JPS59217672A - Manufacture of carbon refractories for blast furnace - Google Patents

Manufacture of carbon refractories for blast furnace

Info

Publication number
JPS59217672A
JPS59217672A JP58091355A JP9135583A JPS59217672A JP S59217672 A JPS59217672 A JP S59217672A JP 58091355 A JP58091355 A JP 58091355A JP 9135583 A JP9135583 A JP 9135583A JP S59217672 A JPS59217672 A JP S59217672A
Authority
JP
Japan
Prior art keywords
graphite
parts
aggregate
coke
phenolic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58091355A
Other languages
Japanese (ja)
Other versions
JPS613299B2 (en
Inventor
茂 藤原
仲井 正人
勉 若狭
田草川 豊
牧野 馨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP58091355A priority Critical patent/JPS59217672A/en
Publication of JPS59217672A publication Critical patent/JPS59217672A/en
Publication of JPS613299B2 publication Critical patent/JPS613299B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は高炉用カーボン耐火物の製法に関し、特に、緻
密で圧縮強度が高く、通気率が低く、耐溶銑浸蝕件に秀
れ、しかも熱伝導率の高い成形品を得るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing carbon refractories for blast furnaces, and in particular, to produce molded products that are dense, have high compressive strength, have low air permeability, are excellent in hot metal corrosion resistance, and have high thermal conductivity. It's something you get.

高炉用カーボン耐火物は黒鉛等の炭素質骨材にコールタ
ールピッチやフェノール樹N’4(7) 結合材をlO
〜20%程度配合したのち、所定の形状に成形し、更に
焼成したもので、従来のものは1150−1600℃の
熔銑鉄浸蝕性に対して加炭性の最も少ない無煙炭?主成
分とし、これに少量の、i     黒鉛を添加してつ
くられたものである。 このものは、骨材自体の耐熔銑
浸蝕性はすぐれているが成形品の通気率が高く、熱伝導
率が10〜15kcaLAnh℃と低い0 通気率が高
ければそれだけ溶銑浸透性も高いから耐熔銑浸蝕性の低
いものとなるのであシ、又、熱伝導率が低いとそれだけ
稼働面の温度が上昇して熱による損耗が太きくなり、結
局、高炉の耐用年数を短縮する欠点か生じる。 また、
高炉を経済的に操業する手段としては、炉壁に冷却水を
通して、高出銑比操業時には、冷却水量を増加させ、稼
働面を冷却することによって炉体を保護し、低出銑比操
業時には冷却水量を減少させて保温を強化することが望
ましい。 即ちこの様な操作をするためにはカーホン耐
火物の熱伝導率を高いものとすることが必須の要件とさ
れるのである0上記した点に鑑みて従来からカーボン耐
火物の熱伝導率を高める方法が試みられた。 これはカ
ーボン耐火物の熱伝導率を高めることによって高炉炉底
における側壁方向への冷却を太r1jに強化し、これに
より等温細を炉内側へ移し。
Carbon refractories for blast furnaces are carbonaceous aggregates such as graphite mixed with coal tar pitch and phenolic resin N'4 (7) binder.
After blending about ~20%, it is formed into a predetermined shape and fired.The conventional one is anthracite, which has the least carburization property compared to the corrosivity of molten pig iron at 1150-1600℃. It is made by adding a small amount of i graphite to it. Although the aggregate itself has excellent hot metal corrosion resistance, the air permeability of the molded product is high, and the thermal conductivity is low at 10 to 15 kca LAnh℃. The molten pig iron has low corrosive properties, and the lower the thermal conductivity, the higher the temperature of the working surface increases and the wear and tear due to heat increases, resulting in the disadvantage of shortening the service life of the blast furnace. . Also,
As a means to operate a blast furnace economically, cooling water is passed through the furnace walls. During high-output ratio operation, the amount of cooling water is increased to cool the working surfaces and protect the furnace body, and during low-output ratio operation, the furnace body is protected. It is desirable to strengthen heat retention by reducing the amount of cooling water. In other words, in order to carry out such operations, it is essential that the thermal conductivity of carbon refractories be high. In view of the above points, conventional methods have been used to increase the thermal conductivity of carbon refractories. method was tried. By increasing the thermal conductivity of the carbon refractory, cooling in the direction of the side wall at the bottom of the blast furnace is strengthened to a greater extent, thereby transferring the isothermal refractory to the inside of the furnace.

稼働面に永久付着層を形成させようとするものでおる。It is intended to form a permanent adhesive layer on the working surface.

 窮状黒鉛がカーボン耐火物の熱伝導率を高めることは
知られており、六方晶系の天然黒鉛、例えばJISM 
860に1960担当品の窮状黒鉛に適当な粘結材(デ
キストリン、リグニン、フェノール樹脂、アクリル樹脂
、フラン樹脂、タール、ピッチ等)を加えて捏和したも
のを成形し、500℃以上で焼成すると熱伝導率が10
0〜150kcJ/rnh ℃のものが得られるのは公
知である。 しかし、この方法はfzE形品が並レンガ
サイズ(65X 114 X 230mm )程度で冴
)れげ比較的均質でラミネーションのないものが得られ
るが、工業炉内張ジ耐火材料として、特に高炉の炉底側
壁に供する大形の成形品にしようとすると、内部の組織
不良や異方性が異常に大きくなり、強度の小さなものと
なり、クラックやラミネーションが発生する等の問題が
生じる。
It is known that distressed graphite increases the thermal conductivity of carbon refractories, and hexagonal natural graphite, such as JISM
When 860 is kneaded with the 1960-related material graphite and an appropriate caking agent (dextrin, lignin, phenol resin, acrylic resin, furan resin, tar, pitch, etc.), it is molded and fired at 500℃ or higher. Thermal conductivity is 10
It is known that one having a temperature of 0 to 150 kcJ/rnh°C can be obtained. However, with this method, fzE-shaped products can be obtained that are relatively homogeneous and free of laminations at about the size of a regular brick (65 x 114 x 230 mm). If a large-sized molded product is used for the bottom side wall, internal structure defects and anisotropy will become abnormally large, resulting in a product with low strength and problems such as cracking and lamination.

かかる不具合を解消しようとして従来から鱗状黒鉛の特
性を生がし几強固な組織を有するカーボン耐火物につい
ての試みがなされている。
In an attempt to solve this problem, attempts have been made to develop carbon refractories that utilize the characteristics of scale-like graphite and have a strong structure.

例えは窮状黒鉛を微粉(’4411m+以下が50%を
含む0.074mm以下)とし、これにタールを配合し
、得られた粉末をゴム型に入れて室温で静水圧等方成形
によ勺カーボン耐火物を得る方法である(特開昭50−
23410号)。
For example, fine graphite is made into a fine powder (0.074 mm or less, including 50% of 4411 m+ or less), mixed with tar, the resulting powder is placed in a rubber mold, and isostatically isostatically molded at room temperature. It is a method for obtaining refractories (Japanese Patent Application Laid-open No. 1983-
No. 23410).

この方法では成形品が少しでも大形になると、成形時の
降圧過程で、ゴム型が底形体から離れる100〜200
kg/−の低圧域で脱気不調によって成形体に亀裂が入
シ易く、成形歩留が著しく劣るO を利用して熱伝導率の高いカーボン耐火物を製る方法も
試みられた(特開昭57−67011号)。
In this method, if the molded product becomes even slightly large, the rubber mold will separate from the bottom body during the pressure reduction process during molding.
A method of manufacturing carbon refractories with high thermal conductivity using O2, which is prone to cracking in molded bodies due to poor degassing in the low pressure range of 1 kg/-, and has a significantly poor molding yield, has also been attempted (Unexamined Japanese Patent Publication No. (Sho 57-67011).

この場合は、成形時に発生するスプリングバックによる
ラミネーションクラックは防止できるが、大形成品の場
合、焼成時300〜500 ’Cの温度域でピッチの異
常な体積膨張、収縮によって2ミネーシロンが発生し易
くなる0 従ってこれを防止するための焼成速度を/J
%さくする等の工夫をしても内蔵うiネーシ冒ンを完全
には消去できない。 おるいはまた、 JIS相当品の
CE−2グレードの鱗状黒鉛(薄片サイズ3〜0.3m
m)を用いて粘結性の有機質粉末(フェノール樹脂粉末
)に耐火原料を補充し、 800kg/an2の強圧成
形によってカードハウス配列現象を利用してカーボン耐
火物をつくることも試みられた(特開昭55−8546
1号)0 この方法では成形体が大きくなると充填前の粉末のカサ
密度が極めて小さい(0,3g/ cm3)反面、強圧
成形後のカサ密度が2、Og/am3となるから、7倍
も圧縮しなければならず脱気が均一に行なわれに<<、
・脱型後のスプリングバック量が大きくなりラミネーシ
ョンの発生も防止できない。
In this case, lamination cracks due to springback that occur during molding can be prevented, but in the case of large molded products, 2 min. Therefore, to prevent this, the firing speed should be /J
Even if you take measures such as reducing the percentage, it is not possible to completely erase the built-in data. Ori also uses CE-2 grade flaky graphite (flake size 3 to 0.3 m), which is equivalent to JIS.
It was also attempted to make carbon refractories by replenishing refractory raw materials to caking organic powder (phenolic resin powder) using m) and utilizing the card house alignment phenomenon by high-pressure molding at 800 kg/an2. Kaisho 55-8546
No. 1) 0 With this method, when the compact becomes larger, the bulk density of the powder before filling is extremely small (0.3 g/cm3), but on the other hand, the bulk density after high-pressure molding becomes 2.0 g/am3, which is 7 times as large. It must be compressed and the degassing must be done uniformly.
・The amount of springback after demolding becomes large and lamination cannot be prevented.

上記した方法は、いづれも小形のテヌトピースを成形し
たときは、目的に適った熱伝導率の高い成形品が得られ
るが、実用に則した大形の成形品を成形しようとすると
ラミネーシヨン等が発生するのである。
In all of the above methods, when molding a small tenuto piece, a molded product with high thermal conductivity suitable for the purpose can be obtained, but when trying to mold a large molded product suitable for practical use, lamination etc. It happens.

