%/secとなるように
、引張変形せしめられるものであり、これによって、目
的とする形状のテーパーロッドが、破断などの問題を惹
起することなく、効率的に且つ容易に得られるのである
。なお、この歪速度が0.5%/sec未満の低速では
、軸方向に与えた温度勾配が平坦化してしまうため、目
的とするテーパー形状を付与することが固片となるとこ
ろから、かかる歪速度の下限は0.5%l sec以上
とする必要がある。また、歪速度が1000%/sec
を超える場合には、塑性変形に伴う発熱が大きくなって
、局部的な発熱を惹起し、局部収縮を生じて破断する問
題を発生するので、その上限は1000%/secまで
とする必要がある。ここで、歪速度(ε)とは、最小直
径部分における単位時間当たりの変形量、より具体的に
は、断面箱変化量を指し、一般に次式に従って求められ
ることとなる。
Therefore, in the present invention, the metal material portion corresponding to the minimum diameter portion (uniform maximum drawing portion) of the tapered rod generally has a processing strain rate (2) of 0.5%/sec to 0.5%/sec at the highest heating temperature portion. The tapered rod can be tensilely deformed at a rate of 1000%/sec, and as a result, a tapered rod of the desired shape can be obtained efficiently and easily without causing problems such as breakage. Note that if the strain rate is low, less than 0.5%/sec, the temperature gradient applied in the axial direction becomes flattened, and the desired taper shape becomes a solid piece. The lower limit of the speed needs to be 0.5%l sec or more. In addition, the strain rate is 1000%/sec
If it exceeds this, the heat generated by plastic deformation will increase, causing local heat generation, causing local shrinkage and breaking, so the upper limit needs to be 1000%/sec. . Here, the strain rate (ε) refers to the amount of deformation per unit time at the minimum diameter portion, more specifically, the amount of change in the cross-sectional box, and is generally determined according to the following equation.

但し、A3 :金属素材の原断面積(cn)A :テー
パーロッド(引張後の金属素材)の最小直径部分の断面
積(cJ) t :引張時間(sec ) そして、かかる引張操作によって得られたテーパーロッ
ドは、前記したようにテーパーコイルばねの利料として
好適に使用される他、従来より公知の各種の用途に用い
られるのである。特に、テーパーコイルばね用のテーパ
ーロッドを製造するには、長尺状の連続した線材あるい
は棒材に対して、軸方向に所定の間隔をおいて間歇的に
前記本発明手法を適用し、テーパー成形加工した後、該
テーパー形状の最小直径部分で順次切断することにより
、両端部分がテーパー形状(端部に向かって漸次直径が
減少する)を呈するテーパーロッドを連続的に得ること
が可能である。
However, A3: original cross-sectional area of the metal material (cn) A: cross-sectional area of the smallest diameter part of the tapered rod (metal material after tension) (cJ) t: tension time (sec) The tapered rod is suitably used as a material for a tapered coil spring as described above, and is also used for various conventionally known purposes. In particular, in order to manufacture a tapered rod for a tapered coil spring, the method of the present invention is applied intermittently to a long continuous wire or bar at predetermined intervals in the axial direction. After forming and processing, by sequentially cutting at the minimum diameter portion of the tapered shape, it is possible to continuously obtain a tapered rod in which both end portions exhibit a tapered shape (the diameter gradually decreases toward the end). .

以下、本発明の実施例を示し、本発明を更に具体的に明
らかにするが、本発明が、これら実施例の記載によって
何等の制約をも受けるものではないことは、言うまでも
ないところである。
Examples of the present invention will be shown below to clarify the present invention more specifically, but it goes without saying that the present invention is not limited in any way by the description of these Examples.

実施例 1 c:o、6t%、Si:2.05%、Mn:0.81%
及びCr:0.11%を含む、圧延、引抜によって得ら
れた鋼索材(直径6.35mm)を用いて、その両端を
水冷チャックでつかみ、その軸方向の各位置における空
気噴出量が異なる空冷手段を併用しつつ、加熱領域が約
200關で、その中央部が850℃となる山形形状の温
度勾配を形成するように、直接通電加熱した。
Example 1 c: o, 6t%, Si: 2.05%, Mn: 0.81%
A steel cable material (diameter 6.35 mm) obtained by rolling and drawing containing Cr: 0.11% is used, both ends of which are gripped by a water-cooled chuck, and air-cooled with a different amount of air ejected at each position in the axial direction. While using a combination of means, direct electrical heating was carried out so as to form a mountain-shaped temperature gradient having a heating area of about 200° and a temperature of 850° C. at the center.

