JPS59216480A - Thermoelectric generator with compressed air - Google Patents

Thermoelectric generator with compressed air

Info

Publication number
JPS59216480A
JPS59216480A JP58088821A JP8882183A JPS59216480A JP S59216480 A JPS59216480 A JP S59216480A JP 58088821 A JP58088821 A JP 58088821A JP 8882183 A JP8882183 A JP 8882183A JP S59216480 A JPS59216480 A JP S59216480A
Authority
JP
Japan
Prior art keywords
temperature air
air
high temperature
low
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58088821A
Other languages
Japanese (ja)
Other versions
JPH0152997B2 (en
Inventor
Osamu Miyata
理 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP58088821A priority Critical patent/JPS59216480A/en
Publication of JPS59216480A publication Critical patent/JPS59216480A/en
Publication of JPH0152997B2 publication Critical patent/JPH0152997B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • F25B9/04Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect using vortex effect

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

PURPOSE:To enable to generate a thermoelectricity by separating compressed air into high temperature air and low temperature air via a whirl tube and introducing the airs to both side surfaces of a thermoelectric generating element, thereby increasing the temperature difference without using a heat absorber and a heat radiator. CONSTITUTION:When compresseed air is injected from an inlet 19 into a whirl tube 14, a vortex occurs in a vortex tube 15. Low temperature air is collected from a low temperature air intake port 21 through a low temperature air passage 27 into a cooling vessel 7, and high temperature air is collected from a high temperature air intake port 25 through a high temperature air passage 28 into a heating vessel 9. A thermoelectric generating element 1 is respectively cooled and heated by the low and high temperature airs, a temperature difference is formed at both side end surfaces of the element 1, thereby generating at the element 1.

Description

【発明の詳細な説明】 本発明は圧縮空気の熱を利用して発電する熱電発電装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermoelectric power generation device that generates electricity using the heat of compressed air.

従来より、げ−ベック効果を゛利用した熱雷発電が知ら
れており、その一つとして、特開昭52−72020号
公報に開示の熱雷発電装置がある。
Thermal lightning power generation using the Gebeck effect has been known for some time, and one example is a thermal lightning power generation device disclosed in Japanese Patent Application Laid-open No. 72020/1983.

この発電装置はエンジン等の排気熱を利用し、たもので
あり、以下第1図に基づいて説明する。
This power generation device utilizes exhaust heat from an engine, etc., and will be explained below based on FIG. 1.

発電装置31は、エンジン、燃焼炉等の排気筒32を有
し、排気筒32の吐出口33の近傍の外周面には、外周
面に冷却フィン34を固着した熱電発電素子35を固着
し、内周面には吸熱フィン36を固着する。排気筒32
の外周に空間部37を介して同軸的に排気筒32の吐出
口33より下流域部分まで伸延された外筒38を設ける
The power generation device 31 has an exhaust stack 32 such as an engine or a combustion furnace, and a thermoelectric power generating element 35 having cooling fins 34 fixed to the outer circumferential surface is fixed to the outer peripheral surface of the exhaust pipe 32 near the discharge port 33. A heat absorbing fin 36 is fixed to the inner peripheral surface. Exhaust pipe 32
An outer cylinder 38 is provided on the outer periphery of the exhaust pipe 32, coaxially extending through a space 37 to a downstream region from the discharge port 33 of the exhaust pipe 32.

エンジン等から排出された燃焼済の高温ガスは排気筒3
2内を流下し、吸熱フィン36により効率良く熱雷発電
素子の内側面を加熱リ−る。一方このガスは排気筒32
を出ると外筒38内に入り、ここに於いてベンチュリ効
果により外筒38と排気筒32の間の空間部37に外気
を誘引し、冷却フィン34により効率良く熱電発電素子
35の外側面を冷却する。従って、熱雷発電素子35の
一面を高温ガスにより加熱し、他面を外気により冷却す
るので、この素子35に温度差が生じ発電する。
The burned high-temperature gas discharged from the engine etc. is stored in the exhaust pipe 3.
The heat-absorbing fins 36 efficiently heat the inner surface of the thermal lightning power generating element. On the other hand, this gas is
When it exits, it enters the outer cylinder 38, where outside air is drawn into the space 37 between the outer cylinder 38 and the exhaust pipe 32 by the venturi effect, and the cooling fins 34 efficiently cover the outer surface of the thermoelectric generating element 35. Cooling. Therefore, one side of the thermal lightning power generating element 35 is heated by the high temperature gas and the other side is cooled by the outside air, so a temperature difference occurs in the element 35 and power is generated.

しかしながら、熱雷発電に於いては熱雷発電素子の効率
を大きくづる為に高温側と低温側の温度差をできるだ番
プ人きくする必要がある。
However, in thermal lightning power generation, it is necessary to maximize the temperature difference between the high temperature side and the low temperature side in order to increase the efficiency of the thermal lightning power generation element.