本発明者らは、上記した従来の方法による不具合につい
て研究した。 その結果、上記不具合の発生する原因は
主として有機結合材と、混合物の捏和方法、及びそれに
付随する成形方法にヲシ、先ず黒鉛その他の骨材にエチ
レングリコール等の有機溶剤を含浸させ、次いでこれに
フェノール樹脂を加えて二一ダーブレンダによりlO〜
100 g/am2の圧力を加えながら捏和し、然るの
ち100〜250kg Am” の成形圧で成形すれは
ラミネーション等のない大形の成形品が得られることを
見出し、更に加えて成形圧力を250ky’cm2以下
とすることによpコークス系黒鉛の添加を可能にし、こ
れにより強度が大きく、通気率の低い成形品が得られる
ことを見出し、これに基づいて本発明を提供しようとす
るものである。
The present inventors studied the problems caused by the above-described conventional methods. As a result, the cause of the above problems is mainly due to the organic binder, the method of kneading the mixture, and the accompanying molding method. First, graphite or other aggregate is impregnated with an organic solvent such as ethylene glycol, and then the Add phenol resin to the mixture and use a twenty-one-day blender to convert it to lO~
It was discovered that a large molded product with no lamination etc. could be obtained by kneading while applying a pressure of 100 g/am2, and then a molding pressure of 100 to 250 kg Am''. It has been discovered that by setting it to 250 ky'cm2 or less, it is possible to add p-coke type graphite, thereby obtaining a molded product with high strength and low air permeability, and based on this, the present invention is intended to be provided. It is.

以下本発明を具体的に説明する。 上記した様に本発明
は骨材に有機溶剤を含浸させ、然してこれにフェノール
樹脂を加えて二−ダーブレンダによって捏和し、成形す
るものでオシ、圧m@度が大きく2、通気率が極めて低
く、シかも熱伝導率の高い成形品を得るものでおる〇−
例として鱗状黒鉛を主成分としたものを示す。 従って
骨材は鱗状黒鉛に無煙炭、コ −クス糸人造黒鉛、カー
バイド粉末、金属粉末等を加えたものでおる。 鱗状黒
鉛はa軸の結晶子サイズII” LalOooA以上の
六方晶形の薄片状黒鉛で、薄片サイズが、3〜0.3m
mのものであり、例えば勿00℃以上で黒鉛化した無煙
炭系鱗状黒鉛、金属熔解炭素の析出によるキラシー黒鉛
、1500℃以上で焙焼した土状黒鉛、天然産鱗状黒鉛
等である。 この鱗状黒鉛はそれ自体極めて大きな自然
充填能を有し、200kg/c♂の拘束荷重下で理論密
度の90%(1、8〜2、Og/cm3)に達するが、
拘束を解くとスプリングバックする°性質がある。 そ
して鱗状黒鉛だけを骨材として成形したものは熱伝導率
については極めて優れているが成形の際に黒鉛同志が滑
Q易いためにラミネーションを発生し易いうえ、気孔率
が高く、シかも抗4張力や抗圧力が小さいので、高炉炉
材として使用することはできない。 コークス系黒鉛、
無煙炭、カーバイド粉末及び金属粉末は鱗状黒鉛のかか
る欠^を除゛去するものであって、コークス系黒鉛は鱗
状黒鉛の骨格の空隙を埋めて緻密な層として介在し、成
形品の通気率を低下させると共に構造材とし、成形品の
強度を増大するものであり、電極板・電極用人造黒鉛、
2000〜2300℃の温度で虫ミ黒鉛化した冶金コー
クス、炭化率30%以上の芳香族炭素質有機化合物であ
らかじめの含浸処理したのち同上温度でセミ黒鉛化した
コークス、或いは有機硅素化合物(例えにポリカルボシ
ラン等)を含浸したのち上記温度で黒鉛化し7t 7〜
0、lrrImのコークス等も用いられる。 無煙炭も
同様、成形品の通気率を低下させ、強度を増大するもの
でオシ、特に耐加炭性を高めるものである。 カーバイ
ドは鱗状黒鉛の滑シやj′芒を低下させて成形物をより
緻密なものとし、ラミネーションの発生を防止するも9
であり、金属粉末(硅素、アルミニウム)は炭素焼結剤
であって黒鉛の炭素と結合してβ−8工C等を生成し、
成形品の機械的強度を高めると共に通気率を低下させる
のである。
The present invention will be specifically explained below. As described above, in the present invention, aggregate is impregnated with an organic solvent, phenol resin is added thereto, and the mixture is kneaded and molded using a two-der blender. It is possible to obtain molded products with extremely low thermal conductivity and high thermal conductivity.
As an example, a material whose main component is scaly graphite is shown. Therefore, the aggregate is a mixture of scale graphite, anthracite, coke thread artificial graphite, carbide powder, metal powder, etc. Scale graphite is a hexagonal flaky graphite with an a-axis crystallite size of II" LalOooA or larger, and the flake size is 3 to 0.3 m.
For example, anthracite-based scaly graphite graphitized at 00° C. or higher, chirashi graphite produced by precipitation of metallic molten carbon, earthy graphite roasted at 1500° C. or higher, naturally produced scaly graphite, etc. This scaly graphite itself has an extremely large natural filling capacity, reaching 90% of its theoretical density (1,8-2, Og/cm3) under a restraining load of 200 kg/c♂.
It has the property of springing back when released. Molded graphite scales using only scaly graphite as aggregate have extremely good thermal conductivity, but the graphite tends to slip on each other during molding, so lamination is likely to occur, and the porosity is high, resulting in resistance to Since the tension and counter pressure are low, it cannot be used as a blast furnace material. Coke-based graphite,
Anthracite, carbide powder, and metal powder remove the defects in graphite scales, and coke-based graphite fills the voids in the skeleton of graphite scales and is interposed as a dense layer, increasing the air permeability of the molded product. It is used as a structural material and increases the strength of molded products.
Metallurgical coke graphitized at a temperature of 2000 to 2300°C, coke pre-impregnated with an aromatic carbonaceous organic compound with a carbonization rate of 30% or more and then semi-graphitized at the same temperature, or an organic silicon compound (e.g. After impregnating it with polycarbosilane, etc., it is graphitized at the above temperature.
0, lrrIm coke, etc. may also be used. Anthracite similarly lowers the air permeability of the molded product, increases its strength, and particularly improves its carburization resistance. Carbide reduces the lubricity and j'awn of scale graphite, makes the molded product more dense, and prevents lamination.9
The metal powder (silicon, aluminum) is a carbon sintering agent and combines with the carbon of graphite to produce β-8C, etc.
This increases the mechanical strength of the molded product and reduces the air permeability.

上記の如く鱗状黒鉛にコークス系黒鉛等を混合した骨材
をニーダブレンダに投入し、更に、これにエチレングリ
コール等の有機溶剤を加えて攪拌し、骨材の表面に有機
溶剤をコーティングすると共にクラックの隙間等にもこ
れを含浸させる。 有機溶剤は次に骨材に対して力1]
えるフェノール樹脂をi解してこれを骨材に1遍なくコ
ーティングすると共に骨材との接着性を高めるものであ
って、その機能を有するものでおれば、特に限定するも
のではないが2、・その機能は、少なくとも材料押、和
物を成形するまでは持続することが必要でお9、又、気
孔率の低い成形品を得るために溶解したフェノール樹脂
の粘度を適宜なものとすることも必要でおる。 かかる
点から有機溶剤は例えば、エチレングリコール等のグリ
コール類が適しているのであるO2      続いて
、上記混合物に微粉細したフェノール樹脂−及び、・−
又は高粘性のフェノール樹脂溶液を加えi、to〜10
0g/Cm2の圧力を加えながら数分間〜数十分間捏和
する。
As mentioned above, the aggregate made by mixing scale graphite with coke-based graphite, etc. is put into a kneader blender, and then an organic solvent such as ethylene glycol is added and stirred to coat the surface of the aggregate with the organic solvent and crack it. Impregnate the gaps etc. with this. The organic solvent then exerts a force of 1 on the aggregate.
The material is not particularly limited as long as it dissolves the phenolic resin produced and coats the aggregate evenly and improves the adhesion with the aggregate, and has this function2.・The function must last at least until the material is pressed and molded.9 Also, the viscosity of the melted phenolic resin must be adjusted to an appropriate value in order to obtain a molded product with low porosity. I also need it. From this point of view, glycols such as ethylene glycol are suitable as organic solvents.Next, finely divided phenol resin and...
Or add a high viscosity phenolic resin solution i, to ~10
Knead for several minutes to several tens of minutes while applying a pressure of 0 g/Cm2.

ところで、有機溶剤としてエチレングリコールを使用し
、その添加量をフェノール樹脂の0.5〜0.1倍とし
たときは、捏和するにあたって材料を70〜90℃程度
に加熱するのが望ましい。 即ちこの様にすると、フェ
ノール樹脂が大形成形品を成形するに適した粘度となシ
、骨材は所請、カードハウス構造を有する組織となり、
成形品の通気率が低下すると共に強度が増加するのでお
る。 そしてこの場合は骨材に有機溶剤を含浸させる段
階で骨材を100〜105℃程度に加熱し、次いで混合
物を他のニーダブレンダに移してこれにフェノール樹脂
を加えて捏和するのがよい。 この様にすると捏和中に
混合物を外部から加熱されることがないから、混合物は
全て同一の温度となり、フェノール樹脂が局部的に硬化
が進む憂いがなく、均質な成形品が得られるのである。
By the way, when ethylene glycol is used as the organic solvent and the amount added is 0.5 to 0.1 times that of the phenol resin, it is desirable to heat the material to about 70 to 90°C during kneading. In other words, by doing this, the phenolic resin will have a viscosity suitable for molding large molded products, and the aggregate will have a structure with a card house structure.
This is because the strength of the molded product increases as the air permeability of the molded product decreases. In this case, it is preferable to heat the aggregate to about 100 to 105° C. at the stage of impregnating the aggregate with the organic solvent, then transfer the mixture to another kneader blender, add the phenol resin thereto, and knead it. In this way, the mixture is not heated from the outside during kneading, so all the mixtures are at the same temperature, and there is no concern that the phenol resin will harden locally, and a homogeneous molded product can be obtained. .