その後、中央部の最小直径部分の歪速度(ニ)を種々変
化せしめて、前記所定の温度勾配の鋼素材を引張、変形
させた。各歪速度における均一最大絞り率を求め、その
結果を第1表に示した。なお、均一最大絞り率(%)と
は、テーパー形状に変形されつつある素材にくびれ(破
断につながる)が発生するまでの変形量を示すものであ
って、(A3−A)×100/A3、すなわち(素材断
面積−最小直径部分の断面積)X100/(素材断面積
)にて示されるものである。また、第1表の結果が第1
図に示されている。
Thereafter, the strain rate (d) at the minimum diameter portion at the center was varied to cause the steel material having the predetermined temperature gradient to be tensed and deformed. The uniform maximum reduction ratio at each strain rate was determined, and the results are shown in Table 1. Note that the uniform maximum drawing ratio (%) indicates the amount of deformation until constriction (leading to breakage) occurs in the material that is being deformed into a tapered shape, and is calculated by (A3-A) x 100/A3. That is, it is expressed as (cross-sectional area of the material - cross-sectional area of the smallest diameter portion)X100/(cross-sectional area of the material). Also, the results in Table 1 are
As shown in the figure.

第1表並びに第1図の結果から明らかなように、加工歪
速度が0.5〜1000%/secの領域で均一最大絞
り率が大きく、またその極大部分が位置しているのであ
り、そしてこのような大きな均一最大絞り率の領域にお
いて引張変形せしめることにより、目的とするテーパー
形状に、より加工し易くなるのである。すなわち、加工
工数が少なくて済むからである。
As is clear from the results in Table 1 and Figure 1, the maximum uniform drawing ratio is large in the region where the processing strain rate is 0.5 to 1000%/sec, and the maximum part thereof is located. By performing tensile deformation in such a region with a large uniform maximum drawing ratio, it becomes easier to process the material into the desired tapered shape. In other words, the number of processing steps can be reduced.

第   1   表 実施例 2 第2表に示す各種の化学成分を含む、球状化焼鈍、引抜
によって得られた鋼素材(線材)を用いて、実施例1に
従う加熱手法によって(最高加熱温度は第3表に示され
ている)加熱せしめて、所定の温度勾配を付与せしめた
後、第3表に示す加工歪速度(λ)にて、実施例1と同
様にして引張変形せしめた。得られた均一最大絞り率(
%)の結果を第3表に併せて示すが、いずれの鋼素材に
あっても、優れた均一最大絞り率を示すものであること
が認められた。
Table 1 Example 2 A steel material (wire rod) obtained by spheroidizing annealing and drawing containing various chemical components shown in Table 2 was heated by the heating method according to Example 1 (the maximum heating temperature was After heating (as shown in the table) to impart a predetermined temperature gradient, tensile deformation was performed in the same manner as in Example 1 at the processing strain rate (λ) shown in Table 3. The obtained uniform maximum drawing ratio (
%) are also shown in Table 3, and it was found that all steel materials exhibited an excellent uniform maximum drawing rate.

第2表 第   3   表Table 2 Table 3

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1で求められた最小直径部の歪速度と均
一最大絞り率との関係を示すグラフである。 出願人 大同特殊鋼株式会社
FIG. 1 is a graph showing the relationship between the strain rate of the minimum diameter portion determined in Example 1 and the uniform maximum reduction rate. Applicant Daido Steel Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)金属素材に、その軸方向に温度勾配を付与して引
張力を加えることにより、かかる温度勾配に応じて該素
材の軸方向に直径の変化したテーパ一部分を形成せしめ
るに際して、該金属素材の歪速度がその最小直径部分に
おいて0.5%/sec〜1000%/secの範囲と
なるように、引張変形せしめることを特徴とするテーパ
ーロッドの製造方法。
(1) By applying a tensile force to a metal material by applying a temperature gradient in its axial direction, forming a taper portion whose diameter changes in the axial direction of the material according to the temperature gradient, the metal material 1. A method for manufacturing a tapered rod, which comprises tensilely deforming the tapered rod so that the strain rate at its minimum diameter ranges from 0.5%/sec to 1000%/sec.
(2)前記金属素材が、重量で、0.35〜1.10%
の炭素を含み、且つ必要に応じて2.5%以下のケイ素
、1.5%以下のマンガン、3.0%以下の銅、3.0
%以下のニッケル、5.0%以下のクロム、1.0%以
下のモリブデン、1.0%以下のバナジウム、0.05
%以下のホウ素、0.1%以下のアルミニうム並びに、
それぞれ0.5%以下のチタン、ニオブ、ジルコニウム
、タンタル、タングステン及びハフニウムを含む、残部
が鉄からなる鉄鋼線材である特許請求の範囲第1項記載
の方法。
(2) The metal material is 0.35 to 1.10% by weight
of carbon, and optionally 2.5% or less silicon, 1.5% or less manganese, 3.0% or less copper, 3.0
% or less nickel, 5.0% or less chromium, 1.0% or less molybdenum, 1.0% or less vanadium, 0.05
% or less of boron, 0.1% or less of aluminum, and
2. The method of claim 1, wherein the wire is a steel wire containing 0.5% or less of each of titanium, niobium, zirconium, tantalum, tungsten and hafnium, the balance being iron.
(3)前記金属素材に対してその軸方向に温度勾配を付
与するにあたり、その最高加熱温度が、600〜100
0℃の範囲内となるようにした特許請求の範囲第1項記
載の方法。
(3) When imparting a temperature gradient to the metal material in its axial direction, the maximum heating temperature is 600 to 100.
The method according to claim 1, wherein the temperature is within the range of 0°C.
(4)前記金属素材に対して、その軸方向に温度勾配を
付与した後軸方向に引張変形を与えてテーパ一部分を形
成せしめる操作を、その軸方向について間歇的に行ない
、最小直径部分で切断することにより、両端部分がテー
パー形状を呈するテーパーコイ2ばね用テーパーロッド
を得る特許請求の範囲第1項乃至第3項の何れかに記載
の方法。
(4) After applying a temperature gradient in the axial direction to the metal material, an operation of applying tensile deformation in the axial direction to form a tapered portion is performed intermittently in the axial direction, and cutting is performed at the minimum diameter portion. 4. The method according to any one of claims 1 to 3, wherein a tapered rod for a tapered coil coil 2 spring having both end portions tapered is obtained by doing so.
JP4325184A 1984-03-07 1984-03-07 Manufacture of tapered rod Granted JPS59218214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4325184A JPS59218214A (en) 1984-03-07 1984-03-07 Manufacture of tapered rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4325184A JPS59218214A (en) 1984-03-07 1984-03-07 Manufacture of tapered rod