上記開示の装置では、温度差は最大で高温ガス温度マイ
ナス外気湿度で゛あり、温度差をより大きくする為には
、外気より低温の流体等の冷却手段を必要とづる。
In the device disclosed above, the maximum temperature difference is the temperature of the hot gas minus the humidity of the outside air, and in order to increase the temperature difference, a cooling means such as a fluid having a lower temperature than the outside air is required.

本発明の技術的課題は、常温の気体を加熱、冷却手段と
して用い、一種の流体で温度差を大きくできる熱電発電
装置を得ることである。
The technical problem of the present invention is to obtain a thermoelectric power generation device that uses room temperature gas as a heating and cooling means and can increase the temperature difference with a type of fluid.

本発明の解決手段は次の通りである。The solution of the present invention is as follows.

熱雷発電素子と、圧縮空気を高温空気と低温空気に分離
する渦流管と、熱雷発電素子の一方の面に渦流慎の高温
空気を導く手段と、他方の面に渦流管の低温空気を導く
手段とから構成する。
A thermal lightning power generating element, a vortex tube that separates compressed air into high temperature air and low temperature air, means for guiding the high temperature air of the vortex to one side of the thermal lightning generating element, and a means for guiding the low temperature air of the vortex tube to the other side. It consists of a means for guiding.

渦流管は管内壁接線方向に圧縮空気を噴射りると、空気
は渦流をなして管内を旋回し、高エネルギーの熱い空気
分子は管内周辺に集まり、低エネルギーの冷たい空気分
子は管内中央部に集まり2層に別れるので、常温の空気
を冷熱2様の空気に変成して分離補集できるものである
In a vortex tube, when compressed air is injected tangentially to the inner wall of the tube, the air forms a vortex and swirls inside the tube, causing high-energy hot air molecules to gather around the tube, and low-energy cold air molecules to the center of the tube. Since the air gathers and separates into two layers, room temperature air can be transformed into cold and hot air, which can be separated and collected.

この渦流管で分離した高温空気で熱雷発電素子の一方の
面を加熱し、低温空気で他方の面を冷却し、常温の圧縮
空気を加熱、冷却手段として用いることにより、温度差
の大きな熱雷発電装置を1りることができる。
The high-temperature air separated by this vortex tube heats one side of the thermal lightning power generation element, and the low-temperature air cools the other side. By using room-temperature compressed air as a heating and cooling means, it is possible to generate heat with a large temperature difference. Can carry one lightning generator.

第2.3図に示ず熱電発電装置の実施例を説明する。熱
電発電素子1はP型及びN型の半導体2.2−の一対を
最小単位として、多数個、低温接合板3及び高温接合板
4により電気的に接続し、接合板3.4に電気絶縁板5
.5′を取り(=Jけだものである。この熱電発電素子
1の絶縁板5に冷却室6を形成する冷却容器7を固着し
、絶縁板5−に加熱室8を形成する加熱容器9を固着す
る。冷却容器7は入口10.出口11を有し、加熱容器
9は入口12、出口13を右する。渦流管14は渦管1
5の一端に隔壁板部材16を介して低温空気取出部材1
7を取りイ]け、他端に高温空気取出部材18を取りイ
]りたものである。低温空気取出部材17は圧縮空気の
導入口19を有し、導入口19は低温空気取出部材17
内周壁と隔壁板部材16の外周壁との間に形成した環状
空間20に開口づ−る。隔壁板部材16は中火に低湿空
気取出口21を有し、低温空気取出部材17の接続口2
2と渦管15内とを連通J゛る。また隔壁板部U16は
渦慎15に当接づ−る端面に複数の溝23を有し、)薫
23は環状空間20から渦管15内壁の接線方向に聞1
」する噴射通路を形成覆る。高温空気取出部材18と渦
管15の間に通路24を形成し、高温空気取出口25を
通しで接続口26と渦管15内どを連通りる。渦流管1
4の接続[122を低温空気通路27を通して冷却容器
7の冷却室6内に連通し、接続[126を高温空気通路
28を通して加熱容器9の加熱室8内に連通ずる。
An embodiment of the thermoelectric power generation device not shown in FIG. 2.3 will be described. The thermoelectric power generating element 1 consists of a plurality of P-type and N-type semiconductors 2.2- as the minimum unit, electrically connected by a low-temperature bonding plate 3 and a high-temperature bonding plate 4, and electrically insulated by a bonding plate 3.4. Board 5
.. 5' is taken (=J beast.A cooling container 7 forming a cooling chamber 6 is fixed to the insulating plate 5 of this thermoelectric generation element 1, and a heating container 9 forming a heating chamber 8 to the insulating plate 5- is fixed. The cooling vessel 7 has an inlet 10 and an outlet 11, and the heating vessel 9 has an inlet 12 and an outlet 13.The vortex tube 14 has an inlet 10 and an outlet 11.
Low temperature air extraction member 1 is connected to one end of 5 via a partition wall plate member 16.
7 is removed, and a high temperature air extraction member 18 is provided at the other end. The low temperature air extraction member 17 has a compressed air inlet 19, and the inlet 19 is connected to the low temperature air extraction member 17.
It opens into an annular space 20 formed between the inner peripheral wall and the outer peripheral wall of the partition plate member 16. The partition plate member 16 has a low humidity air outlet 21 for medium heat, and a connection port 2 of the low temperature air outlet member 17.
2 and the inside of the vortex tube 15 are communicated with each other. The partition wall plate U16 has a plurality of grooves 23 on the end surface that comes into contact with the vortex tube 15, and the grooves 23 extend from the annular space 20 to the tangential direction of the inner wall of the vortex tube 15.
Form and cover the injection passage. A passage 24 is formed between the high temperature air extraction member 18 and the vortex tube 15, and communicates between the connection port 26 and the inside of the vortex tube 15 through the high temperature air extraction port 25. Vortex tube 1
The connection 122 of 4 is communicated through the cold air passage 27 into the cooling chamber 6 of the cooling vessel 7, and the connection 126 is communicated through the hot air passage 28 into the heating chamber 8 of the heating vessel 9.