 同、有機溶剤にはフェノール樹脂の一部をおらかしめ
溶解するのも一法でおる。
Similarly, one method is to dissolve a portion of the phenolic resin in an organic solvent.

この様にすると骨材に有機溶剤を含浸させるに際して、
骨材に対してフェノール樹脂が確実にコーティングされ
るので、フェノール樹脂のバインダとしての効果がより
確実に発揮されるのである。 最後に上記捏和材料を成
形金型に充填し、250kg/crn2以下の圧力で圧
縮成形し、以下常法に従って乾燥し、焼成する。
In this way, when impregnating the aggregate with an organic solvent,
Since the aggregate is reliably coated with the phenol resin, the effect of the phenol resin as a binder is more reliably exhibited. Finally, the above-mentioned kneaded material is filled into a mold, compression molded at a pressure of 250 kg/crn2 or less, and then dried and fired according to a conventional method.

ここで本発明は250 kg/am2以下の圧力で成形
可能なことが特徴であって、この圧力では黒鉛、特にコ
ークス系黒鉛が殆んど圧潰することがないから骨材とし
て黒鉛を加えることが可能となυ、成形品の強度を一段
と高め、気孔率を低下させるのである。
Here, the present invention is characterized in that it can be molded at a pressure of 250 kg/am2 or less, and since graphite, especially coke-based graphite, is hardly crushed at this pressure, it is not possible to add graphite as aggregate. This makes it possible to further increase the strength of the molded product and reduce its porosity.

実施例1 200kg/cm2CD圧縮によって圧粉密度が、2+
Og/am”以上となり、薄片サイズが3〜0.3mm
の天然鱗状黒鉛50部に粒度4.5〜0、lrnm s
真比重2,13以上、格子定数Co 6.85λ以下の
コークヌ系人造黒鉛25部及び粒度が0.074mTh
以下の炭化硅素細粒15部並びに金属硅素10部を容量
300flのニーダブレンダに投入し、更にこれにエチ
レングリコール2.5部を加え、この骨材を100℃に
加熱しながら10分間混練し、エチレングリコールを骨
材に含浸させ、次いでこれを他のニーダブレンダに移し
換えて、これに粉状フェノール樹脂18部を加え、混合
物に50g/am2の圧力を加えながら30分間捏和し
た。 つづいて内容積卸、3m3の金型に上記捏和物を
充填し、200kg/cm2の圧力で5分間加圧してブ
ロックを成形した。 得らf″した成形体を窒累ガヌ雰
囲気中で表面の低温酸化を防止しつつ、250℃で乾燥
したのち、還元雰囲気中で1300℃まで焼厖した〇 実施例2 実施例1と同様の天然鱗状黒鉛50部に粒度4.5〜0
.1rrrn  の無煙炭25部、及び粒度が0.07
4mm以下の炭化硅素細粒15部、並びに金属硅素10
部を容量300 iのニーダブレンダに投入し、更にこ
れにエチレングリコール2.4部、エチルアルコール1
,0部の混合液にフェノール樹脂3部を溶解した溶液を
加え、これらを100℃に加熱しながら10分間混練し
、溶液を骨材に含有させると共に溶液中のエチルアルコ
ールを蒸散させ、次いてこれを他のニーダブレンダに移
し換えて、これにレゾール型フェノール樹脂158 k
 71D エ、混合物に50g/cm2の圧力を加え力
から30分間捏和した。 続いて捏和物を内容積0+’
3rn3の金型に充填し、200kg/crn2の圧力
で5分間加圧してブロックを成形した。 得られた成形
体を窒素ガヌ雰囲気中で表面の低温酸化を防止しつ\2
50℃で乾燥したのち、還元雰囲気中で1300℃まで
焼成した。 得られた成形品は第1表に示した様に熱伝
導率60 kcal−Ah ’C以上、通気率400ミ
リダルシー以下でおり、曲げ強度120kg /am2
以上で加圧溶銑透過率が殆どなく、耐加炭性のすぐれた
高〆用炉材として適したものであった〇同試験方法は、
加圧浸透試験法については、5−角のサンプルIを真空
脱気後、溶銑2に浸漬し、つ無いで容器3に気体4を圧
力し5kg/cm2に加圧し、試験後、サンプルlを取
り出し、切1   断研暦し顕微鏡観察より、面積割合
がら溶銑浸入量を推測し、指数で示した。 片面冷却法
に筒5に不定形物6を介して、サンプル(0% 15 
m” )7を・構築し1550℃の溶銑8と接触保持さ
せる。
Example 1 200kg/cm2 CD compression resulted in a compacted powder density of 2+
Og/am" or more, and the flake size is 3 to 0.3 mm
50 parts of natural flaky graphite with a particle size of 4.5 to 0, lrnm s
25 parts of Coconu-based artificial graphite with a true specific gravity of 2.13 or more, a lattice constant Co of 6.85λ or less, and a particle size of 0.074mTh
15 parts of the following silicon carbide fine particles and 10 parts of metallic silicon were put into a kneader blender with a capacity of 300 fl, and 2.5 parts of ethylene glycol was added thereto, and the aggregate was kneaded for 10 minutes while heating to 100 ° C. The aggregate was impregnated with ethylene glycol, then transferred to another kneader blender, 18 parts of powdered phenol resin was added thereto, and the mixture was kneaded for 30 minutes while applying a pressure of 50 g/am2. Subsequently, the inner volume was discharged, and the above-mentioned kneaded material was filled into a 3 m3 mold, and a block was formed by pressurizing the mixture at a pressure of 200 kg/cm2 for 5 minutes. The obtained molded body was dried at 250°C in a nitriding atmosphere while preventing low-temperature oxidation of the surface, and then annealed to 1300°C in a reducing atmosphere. Example 2 Same as Example 1. 50 parts of natural scaly graphite with a particle size of 4.5 to 0
.. 25 parts of anthracite of 1rrrn and particle size of 0.07
15 parts of silicon carbide fine particles of 4 mm or less, and 10 parts of metallic silicon
2.4 parts of ethylene glycol and 1 part of ethyl alcohol were added to a kneader blender with a capacity of 300 i.
A solution in which 3 parts of phenolic resin was dissolved was added to a mixed solution of 0 parts, and the mixture was kneaded for 10 minutes while heating to 100°C to incorporate the solution into the aggregate and evaporate the ethyl alcohol in the solution. Transfer this to another kneader blender and add resol type phenolic resin 158k to it.
71D D. A pressure of 50 g/cm2 was applied to the mixture and kneaded for 30 minutes. Next, add the kneaded material to an internal volume of 0+'
The mixture was filled into a 3rn3 mold and pressed at a pressure of 200 kg/crn2 for 5 minutes to form a block. The obtained molded body was heated in a nitrogen atmosphere to prevent low-temperature oxidation of the surface\2
After drying at 50°C, it was fired to 1300°C in a reducing atmosphere. As shown in Table 1, the obtained molded product had a thermal conductivity of 60 kcal-Ah'C or more, an air permeability of 400 millidarcy or less, and a bending strength of 120 kg/am2.
Based on the above results, it was suitable as a high-temperature furnace material with almost no pressurized hot metal permeability and excellent carburization resistance.The test method was as follows:
For the pressurized penetration test method, a 5-square sample I is vacuum degassed, immersed in hot metal 2, connected and pressurized with gas 4 in a container 3 to a pressure of 5 kg/cm2, and after the test, sample I is Removal and cutting 1 After cutting and microscopic observation, the amount of hot metal infiltration was estimated from the area ratio and expressed as an index. Sample (0% 15
7 is constructed and held in contact with hot metal 8 at 1550°C.

試験後、表面から溶損量を実測し、それよシ熔損容積指
数を求めた。
After the test, the amount of erosion loss was actually measured from the surface, and the erosion loss volume index was determined.

