JPH0152997B2 - - Google Patents

Info

Publication number
JPH0152997B2
JPH0152997B2 JP58088821A JP8882183A JPH0152997B2 JP H0152997 B2 JPH0152997 B2 JP H0152997B2 JP 58088821 A JP58088821 A JP 58088821A JP 8882183 A JP8882183 A JP 8882183A JP H0152997 B2 JPH0152997 B2 JP H0152997B2
Authority
JP
Japan
Prior art keywords
temperature air
low
vortex tube
temperature
connection port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58088821A
Other languages
Japanese (ja)
Other versions
JPS59216480A (en
Inventor
Osamu Myata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP58088821A priority Critical patent/JPS59216480A/en
Publication of JPS59216480A publication Critical patent/JPS59216480A/en
Publication of JPH0152997B2 publication Critical patent/JPH0152997B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • F25B9/04Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect using vortex effect

Landscapes

  • Jet Pumps And Other Pumps (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 本発明は圧縮空気の熱を利用して発電する熱電
発電装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermoelectric power generation device that generates electricity using the heat of compressed air.

従来より、ゼーベツク効果を利用した熱電発電
が知られており、その一つとして、特開昭52−
72020号公報に開示の熱電発電装置がある。この
発電装置はエンジン等の排気熱を利用したもので
あり、以下第1図に基づいて説明する。
Thermoelectric power generation using the Seebeck effect has been known for a long time, and one example of this is the
There is a thermoelectric power generation device disclosed in Publication No. 72020. This power generation device utilizes exhaust heat from an engine, etc., and will be explained below based on FIG. 1.

発電装置31は、エンジン、燃焼炉等の排気筒
32を有し、排気筒32の吐出口33の近傍の外
周面には、外周面に冷却フイン34を固着した熱
電発電素子35を固着し、内周面には吸熱フイン
36を固着する。排気筒32の外周に空間部37
を介して同軸的に排気筒32の吐出口33より下
流域部分まで伸延された外筒38を設ける。
The power generation device 31 has an exhaust stack 32 of an engine, a combustion furnace, etc., and a thermoelectric power generating element 35 having cooling fins 34 fixed to the outer circumferential surface is fixed to the outer peripheral surface of the exhaust pipe 32 near the discharge port 33. A heat absorbing fin 36 is fixed to the inner peripheral surface. A space 37 is provided on the outer periphery of the exhaust pipe 32.
An outer cylinder 38 is provided which extends coaxially from the discharge port 33 of the exhaust pipe 32 to a downstream region via the exhaust pipe 32.

エンジン等から排出された燃焼済の高温ガスは
排気筒32内を流下し、吸熱フイン36により効
率良く熱電発電素子の内側面を加熱する。一方こ
のガスは排気筒32を出ると外筒38内に入り、
ここに於いてベンチユリ効果により外筒38と排
気筒32の間の空間部37に外気を誘引し、冷却
フイン34により効率良く熱電発電素子35の外
側面を冷却する。従つて、熱電発電素子35の一
面を高温ガスにより加熱し、他面を外気により冷
却するので、この素子35に温度差が生じ発電す
る。
Burnt high-temperature gas discharged from the engine or the like flows down inside the exhaust pipe 32 and efficiently heats the inner surface of the thermoelectric generation element by the heat absorption fins 36. On the other hand, when this gas exits the exhaust pipe 32, it enters the outer cylinder 38,
At this point, outside air is drawn into the space 37 between the outer cylinder 38 and the exhaust pipe 32 due to the bench lily effect, and the outer surface of the thermoelectric generating element 35 is efficiently cooled by the cooling fins 34. Therefore, one side of the thermoelectric power generating element 35 is heated by the high temperature gas and the other side is cooled by the outside air, so that a temperature difference is created in the element 35 to generate electricity.

しかしながら、熱電発電に於いては熱電発電素
子の効率を大きくする為に高温側と低温側の温度
差をできるだけ大きくする必要がある。
However, in thermoelectric power generation, in order to increase the efficiency of the thermoelectric power generation element, it is necessary to make the temperature difference between the high temperature side and the low temperature side as large as possible.