圧縮空気を導入[119から渦流管14内に噴射さける
と、渦管15内には渦流が生じる。低温空気は低温空気
取出口21から低温空気通路27を通って冷N3容器7
内に集められ、高温空気は高温空気取出口25から高温
空気通路28を通って加熱容器9内に集められる。この
低温空気と高温空気により熱雷発電素子が冷却加熱され
、素子1の両端面に温度差を形成し、発電する。
When compressed air is introduced and injected into the vortex tube 14, a vortex is generated in the vortex tube 15. The low-temperature air passes through the low-temperature air passage 27 from the low-temperature air outlet 21 to the cold N3 container 7.
The hot air is collected in the heating container 9 from the hot air outlet 25 through the hot air passage 28. The thermal lightning power generating element is cooled and heated by the low temperature air and high temperature air, creating a temperature difference between both end faces of the element 1, and generating electricity.

本発明は次の様な特有の効果を奏J−る。圧縮空気は動
力源として古くから工場等で使用されており、常温の圧
縮空気を渦流管で高温空気と低温空気に分lll11′
rJ−ることにより、圧縮空気を使用している所であれ
ば簡単に電)J @ t%ることかできる。常温の圧縮
空気を渦流管により高温空気と低温空気に分離するので
、従来の如く高温気体と外気との湿度差による発電に於
い゛C温度差を大きくりる為に吸熱器や放熱器等を使用
しなくても大きな温度差を得ることができる。
The present invention provides the following unique effects. Compressed air has been used as a power source in factories for a long time, and compressed air at room temperature is divided into high-temperature air and low-temperature air using a vortex tube.
By using rJ-, you can easily generate electricity in any place where compressed air is used. Compressed air at room temperature is separated into high-temperature air and low-temperature air using a vortex tube, so unlike conventional power generation due to the humidity difference between high-temperature gas and outside air, heat absorbers and radiators are used to increase the temperature difference. A large temperature difference can be obtained without using.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の熱雷発電装置を示J断面図であり、第2
図は本発明の熱雷発電装置の一実施例を示す断面図であ
り、第3図は第2図のΔ−A線断面図である。 1・・・熱雷発電素子、 6・・・冷却室、8・・・加
熱室、 14・・・渦流管、 19・・・噴射口、21
・・・低温空気取出口、 25・・・高温空気取出口、
27・・・低温空気通路、 28高温空気通路特許出願
Figure 1 is a cross-sectional view of a conventional thermal lightning power generation device.
The figure is a sectional view showing one embodiment of the thermal lightning power generation device of the present invention, and FIG. 3 is a sectional view taken along the line Δ-A in FIG. 2. DESCRIPTION OF SYMBOLS 1... Thermal lightning power generation element, 6... Cooling chamber, 8... Heating chamber, 14... Eddy current tube, 19... Injection port, 21
...Low temperature air outlet, 25...High temperature air outlet,
27...Low temperature air passage, 28 High temperature air passage Patent applicant

Claims (1)