第  1  表 以上詳述した様に本発明は先ず骨材に有機溶剤を含浸さ
せ、然るのちこれにフェノール樹脂を加え加圧下でニー
ディングし、然して成形するのでおり、この様に予備捏
オロをすることによ−p低圧放形を可能にしたのである
。 そして、それ故にコークス系人造黒鉛の添加を可能
とし、熱伝導率が高く、強度が強く、シかも通気率の殆
んどない成品が得られるのである。
As detailed above in Table 1, in the present invention, aggregate is first impregnated with an organic solvent, then phenol resin is added thereto, kneaded under pressure, and then molded. By doing so, -p low pressure release was made possible. Therefore, it is possible to add coke-based artificial graphite, and a product with high thermal conductivity, high strength, and almost no air permeability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は加圧浸透試験法を示す説明図・第2図(イ)は
片面冷却による耐溶銑性試験法を、示す説明図、第2図
(ロ)は同上平面図でおる。 381 手続補正書(自発) 昭和58年1五月15日 特許庁長官  沿杉和夫  殿 1」1件の表示 昭和58年特計顧第 91355号 2発明の名称 高炉用カーボン耐火物の製法3、補正を
する者 事件との関係 特許出願人 4、代理人 住 所  静岡市西門町2番7号新西門町ビル2階7、
補正の対象 明KLl書全文 8、補正の内容 別札の通り 明  細  書 °1、発明の名称 高炉用カーボン耐火物の製法2、特
許請求の範囲 カーボン耐火物用骨材100部に有機溶剤3〜13部を
加えて混線し、これを骨材粒子の表面にコーティングし
、次いで粉末′$is結合材10〜40部を加えて桿オ
レしたのち、成形、乾燥、焼成することを特徴とする高
炉用カーボン耐火物の製法。 肩機結合材は勲硬化性フェノール佃脂である特許請求の
範囲第1項記載の高炉用カーボン耐火物の製法C 熱硬化性フェノール樹脂はノボラック型着可塑性フェノ
ール樹脂50部とベンジリックエーテル型勲硬化性フェ
ノール樹脂3〜50部とから成ることを特徴とする特許
請求の範囲第λ項記製の高炉用カーボン耐火物の製法C
有@溶剤はグリコールであることを特徴とする特許請求
の範囲第1頂、2項、又は3項記箪の高炉用カーボン耐
火物の製法0 有機溶剤はノボラック型際可塑性フェノール樹脂so部
とベンジリックエーテル型熱硬化性フェノール樹脂3〜
50部とから成るフェノk MI l1iW I O(
1部をグリコール10〜35部に溶解したものであるこ
とを特徴とする特許請求の範囲第1項、第2硬、又は第
3項記載の高炉用カーボン耐火物の製法。 骨材は200kg/an  の圧縮によって圧粉密度が
2.Og/crn3以上となる薄片サイズか3〜0,3
圃の鱗状黒鉛40〜60s1粒度4.5〜0.1rri
mのコークヌ系人造黒鉛15〜30部、粒i0.074
mtn以下のカーバイド10〜20部並ひに金属粉末5
〜15部から成ることを特徴とする特許請求の範囲第1
項、渠2項、第3頌、第φ項、又は簗!功記岐の高炉用
カーボン耐火物の製法〇鮪状黒鉛はa軸の結晶子サイズ
かLa1000A以上の六方晶形の薄片状の鱗状黒鉛で
あり、2700℃以上7黒鉛化した無煙炭糸触状黒鉛・
全極熔解炭素の析出によるキッシュ黒鉛、天然座鞘製鱗
状黒鉛又は1500℃以上で焙焼した生状黒鉛であるこ
とを特徴とする特許請求の範囲第6項記載の高炉用カー
ボン耐火物の製法。 コークス系人造黒鉛は粒子圧壊強度200kg/an2
以上を有する電解板・電極用人造黒鉛、2000〜23
00℃の温度でセミ黒鉛化した冶金コークス、又は石油
コークス、ピッチ、コークス、冶金コークスを炭化率3
0%以上の芳香族炭素儀有機化合物若しくはポリカルボ
シラン等の有機硅素化合物で含浸したのち200()−
2300℃の温度でセミ黒鉛化したコークスであること
′f:特徴とする特許請求の範囲第6功記駆の高炉用カ
ーボン耐火物の製法。 有機溶剤をコーティングした骨材と有機結合材とはlO
〜100g/cm2の圧力下でW、 Nu Tることを
特徴とする特許請求の範囲第7項記載の高炉用カーボン
耐火物の製法。 3、発明の詳細な説明 本発明は高炉用カーボン耐火物の製法に関し、特に緻密
で圧縮強度が高く、通気率か低く、耐溶銑浸蝕性に秀れ
、しかも熱伝導率の高い成形品を得るものである0 高炉用カーボン耐火物は黒鉛等の炭素備骨材にコールタ
ールピッチやフェノール樹脂等の結合材を1υ〜20%
程度配合したのち、所定の形状に成形し%TJ[焼成し
たもので、従来のものは1150〜1600℃の溶銑浸
蝕性に対して加炭性の最も少ない無煙炭を主成分とし、
これに少量の黒鉛を添加してつくられたものである0 
このものは、骨材自体の耐溶銑浸蝕性は丁ぐれているが
成形品の通気率が高く、熱伝導率か10〜15 kca
4/rnh℃と低い。 通気率が高けれはそれたけ熔&
浸透性も高いから耐溶銑浸蝕性の低いものとなるのであ
り、又、熱伝導率か似いとそれだけ稼働面の温度か上昇
して訃による損耗が太きくな9、結局、高炉の耐用年数
を短縮する欠点か生じる。 また、高炉を経済的に操業
する手段としては、炉壁に冷却水を通して、高出銑比抄
業時には、冷却水量を増加させ、稼働1lII]を冷却
することによって炉体を保礁し、低出銑比抄業)時には
冷却水量を減少嘔せて保温を強化することが望ましい。  即ちこの様な操作をするためにはカーボン耐火物の熱
伝導率を高いものとすることが必須の要件とされるので
ある。 上記した点に鑑みて従来からカーボン耐火物のFPNF
e導率Ti:高める方法か試みられた。 これはカーボ
ン耐火物の熱伝導率を高めることによって高炉炉底にお
ける側壁方向への冷却を大巾に強化し、これによシ等温
線を炉内側へ移し、稼働面に永久付泡層を形成させよう
とするものである。′ 鱗状黒鉛力凡カーボン耐火物の
熱伝導率を高めることは知られておシ、六方晶系の天然
黒鉛、fj+えはJISM 8601−1960担当品
の鯨状婢鉛に適当な粘結側(デキストリン、リグニン、
フェノール佃月旨、アクリル柳月旨、フラン樹月旨、タ
ール、ピッチ等)を加えて捏オlしたものを成形し、5
00℃以上で焼成すると熱伝導率か100〜150kc
aj/rrh℃のものが得ら肛るのは公知である。 し
かし、この方法は成形品か並レンガサイズ(65X 1
14 X 230mm )程度であれは比較的均儀でラ
ミネーションのないものか得ら几るか、工業炉内づ封り
耐火材料として、特に高炉の炉底倶]壁に供する大形の
成形品にしようとすると、内部の組織不良や異方性か異
常に大きくなり、ibiの小豆なものとなり、クラック
やラミネーションか発生する等の問題か生じる。 か〃・る不具合を解消しようとして従来から鱗状黒鉛の
特性を生かした強固な組織を有するカーボン耐火物につ
いての試与がなでnでいる。 例えは鱗状黒鉛を微粉(44湘以下か50%を含むO1
074rrm以下)とし、これにタールを配合し、得ら
れた粉末をゴム型に入れて室温で静水圧等方成形にγ′
シカ−ボン耐火物を得る方法である(特開昭50−23
410号)0 この方法では成形品が少しでも大形になると、成形時の
降圧過程で、ゴム型か成形体から離れる100〜200
1cg/crrI2ノ低圧区域で脱気不調によって成形
体に亀裂か入り易く、成形歩留が著しく劣る。 また鱗状黒鉛に超硬ピッチ粉末を添加し、七こヘタール
変成フエ゛ノール樹脂液を加えて抑オロすることによシ
、成形過程における急激な粘性増加を利用して熱云導率
の高いカーボン耐火物を製る方法も試与ら’nた(%開
昭57−67011号〕。 この場合は、成形時に発生するスプリングバックによる
ラミネーションクラックは防止できるが、大形成品の場
合、焼成時300〜500℃の温度域でピッチの異常な
体積膨張、収縮によってラミネーションが発生し易くな
る。 従ってこれを防止するための焼成速度を小さくす
る等の工夫をしても内蔵ラミネーション2完全には消去
できない。 あるいはまた、JIS相当品のCE−2グ
レードの鱗状黒鉛(薄片サイズ3〜0.3mm)Tr:
用いて粘結性の有機p粉末(フェノール佃脂粉末)に耐
火原料を補光し、800kg/cm2の強圧成形によっ
てカードハウス配列現象を利用してカーボン耐火物をつ
くることも試みられた(特開昭55−85461号)。 この方法では成形体か大きくなると充填前の粉末のカサ
密度が極めて小さい(0,3g/c[T+3)反面、強
圧成形後のカサ密度か”、Og/cmとなるから、7倍
も圧縮しなけれはならす脱気が均一に行なわれに<<、
脱型後のスプリングバック量か太きくなシラミネーショ
ンの発生も防止できない。 上記した方法は、いづれも小形のテストピースを成形し
たときは、目的に適った勲云導率の高い成形品か得ら扛
るが、実用に則した大形の成形品を成形しようとすると
ラミネーション等か発生するのである。 この様に従来の方法に不具合か生じるのは突接結合材と
骨相との混合方法か不適であることに起因する。 即ち
、有機結合材は骨材粒子同志を結合でせると共にこれ自
身か炭化して製品側人物の一部を構成することか必要と
さ扛るの影付をよりシ、且つ製品耐火物の制置を均一に
し、空隙を無く丁と共に骨材粒子との接漸力か強り、炭
化後の気孔率の似いものであることが必女とされる。 
従ってそのためには有機結合材は骨材粒子の赤面に1遍
なく一様にコーティングすることが必伯の要件とされる
のである。 しかしながら従来は既に述べた様に骨相と粉末状の有機
結合材(フェノール位1脂)とを面し混練したので混合
物は巨初的には一様に混合芒ぜても全ての骨材粒子が有
機結合材によってコーティングされること側底出来ない
ので、製品耐火物は−f:れたけ気孔率が高くなシ、贅
た有機結合材と骨材粒子とか単に接触するのみで、充分
々接看力が発揮さ肛ないものも生じるので、4ン強度や
証1ζ熔銑浸蝕性の低いものとなったのである。 もつとも従来も、粉末状の有機結合材に代えて有機結合
材をあらかじめ有機溶剤に溶解して液状としたものも試
みられた。 しかしなから有機溶剤は製品耐火物の通気
率を高める原因となるので、その使用量は自づから限足
さnる。 そのため、液状有機結合材は極めて粘度の高いものとな
シ、却って骨材との均一な混線か困難になるのである。 本発明は上記した従来の不具合を解消し、均餉且つ緻密
で通気率か似く、正糾・強度か筒く、耐烙銑浸蝕性に秀
れた耐火vIを製造する方法を提供しようとするもので
ある。 以下本発明を具体的に説明する〇 一例として骨材は鱗状黒鉛を主成分とじたものを、有機
結合材はフェノール樹脂を使用したものを示すC従って
骨材は鱗状黒鉛に無煙炭、コークス糸人造黒鉛、カーバ
イド粉末、金属粉末等を加えたものである。 鱗状黒鉛
Gコa軸のk 晶子サイズかLa1OOO^以上の六方
晶形の薄片状黒鉛で、薄片ザイズか、3〜0.3mmの
ものであり、例えは2700℃以上で黒鉛化した無煙炭
系鱗状黒鉛、金属熔解炭素の析出によるキラシー黒鉛、
1500℃以上で焙焼した生状黒鉛、天然産鱗状黒鉛等
である。 この鱗状黒鉛はそれ自体極めて大きな自然冗
項能を有し、200kg/cm2の拘? 東向重下で理論密度の90%(118〜2、Og/可3
)に達するか、拘束を解くとスプリングバックする性η
かある。 そして鱗状黒鉛だけを骨材として成形したも
のは勲云導率については極めて優れているか成形の除に
黒鉛同志か滑り易いためにラミネーションを発生し易い
うえ、気孔率か高く、シかも抗張力や抗圧力か小豆いの
で、高炉炉材として使用することはできない。 コーク
ス系黒鉛、無煙炭、カーバイド粉末及び金属粉末は鱗状
黒鉛のかかる欠点を除去するものであって、コークス系
黒鉛はト状黒鉛の骨格の空隙を埋めて緻密な層として介
在し、成形品の通気率を低下づせると共に構造材とし、
成形品の強度を増大するものであり、電極板・電極用人
造黒鉛、 2000〜2300℃の温度でセミ黒鉛化し
冶金コークス、炭化率30%以上の芳香族炭素賀。 有機化合物であらかじめの含浸列理したのち同上温度で
セミ黒鉛化したコークス、或いは有機硅素化合物(例え
はポリカルボシラン等)を含浸したのち上記温度で黒鉛
化した7〜0.fr而のコックス等も用いられる。 無
煙炭も同様、成形品の通気率を低下させ、強度を増大す
るものであり、特に耐加炭性+aめるものである。 カーバイドは鱗状黒鉛の滑りやすさを低下させて成形物
をよシ緻密なものとし、ラミネーションの発生を防止す
るものであり、金属粉末(硅素、アルミニウム)は炭素
焼結剤であって黒鉛の炭素と結合してβ−8LC等を生
成し、成形品の機械的強度を高めると共に通気率を低下
させるのである。 上記の如く鱗状黒鉛にコークス系黒鉛等を混合した骨相
をニーダブレンダに投入し、切に、これにエチレングリ
コール等の@枦溶剤を加えて掬拌し、骨相の表面に有機
溶剤をコーティングすると共にクラックの隙間等にもこ
れを含iさせる。 有機溶剤は次に骨材に対して加える
フェノール樹MViを溶解してこnを情材に万逼なくコ
ーティングすると共に骨材との接着性を高めるものであ
って、その機能を有するものであれは、特に限定するも
のでは万いか、その機能は、少なくとも材料押オ1.l
物を成形する1では持続することか必要であや、又、気
孔率の低い成形品を得るために溶解したフェノール樹脂
の粘#を適宜なものとすることも必要である。 かけ かる点から有機溶剤沸点か150℃以上のものかハ 好ましく、例えは、エチレングリコール、ジエチレング
リコール、フロピレンクリコール等ノグリコール類か適
しているのである。 続いて、上記混合物に微粉細したフェノール樹脂及び、
又は高粘性のフェノール樹脂溶液を加えて、10〜10
0 g/rsn2の圧力を加えなから数分間乃至数十分
間押片1Tる。 フェノール樹脂は熱硬化性フェノール
樹脂を用いるのであるが、特にノボラック型炉可塑性フ
ェノール松脂とベンジリックエーテル型熱硬化性フェノ
ール位1脂とを95:5〜50 : 50の割合で混合
したものか好ましい。 ノボラック型勲可塑性フェノー
ル樹脂は塩酸、倣酸、シーウ酸などの酸性触媒下でホル
ムアルデヒドとフェノール類とのモル比か1以下で、フ
ェノール類とホルムアルデヒドとを反応して得られる通
常の固形の熱pJ塑塑性加脂ある。 またベンジリツク
エーテ/I−fr pH3硬化性フェノール樹脂はノボ
ラック型勲可塑性フェノール少脂に対して硬化剤として
作用する固形の熱硬化性樹脂で、フェノール類とホルム
アルデヒドとを亜鉛、マグネシウム、カルシウム、鉛等
の二価金属の酸化物、ボ酸化物、又は酢酸基の触媒下で
反応芒ぜて得ら扛るものでるる。 通常のフェノール樹脂は混和中の熱硬化を防ぐため混抄
する際の加か温度を70〜80℃以下に制限てれる。 
従って、フェノール樹脂の熔融粘#を一定以下にするこ
とかできないので・情材とフェノール樹脂とを弥混押ゼ
さるを得ないこととなる。 その結果・骨相料か破壊し
、原料構成が変化したり、フェノール1¥:l脂か均一
に分散しにくいのである。 これに対して上記したノボ
ラック型炉可塑性フェノール樹脂とペンジリツクエーテ
ノト型熱硬化性フェノール位1脂とから成るフェノール
樹脂は130℃以下では硬化、1     しないから
、それたけ温度を高くし、熔融粘度をイバくすることか
できるから、骨相粒子を破壊することなく、フェノール
枦力巨を骨材に均一に分散することか出来、且つ緻密な
成形をすることかできるのである。 ところで、有機溶剤としてエチレングリコールを使用し
、七の添加量をフェノール桓[脂の0.5〜0.1倍と
したときは、押庄1Tるにめたりて拐料を70〜130
℃程度に加熱するのが望ブしい。 即ちこの様にすると、フェノール樹脂が大形成形品を成
形するに適した粘度となり、骨材は所謂、カードハウス
構造を有する組織となシ、成形品の通気率か低下すると
共に強度か増加するのである。 セしてこの場合は骨材
KN機溶剤を含浸させる段階で骨材を130〜150℃
程度に加熱し、次いで混合物を他のニーダブレンダに移
してこれにフェノ〒ル樹月旨を加えて押オロするのかよ
い。 この様にすると存和中に混合物を外部から加熱さ
れることがないから、混合物は全て同一の温度となシ、
フェノ−ルミT脂が局部的に硬化か進む憂いがなく、均
餉な成形品か得られるのである0 同、有機溶剤にはフ
ェノール樹脂の一部をあらかじめ浴#Tるのも一法であ
る。 この様にすると骨相に有極浴剤を含浸芒ぜるに除して、
骨材に対してフェノール樹脂が欲人にコーティング芒れ
るので、フェノールai月しのバインダとしての幼果か
より確実に発輝さハるのである。 九、後に上記捗)■
材料を成形金型に充填し、250kg / an2以下
の圧力で圧純成形し、却下常法にケつで乾燥し、焼成す
る。 ここで本発明は250kg / crn2以下の圧力で
成形用NLなことか特徴であって、この圧力では黒鉛、
特にコークス糸焦釦か殆んど圧潰することがないから骨
材として黒鉛を加えることかol酢となり、成形品の強
度を一段と高め、気孔率を低下させるのである。 実施例 200 kg/am”の圧縮によって圧粉密度が2ρg
/cm3以上となり、薄片サイズか3〜0,3rrmの
天然たL状慰釦50都に粒度4.5〜0、l圃、真北i
 2.13以上、格子定数CO6,85A以下のコーク
ス糸人造黒鉛25部及び粒度か0.074rr+m以下
の炭化硅素細粒15部並びに金属硅素10部を容量30
01のニーダブレンダに投入し、史にこれにエチレング
リコール2.5sを加え、この骨材を100℃に加熱し
ながら10分間混練し、エチレングリコールを骨材に含
浸させ、次いでこれを他のニーダブレンダに移し換えて
、こむにノボラック型熱可塑性フェノール1tll&4
o部とベンジリックエーテル型熱硬化性フェノール樹脂
lOsとから成る粉末状フェノール樹脂18sを加え、
混合物に50 g/am2(7)圧力を加えなから30
分間存和した。 つついて内容積か013rn3の金型
に上記捏和物を充填し、200kg /crn2の圧力
で5分間加圧してブロックを成形した。 得ら′i″し
た成形体を窒素ガス黙囲気中で底面の但温酸化を防止し
つつ、250℃で乾燥したのち、還元雰囲気中で130
0℃壕で焼成したO 実施例2 央飾例1と同様の天然麟状排鉛5o部に粒度4.5\〜
0.1r1Tnの無煙炭25部、及び粒度が0.074
mm以下の炭化硅素細粒15部、並ひに金属姓累10部
を容量300ノのニーダブレンダに投入し、史にこれに
再チレングjlコール2.4 部、エチルアルコール1
,0部の混合沿にノホラツク型勲可塑性フェノール樹脂
30部とベンジリックエーテル型熱硬化性フェノール樹
脂20部とから成る粉末状フェノール樹脂3s′lr:
溶解した浴液を加え、こnら′fi:130℃に加勲し
なから10分間混練し、浴液を骨相に含有でぜると共に
浴抄中のエチルアルコールを蒸散させ、次いでこjを他
のニーダブレンダに移し換えて、これにノボラック湯熱
可塑性フェノール松脂35&1.とベンジリッタエーテ
ル型熱硬化性フェノール樹脂15部とから成る粉末状フ
ェノール樹脂15部を加え、混合物に50g/Cm2の
圧力を加えなから30分間捗9した。 続いて拌オL1物を内容積0.3m3の金型に充填し、
200kg/crn2の圧力で5分間加圧してブロック
を成形したC 得られた成形体を像累ガス雰囲気、  
  中で表面の低温酸化を防止しつ5250℃で乾燥し
たのち、還元り、囲気中で1300℃壕で焼成した〇得
られた成形品は第1衣に示し7v様に勲臥導率60kc
al/rr′lh℃以上、通気率400ミリタ刀トシー
以下であシ、曲は強度12.0kg/am2以上で加圧
溶銑透過率が殆どなく、耐加炭性のすぐれた高炉用炉材
として適したものであった。 同試験方法は、加圧浸透試験方法については50rrr
n%のサンプルlを真空脱気後、溶銑2に浸漬し、つい
で容器、3に気体4を圧入し5部kg/crrFに加圧
し、試験後、サンプル1をルシ出し、切断研磨し顕微@
観察より、面積割合がら溶銑浸入量を推測し、指数で示
した。 片面冷却法による耐溶銑試験法については冷却
水を通じた外筒5に不定形物6を介して、サンプル(0
,15rn3)7を構築し1550℃の溶銑8と接触保
持袋ぜる。 試験後、表面から溶損量を実測し、−7Cれよシ熔損容
積指数を求めた〇 以上詳述した様に本発明は先ず骨材に壱機溶剤を含浸さ
せ、然るのちこれにフェノ−J−樹脂を加えて二一ナイ
ングし、然して成形するのであり1この様に予備捏和を
することにより低圧成形を可能にしたのである。 そし
て、それ故にコークス系人造黒鉛の添加を可能とし、閘
(伝導率か高く、強度か強く、しかも通気率の殆んどな
い成品か得られるのである。 第    l    弄 ′−4、図面の簡単な説明 第1図は加圧浸透試験法を示T説明図−第2図(イ)は
片面冷却による劇溶銑性試験法を示T説明図、第2図(
ロ)は同上平面図である。 l;サンプル    2;熔 歓 3;容 器    4;気 体 5;外 筒     6;不定形物 7;サンプル    8;熔 銑 1そ2.」−
Figure 1 is an explanatory diagram showing the pressure penetration test method, Figure 2 (a) is an explanatory diagram showing the hot metal resistance test method by single-sided cooling, and Figure 2 (b) is a plan view of the same. 381 Procedural Amendment (Voluntary) May 15, 1980 Director General of the Patent Office Kazuo Orisugi 1 1 Indication 1981 Special Planner No. 91355 2 Title of Invention Process for producing carbon refractories for blast furnaces 3 Relationship with the case of the person making the amendment Patent applicant 4, agent address 7, 2nd floor, New Ximending Building, 2-7, Ximending, Shizuoka City;
The subject of the amendment is the full text of the KLL document 8, the content of the amendment is as per the separate label, the details are 1, title of the invention method for producing carbon refractories for blast furnaces 2, scope of claims organic solvent 3 in 100 parts of aggregate for carbon refractories. It is characterized by adding ~13 parts and mixing, coating the surface of the aggregate particles with this, then adding 10 to 40 parts of a powdered binder and mulching, followed by molding, drying, and firing. Manufacturing method for carbon refractories for blast furnaces. A method C for producing carbon refractories for blast furnaces according to claim 1, wherein the shoulder bonding material is a hardening phenol resin.The thermosetting phenolic resin is 50 parts of a novolac type plasticizing phenol resin and a benzylic ether type hardening resin. Method C for producing a carbon refractory for blast furnaces made from 3 to 50 parts of a curable phenolic resin.