上記開示の装置では、温度差は最大で高温ガス
温度マイナス外気温度であり、温度差をより大き
くする為には、外気より低温の流体等の冷却手段
を必要とする。
In the device disclosed above, the maximum temperature difference is the high temperature gas temperature minus the outside air temperature, and in order to increase the temperature difference, a cooling means such as a fluid having a lower temperature than the outside air is required.

本発明の技術的課題は、常温の気体を加熱、冷
却手段として用い、一種の流体で温度差を大きく
できる熱電発電装置を得ることである。
The technical problem of the present invention is to obtain a thermoelectric power generation device that uses room temperature gas as a heating and cooling means and can increase the temperature difference with a type of fluid.

本発明の解決手段は次の通りである。 The solution of the present invention is as follows.

渦管の一端に隔壁板部材を介して低温空気接続
口を有する低温空気取出部材を取り付け、渦管の
他端に形成した高温空気接続口に高温空気取出部
材を取り付け、隔壁板部材の中央に低温空気取出
口を、高温空気取出部材の周辺に高温空気取出口
を開け、低温空気取出部材に隔壁板部材の外周壁
との間に形成される環状空間に開口する圧縮空気
の導入口を開け、環状空間の圧縮空気を渦管の内
壁の接線方向に噴射する溝を隔壁板部材に形成し
たものとから成る渦流管と、絶縁板を介して冷却
容器と加熱容器を取り付けた熱電発電素子と、低
温空気接続口と冷却容器を連結する低温空気通路
と、高温空気接続口と加熱容器を連結する高温空
気通路とから構成する。
A low temperature air extraction member having a low temperature air connection port is attached to one end of the vortex tube through a partition plate member, a high temperature air extraction member is attached to a high temperature air connection port formed at the other end of the vortex tube, and a high temperature air extraction member is attached to the high temperature air connection port formed at the other end of the vortex tube. A high-temperature air intake port is opened around the high-temperature air take-off member, and a compressed air inlet is opened in the low-temperature air take-off member into an annular space formed between the outer circumferential wall of the partition plate member. , a vortex tube consisting of a partition plate member with grooves for injecting compressed air in an annular space in a tangential direction of the inner wall of the vortex tube; and a thermoelectric power generation element having a cooling container and a heating container attached via an insulating plate. , a low-temperature air passage connecting the low-temperature air connection port and the cooling container, and a high-temperature air passage connecting the high-temperature air connection port and the heating container.

圧縮空気の導入口から環状空間に導入された圧
縮空気は溝から渦管の内壁の接線方向に噴射さ
れ、渦管内を旋回する。高エネルギーの熱い空気
分子は渦管内の周辺に集まり、低エネルギーの冷
たい空気分子は渦管内の中央部に集まり2層に別
れる。周辺の高温空気は高温空気取出口から高温
空気通路を通つて加熱容器内に導入され、熱電発
電素子の一方の面を加熱する。中央の低温空気は
低温空気取出口から低温空気通路を通つて冷却容
器内に導入され、熱電発電素子の他方の面を冷却
する。熱電発電素子は一面を加熱され、他面を冷
却されるので、温度差が生じて発電する。
The compressed air introduced into the annular space from the compressed air inlet is injected from the groove in the tangential direction of the inner wall of the vortex tube, and swirls within the vortex tube. High-energy hot air molecules gather at the periphery of the vortex tube, while low-energy cold air molecules gather at the center of the vortex tube and separate into two layers. The surrounding high-temperature air is introduced into the heating container from the high-temperature air outlet through the high-temperature air passage, and heats one side of the thermoelectric generating element. The central low-temperature air is introduced into the cooling container from the low-temperature air outlet through the low-temperature air passage, and cools the other side of the thermoelectric generating element. Since one side of the thermoelectric power generating element is heated and the other side is cooled, a temperature difference occurs and power is generated.