【特許請求の範囲】[Claims] 熱雷発電素子と、圧縮空気を高温空気と低湿空気に分離
する渦流管と、熱電発電素子の一方の面に渦流管の高温
空気を導く手段と、他方の面に渦流管の低温空気を導く
手段とから成る圧縮空気による熱雷発電装置。
A thermoelectric power generation element, a vortex tube that separates compressed air into high temperature air and low humidity air, means for guiding the high temperature air of the vortex tube to one side of the thermoelectric power generation element, and guiding low temperature air of the vortex tube to the other side. A compressed air thermal lightning generator comprising means.
JP58088821A 1983-05-19 1983-05-19 Thermoelectric generator with compressed air Granted JPS59216480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58088821A JPS59216480A (en) 1983-05-19 1983-05-19 Thermoelectric generator with compressed air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58088821A JPS59216480A (en) 1983-05-19 1983-05-19 Thermoelectric generator with compressed air

Publications (2)

Publication Number Publication Date
JPS59216480A true JPS59216480A (en) 1984-12-06
JPH0152997B2 JPH0152997B2 (en) 1989-11-10

Family

ID=13953585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58088821A Granted JPS59216480A (en) 1983-05-19 1983-05-19 Thermoelectric generator with compressed air

Country Status (1)

Country Link
JP (1) JPS59216480A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008020918A1 (en) * 2006-08-07 2008-02-21 Illinois Tool Works Inc. Electric power generator
JP2009296686A (en) * 2008-06-02 2009-12-17 Honda Motor Co Ltd Portable power generator
WO2015013090A2 (en) * 2013-07-24 2015-01-29 Saudi Arabian Oil Company System and method for harvesting energy down-hole from an isothermal segment of a wellbore
EP3032190A1 (en) * 2014-12-02 2016-06-15 Hyundai Motor Company Thermoelectric power generation system for vehicle
GB2589060A (en) * 2019-09-17 2021-05-26 Oxford Flow Ltd Differential pressure power generator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008020918A1 (en) * 2006-08-07 2008-02-21 Illinois Tool Works Inc. Electric power generator
US8134066B2 (en) 2006-08-07 2012-03-13 Illinois Tool Works Inc. Electric power generator
JP2009296686A (en) * 2008-06-02 2009-12-17 Honda Motor Co Ltd Portable power generator
WO2015013090A2 (en) * 2013-07-24 2015-01-29 Saudi Arabian Oil Company System and method for harvesting energy down-hole from an isothermal segment of a wellbore
WO2015013090A3 (en) * 2013-07-24 2015-09-17 Saudi Arabian Oil Company System and method for harvesting energy down-hole from an isothermal segment of a wellbore
US9741916B2 (en) 2013-07-24 2017-08-22 Saudi Arabian Oil Company System and method for harvesting energy down-hole from an isothermal segment of a wellbore
US10115880B2 (en) 2013-07-24 2018-10-30 Saudi Arabian Oil Company System and method for harvesting energy down-hole from an isothermal segment of a wellbore
EP3032190A1 (en) * 2014-12-02 2016-06-15 Hyundai Motor Company Thermoelectric power generation system for vehicle
GB2589060A (en) * 2019-09-17 2021-05-26 Oxford Flow Ltd Differential pressure power generator
GB2589060B (en) * 2019-09-17 2022-12-07 Ofip Ltd Differential pressure power generator

Also Published As

Publication number Publication date
JPH0152997B2 (en) 1989-11-10

Similar Documents

Publication Publication Date Title
US4639542A (en) Modular thermoelectric conversion system
KR101327732B1 (en) Thermoelectric generator of vehicle
EP2811141B1 (en) Latent heat exchanger cover provided with cooling line
CN101882898A (en) Low temperature smoke temperature difference generator
CN109741848A (en) A kind of static heat transfer generating integration device and method based on high-temperature heat pipe heat transfer
JP2009542952A (en) Home heat and power supply system
JPS59216480A (en) Thermoelectric generator with compressed air
JP2004140202A (en) Thermoelectric conversion system
JP6018787B2 (en) Automotive thermoelectric generator
JP6350297B2 (en) Thermoelectric generator
JPS63262075A (en) Discharge gas heat thermoelectric conversion generator
CN205945554U (en) Temperature difference power generation devices of heat energy cascade utilization type
CN104578977A (en) Automobile exhaust thermoelectricity generating set
RU197402U1 (en) Compact boiler superheater
EP1623163A1 (en) A heating arrangement
CN207514873U (en) A kind of hot air type solid-vapor stove
JPH02303381A (en) Cogeneration facility
SU672452A1 (en) Swirl tube
RU190585U1 (en) THERMOELECTRIC GENERATOR MODULE
KR101327731B1 (en) Thermoelectric generator of vehicle
CN211780995U (en) Efficient heating device with steam modules connected in series
CN212901586U (en) Parallel-connection Stirling engine tubular air preheater
KR101189953B1 (en) Rapid heating apparatus
JPS61218072A (en) Thermal power generating equipment
JPH062539A (en) Exhaust gas generating set