Claim 1, 2, or 3, characterized in that the solvent is glycol. Method for producing carbon refractories for blast furnaces according to claim 1, paragraph 2, or 3. Rick ether type thermosetting phenolic resin 3~
Fenok MI l1iW I O (
1 part of the carbon refractory for blast furnaces according to claim 1, claim 2, or claim 3, wherein 1 part of glycol is dissolved in 10 to 35 parts of glycol. The aggregate was compressed at 200 kg/an to a compact density of 2. The flake size is Og/crn3 or more or 3 to 0.3
Field scale graphite 40-60s1 particle size 4.5-0.1rri
15 to 30 parts of Coconu-based artificial graphite of m, grain i0.074
10 to 20 parts of carbide below mtn and 5 parts of metal powder
Claim 1, characterized in that it consists of ~15 parts.
Term, 2nd term, 3rd ode, φth term, or Yan! Koukiki's method for manufacturing carbon refractories for blast furnaces〇Tuna-like graphite is hexagonal flaky graphite with an a-axis crystallite size or La1000A or more, and is anthracite fiber graphite that has been graphitized at temperatures above 2700℃.
The method for producing carbon refractories for blast furnaces according to claim 6, characterized in that the graphite is quiche graphite produced by precipitation of all-pole molten carbon, scale graphite made from natural sheaths, or green graphite roasted at 1500°C or higher. . Coke-based artificial graphite has a particle crushing strength of 200 kg/an2
Artificial graphite for electrolytic plates and electrodes having the above, 2000-23
Metallurgical coke semi-graphitized at a temperature of 00℃, or petroleum coke, pitch, coke, metallurgical coke with a carbonization rate of 3
After impregnating with 0% or more of an aromatic carbonaceous organic compound or an organic silicon compound such as polycarbosilane, 200()-
The coke is semi-graphitized at a temperature of 2300° C.'f: A method for producing carbon refractories for blast furnaces according to claim 6. What is organic solvent coated aggregate and organic binder?
8. The method for producing carbon refractories for blast furnaces according to claim 7, characterized in that W, NuT is produced under a pressure of ~100 g/cm2. 3. Detailed Description of the Invention The present invention relates to a method for producing carbon refractories for blast furnaces, and provides molded products that are particularly dense, have high compressive strength, have low air permeability, are excellent in hot metal corrosion resistance, and have high thermal conductivity. Carbon refractories for blast furnaces are carbon aggregates such as graphite and binders such as coal tar pitch and phenolic resin at 1υ~20%.
After blending to a certain degree, it is molded into a predetermined shape and fired, and the conventional one is mainly composed of anthracite, which has the least carburization property against the corrosive properties of hot metal at 1150 to 1600°C.
It is made by adding a small amount of graphite to this.
Although the aggregate itself has poor corrosion resistance against hot metal, the molded product has a high air permeability and a thermal conductivity of 10 to 15 kca.
As low as 4/rnh°C. The higher the ventilation rate, the more
Since the permeability is high, the corrosion resistance of the hot metal is low, and the similar the thermal conductivity, the higher the temperature of the working surface and the greater the wear and tear9, which ultimately reduces the service life of the blast furnace. There are disadvantages to shortening. In addition, as a means to operate a blast furnace economically, cooling water is passed through the furnace wall, and during high iron production, the amount of cooling water is increased to cool the furnace body and reduce the It is desirable to reduce the amount of cooling water and strengthen heat retention during the extraction process. That is, in order to carry out such operations, it is essential that the carbon refractory has high thermal conductivity. In view of the above points, FPNF of carbon refractories has been
E-conductivity Ti: Attempts have been made to increase the conductivity. By increasing the thermal conductivity of carbon refractories, cooling in the direction of the side walls at the bottom of the blast furnace is greatly strengthened, thereby moving the isotherm to the inside of the furnace and forming a permanent foam layer on the working surface. It is an attempt to do so. ' It is known that scaly graphite increases the thermal conductivity of carbon refractories, and hexagonal natural graphite, fj+, has a suitable caking side ( dextrin, lignin,
Phenol Tsukugetsuji, acrylic Ryugetsuji, furan Jugetsuji, tar, pitch, etc.) are added and kneaded, then molded.
Thermal conductivity is 100~150kc when fired at 00℃ or higher
It is known that the temperature of aj/rrh°C can be obtained. However, this method is not suitable for molded products or ordinary brick size (65 x 1
14 x 230 mm) is relatively uniform and has no lamination, and is suitable for use as a refractory material for sealing inside industrial furnaces, especially for large molded products used for the walls of blast furnace bottoms. If this is attempted, problems such as internal structure defects and anisotropy become abnormally large, resulting in ibis red beans, cracks, and lamination. In order to solve this problem, there have been a number of attempts to develop carbon refractories that have a strong structure that takes advantage of the characteristics of scaly graphite. For example, fine powder of scaly graphite (O1 containing 44 or less or 50%
074 rrm or less), blend tar into this, put the obtained powder into a rubber mold, and perform isostatic pressure isostatic molding at room temperature.
This is a method for obtaining a carbon fiber refractory (Japanese Unexamined Patent Publication No. 50-23
No. 410) 0 With this method, if the molded product becomes even slightly large, the rubber mold will separate from the molded product during the pressure reduction process during molding.
In the low pressure area of 1 cg/crrI2, molded products tend to crack due to poor deaeration, resulting in a markedly poor molding yield. In addition, by adding cemented carbide pitch powder to scaly graphite and suppressing it by adding a heptadheteral modified phenol resin liquid, carbon with high thermal conductivity can be produced by utilizing the rapid increase in viscosity during the molding process. A method for manufacturing refractories was also tried out (%Kokai No. 57-67011). In this case, lamination cracks due to springback that occur during molding can be prevented, but in the case of large-formed products, the In the temperature range of ~500℃, lamination is likely to occur due to abnormal volumetric expansion and contraction of the pitch.Therefore, even if measures are taken to prevent this, such as reducing the firing speed, the built-in lamination 2 cannot be completely eliminated. Alternatively, CE-2 grade scale graphite (flake size 3 to 0.3 mm) equivalent to JIS Tr:
Attempts have also been made to make carbon refractories by applying refractory raw materials to caking organic p powder (phenol soybean powder) and utilizing the card house alignment phenomenon through high-pressure molding at 800 kg/cm2. (No. 85461, 1973). In this method, when the compact becomes large, the bulk density of the powder before filling is extremely small (0.3 g/c [T+3), but on the other hand, the bulk density after high-pressure molding becomes 0.0 g/cm, so it can be compressed by 7 times. Otherwise, the degassing will not be done evenly.
Due to the amount of springback after demolding, the occurrence of thick lice cannot be prevented. All of the above methods produce molded products that are suitable for the purpose and have high conductivity when molding small test pieces, but when trying to mold large molded products that are suitable for practical use. Lamination, etc. will occur. The reason why such problems occur in the conventional method is due to an inappropriate method of mixing the butt joint material and the bone phase. In other words, the organic binder not only binds the aggregate particles together, but also carbonizes itself to form a part of the product. It is essential to have uniform placement, no voids, strong contact force with the aggregate particles, and similar porosity after carbonization.
Therefore, for this purpose, it is essential that the organic binder be uniformly coated on the surface of the aggregate particles. However, as mentioned above, in the past, the bone phase and the powdered organic binder (phenolic level 1 fat) were kneaded facing each other, so the mixture was macroinitially uniform, even when mixed, all the aggregate particles were mixed. Since the bottom surface cannot be coated with organic binder, the product refractory has -F: high porosity, and the loose organic binder and aggregate particles simply come into contact and are not exposed to sufficient attention. Since some irons do not exert enough force, they have low strength and corrosion resistance. However, in the past, attempts have also been made to use organic binders that are dissolved in an organic solvent in advance and made into a liquid instead of powdered organic binders. However, since organic solvents cause an increase in the permeability of refractory products, the amount of organic solvents used is naturally limited. Therefore, the liquid organic binder has an extremely high viscosity, which makes it difficult to mix it evenly with the aggregate. The present invention aims to solve the above-mentioned conventional problems and provide a method for manufacturing a fire-resistant VII that is uniform, dense, has similar air permeability, has good hardness and strength, and is excellent in hot iron corrosion resistance. It is something to do. Hereinafter, the present invention will be explained in detail.〇 As an example, the aggregate is mainly composed of graphite scales, and the organic binder is phenolic resin. Therefore, the aggregates are graphite scales, anthracite, and coke thread. It contains artificial graphite, carbide powder, metal powder, etc. Flaky graphite is a hexagonal flaky graphite with a crystallite size of G core a-axis k crystallite size or La1OOO^ or more, and a flake size of 3 to 0.3 mm, for example, anthracite-based flaky graphite graphitized at 2700°C or higher. , chirashi graphite by precipitation of metallic molten carbon,
These include raw graphite roasted at 1500°C or higher, naturally produced scaly graphite, etc. This scaly graphite itself has an extremely large natural redundant capacity, with a constraint of 200 kg/cm2. 90% of theoretical density (118~2, Og/possible 3
) or when the constraint is released, the springback property η