常温の圧縮空気を高温空気と低温空気に分離
し、加熱、冷却手段として用いているので、温度
差の大きな熱電発電装置を得ることができる。
Since compressed air at room temperature is separated into high-temperature air and low-temperature air and used as heating and cooling means, a thermoelectric power generation device with a large temperature difference can be obtained.

第2,3図に示す熱電発電装置の実施例を説明
する。熱電発電素子1はP型及びN型の半導体
2,2′の一対を最小単位として、多数個、低温
接合板3及び高温接合板4により電気的に接続
し、接合板3,4に電気絶縁板5,5′を取り付
けたものである。この熱電発電素子1の絶縁板5
に冷却室6を形成する冷却容器7を固着し、絶縁
板5′に加熱室8を形成する加熱容器9を固着す
る。冷却容器7は入口10、出口11を有し、加
熱容器9は入口12、出口13を有する。渦流管
14は渦管15の一端に隔壁板部材16を介して
低温空気取出部材17を取り付け、他端に高温空
気取出部材18を取り付けたものである。低温空
気取出部材17は圧縮空気の導入口19を有し、
導入口19は低温空気取出部材17内周壁と隔壁
板部材16の外周壁との間に形成した環状空間2
0に開口する。隔壁板部材16は中央に低温空気
取出口21を有し、低温空気取出部材17の接続
口22と渦管16内とを連通する。また隔壁板部
材16は渦管15に当接する端面に複数の溝23
を有し、溝23は環状空間20から渦管15内壁
の接線方向に開口する噴射通路を形成する。高温
空気取出部材18と渦管15の間に通路24を形
成し、高温空気取出口25を通して接続口26と
渦管15内とを連通する。渦流管14の接続口2
2を低温空気通路27を通して冷却容器7の冷却
室6内に連通し、接続口26を高温空気通路28
を通して加熱容器9の加熱室8内に連通する。
An embodiment of the thermoelectric power generation device shown in FIGS. 2 and 3 will be described. The thermoelectric power generating element 1 consists of a plurality of P-type and N-type semiconductors 2, 2' as the minimum unit, electrically connected by a low-temperature bonding plate 3 and a high-temperature bonding plate 4, and electrically insulated by the bonding plates 3, 4. This is what plates 5 and 5' are attached to. Insulating plate 5 of this thermoelectric power generation element 1
A cooling container 7 forming a cooling chamber 6 is fixed to the insulating plate 5', and a heating container 9 forming a heating chamber 8 is fixed to the insulating plate 5'. The cooling container 7 has an inlet 10 and an outlet 11, and the heating container 9 has an inlet 12 and an outlet 13. The vortex tube 14 has a low temperature air extraction member 17 attached to one end of the vortex tube 15 via a partition plate member 16, and a high temperature air extraction member 18 attached to the other end. The low temperature air extraction member 17 has a compressed air inlet 19,
The inlet 19 is an annular space 2 formed between the inner peripheral wall of the low temperature air extraction member 17 and the outer peripheral wall of the partition plate member 16.
Opens at 0. The partition plate member 16 has a low-temperature air outlet 21 in the center, which communicates the connection port 22 of the low-temperature air outlet member 17 with the inside of the vortex tube 16 . Further, the partition wall plate member 16 has a plurality of grooves 23 on the end surface that comes into contact with the vortex tube 15.
The groove 23 forms an injection passage that opens from the annular space 20 in a tangential direction to the inner wall of the vortex tube 15 . A passage 24 is formed between the high temperature air extraction member 18 and the vortex tube 15, and the connection port 26 and the inside of the vortex tube 15 are communicated through the high temperature air extraction port 25. Connection port 2 of vortex tube 14
2 is connected to the cooling chamber 6 of the cooling container 7 through the low temperature air passage 27, and the connection port 26 is connected to the high temperature air passage 28.
It communicates with the heating chamber 8 of the heating container 9 through the opening.