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP31282587A Division JPS63157835A (en) 1987-12-10 1987-12-10 Spring steel

Publications (2)

Publication Number Publication Date
JPS59218214A true JPS59218214A (en) 1984-12-08
JPH0316209B2 JPH0316209B2 (en) 1991-03-05

Family

ID=12658651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4325184A Granted JPS59218214A (en) 1984-03-07 1984-03-07 Manufacture of tapered rod

Country Status (1)

Country Link
JP (1) JPS59218214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116595A (en) * 2013-12-18 2015-06-25 日本碍子株式会社 Manufacturing method of heat conductive member

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356014A (en) * 1986-08-26 1988-03-10 Matsushita Electric Works Ltd Photoelectric switch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356014A (en) * 1986-08-26 1988-03-10 Matsushita Electric Works Ltd Photoelectric switch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116595A (en) * 2013-12-18 2015-06-25 日本碍子株式会社 Manufacturing method of heat conductive member

Also Published As

Publication number Publication date
JPH0316209B2 (en) 1991-03-05

Similar Documents

Publication Publication Date Title
JP2735647B2 (en) High strength and high ductility steel wire and method for producing high strength and high ductility extra fine steel wire
WO2011108459A1 (en) Steel wire with excellent cold forging characteristics and manufacturing process thereof
EP0493807A1 (en) Steel cord for reinforcement of rubber articles, made from steel wires with high strength and high toughness, and process for manufacturing the same
JP5005543B2 (en) High-strength thick-walled electric-welded steel pipe excellent in hardenability, hot workability and fatigue strength, and method for producing the same
JP2609387B2 (en) High-strength high-toughness ultrafine steel wire wire, high-strength high-toughness ultrafine steel wire, twisted product using the ultrafine steel wire, and method for producing the ultrafine steel wire
CN108368583B (en) Steel wire for non-heat-treated machine part and non-heat-treated machine part
JP2005076047A (en) Method for manufacturing hollow stabilizer superior in fatigue resistance
JP3536684B2 (en) Steel wire with excellent wire drawing workability
JP4261089B2 (en) Manufacturing method of high strength and high fatigue resistance coil spring
JPS59218214A (en) Manufacture of tapered rod
JP2888726B2 (en) Ultra-fine steel wire excellent in wire drawability and fatigue strength and method for producing the same
JP2864348B2 (en) High strength and high weldability steel rod or steel wire for prestressed concrete and method for producing the same
JPH0967622A (en) Production of high strength non-heat treated steel wire for bolt, excellent in cold heading property
JPS63157835A (en) Spring steel
JP4392324B2 (en) Method for producing case-hardened steel for cold forging
JP3250247B2 (en) Manufacturing method of high carbon steel wire for wire drawing
JPH0570894A (en) Alloy wire having high strength and low thermal expansion and excellent in twisting characteristic and its production
JPH0735545B2 (en) High tension non-heat treated bolt manufacturing method
JPH09279304A (en) High strength steel wire with weld zone and its production
JP3627393B2 (en) Wire rod steel with excellent cold-cutability
JPH07268463A (en) Production of drawability-strengthened wire rod for high strength steel wire
JP2570808B2 (en) Tool steel forging method
JPH08295931A (en) Wire rod excellent in wire drawability
JP2000063987A (en) High carbon steel wire rod excellent in wire drawability
JPH11293400A (en) High strength steel wire