There is. In addition, molded products made using only scaly graphite as an aggregate are extremely superior in terms of conductivity, but apart from molding, graphite tends to slip on each other, so lamination is likely to occur, and the porosity is high, resulting in poor tensile strength and resistance. It cannot be used as a blast furnace material because of the pressure and red bean color. Coke-based graphite, anthracite, carbide powder, and metal powder are used to eliminate the drawbacks of scale-like graphite, and coke-based graphite fills the voids in the tortograph graphite skeleton and is interposed as a dense layer, allowing ventilation of the molded product. In addition to reducing the ratio, it can also be used as a structural material.
Artificial graphite for electrode plates and electrodes, metallurgical coke that is semi-graphitized at a temperature of 2,000 to 2,300°C, and aromatic carbon with a carbonization rate of 30% or more. Coke pre-impregnated with an organic compound and then semi-graphitized at the same temperature, or coke impregnated with an organic silicon compound (eg polycarbosilane, etc.) and graphitized at the above temperature. Fr. Cox et al. are also used. Anthracite similarly lowers the air permeability of the molded article and increases its strength, and particularly improves carburization resistance. Carbide reduces the slipperiness of graphite scales, making the molded product more dense and preventing lamination, and metal powders (silicon, aluminum) are carbon sintering agents that bind the carbon of graphite. When combined with β-8LC, it increases the mechanical strength of the molded product and lowers its air permeability. As mentioned above, the bone phase prepared by mixing scale graphite with coke-based graphite, etc. is put into a kneader blender, and then a @kneader solvent such as ethylene glycol is added thereto and stirred, and the surface of the bone phase is coated with an organic solvent. This is also included in the cracks, etc. The organic solvent is then used to dissolve the phenolic resin MVi added to the aggregate and coat the material with this material without fail, as well as to improve adhesion to the aggregate. Although there is no particular limitation, its functions are limited to at least 1. l
In step 1 of molding a product, it is necessary to ensure that it lasts long, and it is also necessary to adjust the viscosity of the melted phenol resin to an appropriate value in order to obtain a molded product with low porosity. From this point of view, it is preferable to use an organic solvent with a boiling point of 150° C. or higher, and for example, glycols such as ethylene glycol, diethylene glycol, and propylene glycol are suitable. Subsequently, finely powdered phenolic resin and
Or add a high viscosity phenol resin solution to 10 to 10
Without applying a pressure of 0 g/rsn2, hold the pressing piece 1T for several minutes to several tens of minutes. As the phenol resin, a thermosetting phenolic resin is used, and a mixture of novolak-type furnace-plastic phenolic pine resin and benzylic ether-type thermosetting phenolic resin in a ratio of 95:5 to 50:50 is particularly preferable. . Novolac-type plastic phenolic resin is a normal solid form of thermal pJ obtained by reacting phenol and formaldehyde at a molar ratio of formaldehyde and phenol of 1 or less under an acidic catalyst such as hydrochloric acid, imitative acid, or citric acid. There is plastic fatliquing. In addition, Benziliskuete/I-fr pH 3 curable phenolic resin is a solid thermosetting resin that acts as a curing agent for novolac-type plastic phenol fats, and is a solid thermosetting resin that acts as a curing agent for novolak-type plastic phenol fats. It is obtained by reacting divalent metal oxides such as divalent metal oxides, borate oxides, or acetic acid group catalysts. For ordinary phenolic resins, the heating temperature during mixing and paper-making is limited to 70 to 80°C or less in order to prevent heat curing during mixing.
Therefore, since it is impossible to keep the melt viscosity of the phenol resin below a certain level, it is unavoidable to mix the material and the phenol resin together. As a result, the bone phase material is destroyed, the raw material composition changes, and it is difficult to uniformly disperse the 1 yen:l fat of phenol. On the other hand, the above-mentioned phenolic resin, which is composed of a novolac-type furnace-plastic phenolic resin and a thermosetting phenolic resin, does not cure at temperatures below 130°C, so the melt viscosity is increased by raising the temperature that much. Since it is possible to increase the strength of the phenolic particles, it is possible to uniformly disperse the phenol resiliency in the aggregate without destroying the bone phase particles, and it is also possible to perform dense molding. By the way, when ethylene glycol is used as an organic solvent and the amount of phenol added is 0.5 to 0.1 times the amount of phenol, the amount of glycol added is usually 70 to 130.
It is desirable to heat it to about ℃. In other words, by doing this, the phenol resin has a viscosity suitable for molding large molded products, the aggregate has a so-called card house structure, and the air permeability of the molded product decreases while its strength increases. It is. In this case, the aggregate should be heated to 130 to 150℃ at the stage of impregnating it with the aggregate KN mechanical solvent.
Heat it to a moderate temperature, then transfer the mixture to another kneader blender, add the phenol to it, and press it. In this way, the mixture will not be heated from the outside while it is being stored, so all the mixtures will be at the same temperature.
There is no need to worry about the phenol resin curing locally, and you can obtain a uniform molded product. Similarly, it is also a method to pre-immerse a portion of the phenol resin in an organic solvent. . In this way, the polar bath agent is impregnated into the bone phase,
Since the phenolic resin is coated on the aggregate, the young fruit shines more reliably than the phenol resin used as a binder. 9. Later on the above)■
The material is filled into a mold, compacted at a pressure of 250 kg/an2 or less, dried in a kettle and fired in a conventional manner. Here, the present invention is characterized by forming NL at a pressure of 250 kg/crn2 or less, and at this pressure, graphite,
In particular, since the coke yarn charred button is almost never crushed, the addition of graphite or vinegar as an aggregate further increases the strength of the molded product and lowers the porosity. Example 2 The compacted powder density was 2ρg by compression of 200 kg/am”
/cm3 or more, and 50 natural L-shaped pieces of flake size or 3 to 0.3 rrm, grain size 4.5 to 0, 1 field, due north i
2.13 or more, coke yarn with a lattice constant of CO6.85A or less, 25 parts of artificial graphite, 15 parts of silicon carbide fine particles with a particle size of 0.074rr+m or less, and 10 parts of metallic silicon in a volume of 30
01 kneader blender, 2.5 seconds of ethylene glycol was added thereto, and the aggregate was kneaded for 10 minutes while heating to 100°C to impregnate the aggregate with ethylene glycol. Transfer to a blender and add 1 tll of novolac type thermoplastic phenol & 4
Adding 18s of a powdered phenolic resin consisting of part o and a benzylic ether type thermosetting phenolic resin lOs,
Do not apply 50 g/am2 (7) pressure to the mixture.
He survived for a minute. The above-mentioned kneaded material was filled into a mold having an internal volume of 013rn3, and a block was molded by pressing at a pressure of 200 kg/crn2 for 5 minutes. The obtained molded body was dried at 250°C in a nitrogen gas atmosphere while preventing oxidation of the bottom surface, and then dried at 130°C in a reducing atmosphere.
O fired in a trench at 0°C Example 2 50 parts of natural lint-like waste lead similar to the center decoration example 1 with a particle size of 4.5~
25 parts anthracite of 0.1r1Tn and particle size 0.074
15 parts of silicon carbide fine particles of less than mm in size and 10 parts of metal powder were placed in a kneader blender with a capacity of 300 kg, and then re-chilled with 2.4 parts of chlorine and 1 part of ethyl alcohol.
, 0 parts of powdered phenolic resin 3s'lr consisting of 30 parts of Noholak type plastic phenolic resin and 20 parts of benzylic ether type thermosetting phenolic resin:
Add the dissolved bath solution, heat to 130°C, and knead for 10 minutes to incorporate the bath solution into the bone phase and evaporate the ethyl alcohol in the bath solution. Transfer to another kneader blender and add novolak water thermoplastic phenolic pine resin 35 & 1. 15 parts of a powdered phenolic resin consisting of and 15 parts of a benzyritta ether type thermosetting phenolic resin were added, and the mixture was incubated for 30 minutes without applying a pressure of 50 g/cm2. Next, fill a mold with an internal volume of 0.3 m3 with L1 stirring material.
A block was molded by applying a pressure of 200 kg/crn2 for 5 minutes.
After drying at 5250℃ while preventing low-temperature oxidation on the surface, it was reduced and fired in an enclosed atmosphere at 1300℃.
Al/rr'lh°C or above, air permeability below 400mm2, strength of 12.0kg/am2 or above, almost no pressurized hot metal permeability, and excellent carburization resistance as blast furnace material. It was suitable. The test method is 50 rrr for the pressurized penetration test method.
After vacuum degassing, sample 1 of n% was immersed in hot metal 2, then gas 4 was pressurized into the container 3, and the pressure was increased to 5 parts kg/crrF. After the test, sample 1 was taken out, cut and polished, and microscopy@
From the observation, the amount of hot metal infiltration was estimated from the area ratio and expressed as an index. Regarding the hot metal resistance test method using the single-sided cooling method, a sample (0
, 15rn3) 7 was constructed and a holding bag was placed in contact with 1550°C hot metal 8. After the test, the amount of erosion loss was actually measured from the surface, and the -7C erosion loss volume index was determined. Pheno-J-resin was added, subjected to 21 kneading, and then molded. 1 By performing preliminary kneading in this manner, low-pressure molding was made possible. Therefore, it is possible to add coke-based artificial graphite, and it is possible to obtain a product with high conductivity, high strength, and almost no air permeability. Explanation Figure 1 shows the pressurized penetration test method - Figure 2 (A) shows the strong hot metal test method by cooling on one side.
B) is a plan view of the same as above. l; Sample 2; Melt 3; Container 4; Gas 5; Outer tube 6; Irregular object 7; Sample 8; Melt pig iron 1 and 2. ”−