圧縮空気を導入口19から渦流管14内に噴射
させると、渦管15内には渦流が生じる。低温空
気は低温空気取出口21から低温空気通路27を
通つて冷却容器7内に集められ、高温空気は高温
空気取出口25から高温空気通路28を通つて加
熱容器9内に集められる。この低温空気と高温空
気により熱電発電素子が冷却加熱され、素子1の
両端面に温度差を形成し、発電する。
When compressed air is injected into the vortex tube 14 from the inlet 19, a vortex is generated in the vortex tube 15. Low-temperature air is collected into the cooling container 7 from the low-temperature air outlet 21 through the low-temperature air passage 27, and hot air is collected into the heating vessel 9 through the high-temperature air outlet 25 through the high-temperature air passage 28. The thermoelectric power generation element is cooled and heated by the low-temperature air and high-temperature air, creating a temperature difference between both end faces of the element 1, and generating electricity.

本発明は次の様な特有の効果を奏する。圧縮空
気は動力源として古くから工場等で使用されてお
り、常温の圧縮空気を渦流管で高温空気と低温空
気に分離することにより、圧縮空気を使用してい
る所であれば簡単に電力を得ることができる。常
温の圧縮空気を渦流管により高温空気と低温空気
に分離するので、従来の如く高温気体と外気との
温度差による発電に於いて温度差を大きくする為
に吸熱器や放熱器等を使用しなくても大きな温度
差を得ることができる。
The present invention has the following unique effects. Compressed air has been used as a power source in factories for a long time, and by separating room-temperature compressed air into high-temperature air and low-temperature air using a vortex tube, it is easy to generate electricity in any place that uses compressed air. Obtainable. Compressed air at room temperature is separated into high-temperature air and low-temperature air using a vortex tube, so unlike conventional power generation using the temperature difference between high-temperature gas and outside air, heat absorbers and radiators are used to increase the temperature difference. A large temperature difference can be obtained even without it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の熱電発電装置を示す断面図であ
り、第2図は本発明の熱電発電装置の一実施例を
示す断面図であり、第3図は第2図のA−A線断
面図である。 1……熱電発電素子、6……冷却室、8……加
熱室、14……渦流管、19……噴射口、21…
…低温空気取出口、25……高温空気取出口、2
7……低温空気通路、28……高温空気通路。
FIG. 1 is a sectional view showing a conventional thermoelectric generator, FIG. 2 is a sectional view showing an embodiment of the thermoelectric generator of the present invention, and FIG. 3 is a sectional view taken along line A-A in FIG. It is a diagram. DESCRIPTION OF SYMBOLS 1... Thermoelectric power generation element, 6... Cooling chamber, 8... Heating chamber, 14... Eddy current tube, 19... Injection port, 21...
...Low temperature air outlet, 25...High temperature air outlet, 2
7... Low temperature air passage, 28... High temperature air passage.

Claims (1)