Claims (1)

【特許請求の範囲】 鱗状黒鉛、人造黒鉛若しくは無煙炭又はこれらの混合物
及びその他の添加物から成る骨材に有機溶剤又はフェノ
ール樹脂溶液を加えて混練し、有機溶剤又はフェノール
樹脂溶液を骨材に含浸させ、次いで上記混合物にフェノ
ール樹脂を加えて捏和し、更に上記捏和物を成形金型に
充填して50〜500)cg/2−の圧力で0.5〜2
0分間保持して成形し、得られた成形物を不活性ガス雰
囲気中で表面の低温酸化を抑制しつ\、150〜300
℃で乾燥したのち、還元雰囲気中で1000〜1500
℃に加熱し、焼成することを特徴とする高炉用カーボン
耐火物の製法。 200 kg肩の圧縮によって圧粉密度が2.0363
以上とがる薄片サイズが3〜0.3皿の鱗状黒鉛40〜
60部、粒度4.5〜0、■副のコークヌ系人造黒鉛1
5〜30部、粒度0,074rrm以下のカー3411
0〜20部並びに金属粉末5〜15部から成る骨材にフ
ェノール樹脂O〜5部ヲ溶解した有機溶剤5〜15部を
加えて混練して有機溶剤を骨材に含浸させ、次いで上記
混合物にフェノール樹脂10〜20部を加え、ニーダブ
レンダによ#)LO〜100g/cmの圧力下で捏和す
るこ七を特徴とする特許請求の範囲第7項記載の高炉用
カーボン耐火物の製法。 鱗状黒鉛はa軸の結晶子サイズがLa1000六以上の
六方晶形の薄片状の鱗状黒鉛であシ、2700℃以上で
黒鉛化した無煙炭系鱗状黒鉛、金属熔解炭素の析出によ
るキラシー黒鉛、天然産精製鱗状黒鉛又は1500℃以
上で焙焼した生状黒鉛であることを特徴とする特FF請
求の範囲第2項記載の高炉用カーボン耐火物の製法O コークス系人造黒鉛は粒子圧壊強度200kg/c、m
”以上を有する電解板・電極用人造黒鉛、 2000〜
2300℃の温度でセミ黒鉛化した冶金コークス、又ハ
石油コークス、ピッチ、コークス、冶金コークスを炭化
率30%以上の芳香族炭素質有機化合物若しくはポリ力
A・ホンラン等の有機硅素化合物で含浸したのち200
0〜23oo℃の温度でセミ黒鉛化したコークスである
ことを特徴とする特許請求の範囲第2項記載の高炉用カ
ーボン耐火物の製法。
[Claims] An organic solvent or a phenolic resin solution is added to an aggregate made of scaly graphite, artificial graphite, anthracite, or a mixture thereof and other additives and kneaded, and the aggregate is impregnated with the organic solvent or phenolic resin solution. Next, a phenol resin is added to the above mixture and kneaded, and the kneaded product is further filled into a mold and heated at a pressure of 50 to 500) cg/2.
The obtained molded product was held for 0 minutes and molded, and the molded product was heated to 150 to 300% while suppressing low-temperature oxidation of the surface in an inert gas atmosphere
After drying at 1000-1500°C in a reducing atmosphere.
A method for producing carbon refractories for blast furnaces, which is characterized by heating to ℃ and firing. The compacted powder density is 2.0363 due to 200 kg shoulder compression.
Scale graphite with a sharp flake size of 3 to 0.3 plates 40 to 40
60 parts, particle size 4.5-0, ■ 1 sub-Corknu-based artificial graphite
Car 3411 with a particle size of 5 to 30 parts and a particle size of 0,074 rrm or less
Add 5 to 15 parts of an organic solvent in which 0 to 5 parts of phenolic resin is dissolved to an aggregate consisting of 0 to 20 parts and 5 to 15 parts of metal powder, knead to impregnate the aggregate with the organic solvent, and then add to the above mixture. 8. The method for producing carbon refractories for blast furnaces according to claim 7, which comprises adding 10 to 20 parts of a phenol resin and kneading the mixture in a kneader blender under a pressure of LO to 100 g/cm. Scale graphite is hexagonal flaky scale graphite with an a-axis crystallite size of La10006 or more, anthracite scale graphite graphitized at 2700°C or higher, chirashi graphite produced by precipitation of metallic molten carbon, and naturally produced refined graphite. Method O for producing carbon refractories for blast furnaces according to claim 2, characterized in that the carbon refractories for blast furnaces are scaly graphite or green graphite roasted at 1500°C or higher.The coke-based artificial graphite has a particle crushing strength of 200 kg/c, m
``Artificial graphite for electrolytic plates and electrodes having 2000~
Metallurgical coke semi-graphitized at a temperature of 2300°C, petroleum coke, pitch, coke, metallurgical coke impregnated with an aromatic carbonaceous organic compound with a carbonization rate of 30% or more or an organosilicon compound such as Polycrystalline A or Hongran. 200 later
3. The method for producing a carbon refractory for blast furnaces according to claim 2, wherein the coke is semi-graphitized at a temperature of 0 to 23 oo<0>C.
JP58091355A 1983-05-24 1983-05-24 Manufacture of carbon refractories for blast furnace Granted JPS59217672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58091355A JPS59217672A (en) 1983-05-24 1983-05-24 Manufacture of carbon refractories for blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58091355A JPS59217672A (en) 1983-05-24 1983-05-24 Manufacture of carbon refractories for blast furnace