【特許請求の範囲】[Claims] 1 渦管15の一端に隔壁板部材16を介して低
温空気接続口22を有する低温空気取出部材17
を取り付け、渦管15の他端に形成した高温空気
接続口26に高温空気取出部材18を取り付け、
隔壁板部材16の中央に低温空気取出口21を、
高温空気取出部材18の周辺に高温空気取出口2
5を開け、低温空気取出部材17に隔壁板部材1
6の外周壁との間に形成される環状空間20に開
口する圧縮空気の導入口19を開け、環状空間2
0の圧縮空気を渦管15の内壁の接線方向に噴射
する溝23を隔壁板部材16に形成したものとか
ら成る渦流管14と、絶縁板5,5′を介して冷
却容器7と加熱容器9を取り付けた熱電発電素子
1と、低温空気接続口22と冷却容器7を連結す
る低温空気通路27と、高温空気接続口26と加
熱容器9を連結する高温空気通路28とから成る
圧縮空気による熱電発電装置。
1. A low temperature air extraction member 17 having a low temperature air connection port 22 at one end of the vortex tube 15 via the partition wall plate member 16.
, and a high-temperature air extraction member 18 is attached to the high-temperature air connection port 26 formed at the other end of the vortex tube 15.
A low temperature air outlet 21 is provided in the center of the partition plate member 16,
A high temperature air outlet 2 is provided around the high temperature air outlet member 18.
5, and attach the bulkhead plate member 1 to the low temperature air extraction member 17.
The compressed air inlet 19 is opened to the annular space 20 formed between the outer peripheral wall of the annular space 2 and the annular space 2.
A vortex tube 14 is formed by forming a groove 23 in a partition plate member 16 for injecting zero compressed air in the tangential direction of the inner wall of the vortex tube 15, and a cooling container 7 and a heating container are connected to each other via insulating plates 5 and 5'. 9, a low-temperature air passage 27 that connects the low-temperature air connection port 22 and the cooling container 7, and a high-temperature air path 28 that connects the high-temperature air connection port 26 and the heating container 9. Thermoelectric generator.
JP58088821A 1983-05-19 1983-05-19 Thermoelectric generator with compressed air Granted JPS59216480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58088821A JPS59216480A (en) 1983-05-19 1983-05-19 Thermoelectric generator with compressed air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58088821A JPS59216480A (en) 1983-05-19 1983-05-19 Thermoelectric generator with compressed air

Publications (2)

Publication Number Publication Date
JPS59216480A JPS59216480A (en) 1984-12-06
JPH0152997B2 true JPH0152997B2 (en) 1989-11-10

Family

ID=13953585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58088821A Granted JPS59216480A (en) 1983-05-19 1983-05-19 Thermoelectric generator with compressed air

Country Status (1)

Country Link
JP (1) JPS59216480A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8134066B2 (en) * 2006-08-07 2012-03-13 Illinois Tool Works Inc. Electric power generator
JP2009296686A (en) * 2008-06-02 2009-12-17 Honda Motor Co Ltd Portable power generator
US9741916B2 (en) * 2013-07-24 2017-08-22 Saudi Arabian Oil Company System and method for harvesting energy down-hole from an isothermal segment of a wellbore
KR20160066572A (en) * 2014-12-02 2016-06-13 현대자동차주식회사 Thermoelectric power generation system for vehicle
GB2589060B (en) * 2019-09-17 2022-12-07 Ofip Ltd Differential pressure power generator

Also Published As

Publication number Publication date
JPS59216480A (en) 1984-12-06

Similar Documents

Publication Publication Date Title
US4639542A (en) Modular thermoelectric conversion system
JP6113143B2 (en) Device having a heat exchanger for a thermoelectric generator of a motor vehicle
KR101327732B1 (en) Thermoelectric generator of vehicle
EP2811141B1 (en) Latent heat exchanger cover provided with cooling line
CN109741848A (en) A kind of static heat transfer generating integration device and method based on high-temperature heat pipe heat transfer
JP2004528793A (en) Energy conversion method and vortex tube for performing the method
CN102213128A (en) Internal combustion engine with thermoelectric generator
JPH0152997B2 (en)
KR101791898B1 (en) Thermoelectric generation system having inner cooling channel
US2268386A (en) Heat exchanger apparatus
CN103883433B (en) For the afterheat recovery type cooler for recycled exhaust gas of internal-combustion engine
US2183893A (en) Fluid heater
CN205945554U (en) Temperature difference power generation devices of heat energy cascade utilization type
US3598090A (en) Vapor generator
JP2020513526A (en) Heat transfer equipment
US11415115B2 (en) Solar receiver for receiving solar rays and for heating a medium
US3457121A (en) Thermal generator and flameholder
KR101189953B1 (en) Rapid heating apparatus
SU672452A1 (en) Swirl tube
JPH02303381A (en) Cogeneration facility
KR101327731B1 (en) Thermoelectric generator of vehicle
RU2479073C2 (en) Combined vortex thermoelectric device
SU1231338A1 (en) Vortex tube
US2380602A (en) Heater
US3497397A (en) Thermoelectric generator including a vibratory burner