Publications (2)

Publication Number Publication Date
JPS59217672A true JPS59217672A (en) 1984-12-07
JPS613299B2 JPS613299B2 (en) 1986-01-31

Family

ID=14024077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58091355A Granted JPS59217672A (en) 1983-05-24 1983-05-24 Manufacture of carbon refractories for blast furnace

Country Status (1)

Country Link
JP (1) JPS59217672A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030595A (en) * 1989-07-18 1991-07-09 Clayburn Industries, Ltd. Carbon bake refractories
EP0703198A3 (en) * 1994-09-14 1996-09-18 Nippon Steel Corp Carbon refractory for blast furnace and method for manufacturing such carbon refractory
EP2527773A1 (en) * 2011-05-27 2012-11-28 SGL Carbon SE Refractory for an inner lining of a blast furnace, obtained by semi-graphitization of a mixture comprising C and Si.
JP2013533194A (en) * 2010-05-31 2013-08-22 エスゲーエル カーボン ソシエタス ヨーロピア Carbon body, method for producing carbon body and use thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030595A (en) * 1989-07-18 1991-07-09 Clayburn Industries, Ltd. Carbon bake refractories
EP0703198A3 (en) * 1994-09-14 1996-09-18 Nippon Steel Corp Carbon refractory for blast furnace and method for manufacturing such carbon refractory
JP2013533194A (en) * 2010-05-31 2013-08-22 エスゲーエル カーボン ソシエタス ヨーロピア Carbon body, method for producing carbon body and use thereof
EP2527773A1 (en) * 2011-05-27 2012-11-28 SGL Carbon SE Refractory for an inner lining of a blast furnace, obtained by semi-graphitization of a mixture comprising C and Si.
WO2012163597A1 (en) * 2011-05-27 2012-12-06 Sgl Carbon Se Refractory for an inner lining of a blast furnace, obtained by semi-graphitization of a mixture comprising c and si
US9534845B2 (en) 2011-05-27 2017-01-03 Sgl Carbon Se Method for manufacturing a refractory for an inner lining of a blast furnace and blast furnace having the inner lining

Also Published As

Publication number Publication date
JPS613299B2 (en) 1986-01-31

Similar Documents

Publication Publication Date Title
CN101544851B (en) Metallic bond hollow sphere-shaped super-hard compound material and manufacturing method thereof
CN105130438B (en) A kind of method that boron carbide ceramics composite is prepared based on reaction-sintered
CN105541331B (en) A kind of Ti3siC2the preparation method of/SiC FGM
CN110590390A (en) Carbon fiber graphite crucible for metallurgical casting furnace and preparation method thereof
CN101665251B (en) Preparing method of isotropic graphite
CN101274854B (en) Fireproof carbon-bonded magnesia brick and method for the production thereof
CN101328070A (en) Forsterite-C-contained MgO-SiC-C fire-resistant material and preparation thereof
JPS6136167A (en) Manufacture of injection-molding refractory products and composition
CN100369865C (en) Periclase-silicon carbide-carbon composite materials and method for preparing same
CN108585863B (en) High-strength ultramicropore electrically-calcined coal-based carbon brick and preparation method thereof
JPS59217672A (en) Manufacture of carbon refractories for blast furnace
JPS62275063A (en) Manufacture of silicon carbide-aluminum nitride sintered product
CN109133926B (en) Sealing graphite and preparation method thereof
CN115057692B (en) Aluminum-carbon sliding brick added with ferrotitanium alloy and production method thereof
CN111269021B (en) Copper-iron-carbon composite sliding plate and preparation method and application thereof
CN102603335B (en) High-temperate and high-strength carbon daub
CN101955360B (en) Blast-furnace high-alumina press-in material and application thereof
US5576254A (en) Carbon refractory for blast furnace and method for manufacturing such carbon refractory
JPS6325274A (en) Silicon carbide powder mixture and sintered ceramic product
KR20100056164A (en) Method for manufacturing tic alloy by reaction bonded sintering
KR101865571B1 (en) Ceramic joining material for repairing carbonaceous block
CN110438382A (en) High thermal conductivity boric diamond/carbon/carbon-copper composite material preparation method
JPS61122110A (en) Production of high-density carbon material
JPH08169766A (en) Starting material for refractory, binder for refractory and production of refractory
CN115572104B (en) In-situ generated fiber reinforced artificial stone and preparation method thereof