JPS59215445A - High-strength cu-fe alloy for electric conduction - Google Patents

High-strength cu-fe alloy for electric conduction

Info

Publication number
JPS59215445A
JPS59215445A JP8668483A JP8668483A JPS59215445A JP S59215445 A JPS59215445 A JP S59215445A JP 8668483 A JP8668483 A JP 8668483A JP 8668483 A JP8668483 A JP 8668483A JP S59215445 A JPS59215445 A JP S59215445A
Authority
JP
Japan
Prior art keywords
alloy
test
strength
tensile strength
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8668483A
Other languages
Japanese (ja)
Other versions
JPS6320291B2 (en
Inventor
Shigeo Muromachi
室町 繁雄
Hisafuji Watanabe
渡辺 久藤
Norio Kono
河野 紀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8668483A priority Critical patent/JPS59215445A/en
Publication of JPS59215445A publication Critical patent/JPS59215445A/en
Publication of JPS6320291B2 publication Critical patent/JPS6320291B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain a Cu alloy having superior mechanical properties, drawability and solderability without remarkably reducing the electric conductivity by cold working a Cu-Fe alloy contg. a specified amount of Fe after hot working and by carrying out precipitation treatment. CONSTITUTION:A Cu-Fe alloy contg. 5-15% Fe is subjected to precipitation treatment at 500 deg.C for 100min, and it is cold worked at 50% working rate to obtain an electrically conductive Cu alloy having >=55% electric conductivity in IACS unit, >=60kg/mm.<2> tensile strength, and >=80% expansion rate on the basis of JIS with respect to solderability. When a Cu-Fe alloy contg. 6-12% Fe, 0.02-0.1% misch metal and 0.3-0.6% Mg2Si is used in place of said Cu-Fe alloy, an electrically conductive Cu-Fe alloy having further improved castability, cold workability and >=62kg/mm.<2> tensile strength is obtd.

Description

【発明の詳細な説明】 本発明は導電用高力Cu −F e合金に関1−るもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high strength Cu--Fe alloy for electrical conductivity.

現在コンビーーーター等の電子製品を構成1−るIC。ICs currently make up electronic products such as converters.

b81などのリードフレーム材としてCDA1g4など
4電率に丁ぐれ、しかも安価なCu −F e合金と。
For lead frame materials such as B81, we use Cu-Fe alloys that have a four-voltage conductivity and are inexpensive, such as CDA1g4.

導電率は稍劣るが強要の高いFe−Ni系合金が用いら
れている。し力・し近年電子工業のめざましい元展に伴
ない、これら合金よりさらに高力て、し力・も導電率の
高いという互に相反する性質を持つ合金が要求されるよ
うになった。
A Fe--Ni alloy is used, which has a slightly lower conductivity but is highly durable. In recent years, with the remarkable development of the electronics industry, there has been a demand for alloys with contradictory properties such as higher strength, higher strength, and higher electrical conductivity than these alloys.

本発明は、導電率が高く、シ刀・もCJJA194合金
よりも上゛eの多い安価なCu −B” e合金を基本
とし。
The present invention is based on an inexpensive Cu-B'' alloy which has high conductivity and has a higher conductivity than the CJJA194 alloy.

さらに槙々の添加元素を加え高力で導電率のづ−ぐれた
合金を開発することを目的とするものである。
The aim is to develop an alloy with high strength and poor electrical conductivity by adding additional elements such as persimmons.

本発明では1合金特性の目標値を引張強さ60kg /
 mm2以上、導電率はlAC3単位″″c55 %以
上として、試験研究を重ねた。Fe添加の範囲を決定す
るだめの試料としては2.5%力・ら50チまでとし。
In the present invention, the target value of 1 alloy property is tensile strength 60kg/
Repeated tests and research were carried out with the conductivity set at mm2 or more and conductivity at 1AC3 units''c55% or more. The sample used to determine the range of Fe addition is 2.5% strength up to 50 cm.

熱間加工を経て冷間加工ののち、500℃で100分析
出処理をして引張り強プ、導電率乞測戻した結果、第1
表に示す如(、Fe15%以下が目標値に達しているこ
とが判った。こ\で本発明の目的とするコスト低下と強
度上昇の点力)ら先行技術に近いz、sへs、o%;2
除外しCu −ii 〜12%]I′e B金を基本と
し、さらに他の添加元素の影響乞調べた。次に、より実
用に即した板材について引張試験ライ■ない、さらにリ
ードフレーム材として8費なその他の諸性質、即ち曲げ
性、半田付性、耐熱性について試験をおこなった◇ 第   1   表 500℃100m1n析出処理後55チ冷間加工を施し
た試料のFe(%)と引張強さ、導電率σ)関係。
After hot working and cold working, it was subjected to 100% analysis treatment at 500°C to measure tensile strength and conductivity.
As shown in the table (it was found that 15% or less of Fe reached the target value. This is the point of cost reduction and strength increase which are the objectives of the present invention), z, s, s, which are close to the prior art. o%;2
Excluding Cu -ii ~12%] I'e B Based on gold, the influence of other additive elements was investigated. Next, we conducted a tensile test on a plate material that is more suitable for practical use, and also tested other properties that are necessary for lead frame materials, such as bendability, solderability, and heat resistance ◇ Table 1 500℃ Relationship between Fe (%), tensile strength, and electrical conductivity σ) of a sample subjected to 55 mm cold working after 100 ml precipitation treatment.

こ\でCu−Fe合金について概説するため。This is to give an overview of Cu-Fe alloys.

本発明圧関係のあるCu−Fe系のCu側状態図を第1
図に示した。Cu側ε相のFeの溶解度は、包晶温度1
,094℃で4.0%、1,000℃で2.6%、90
0℃で1.4多で、700℃では急減し0.3%程度″
″r:あるとされている。Cu側1次固溶体ε相は、4
゜0% Feを包晶点とし、包晶温[1,094℃で1
′’e(υ+Liq+:′(、:u(りの包晶反応を示
している。
The phase diagram on the Cu side of the Cu-Fe system that has the pressure relationship of the present invention is shown in the first diagram.
Shown in the figure. The solubility of Fe in the ε phase on the Cu side is determined by the peritectic temperature 1
, 4.0% at 094℃, 2.6% at 1,000℃, 90
At 0℃ it is 1.4 more, and at 700℃ it decreases sharply to about 0.3%.
″r: It is said that there is.The primary solid solution ε phase on the Cu side is 4
゜0% Fe is the peritectic point, and the peritectic temperature [1,094℃
''e(υ+Liq+:'(,:u(represents the peritectic reaction.

本発明の目的である特性中、最も重要な導電率について
は、k”eの溶解度が温度降下につれ油、激に減少する
ため、析出処理を行なうことにより。
Regarding electrical conductivity, which is the most important characteristic among the properties that are the object of the present invention, the solubility of k''e decreases dramatically as the temperature drops, so by performing a precipitation treatment.

Cu側の6相を純銅に接近さ+!:1導電率を上けるこ
とが期待出来、lAC3単位で55%までは容易に泗す
ることが可能である。
The 6 phases on the Cu side are close to pure copper! It can be expected to increase the conductivity by 1:1, and it is possible to easily increase the conductivity to 55% in units of lAC3.

一般に、4電率はli’eがCu(ε相)マトリックス
中に過飽=口に(支)溶しているよりも分散析出してい
る方が良好である。従って比較的低温(450〜b 機械的強度を見るに、Cu−2,5%Feでは第2相1
゛e(r)が少量なため、加工強化は大きくは期待出来
ないが、Cu−6〜12%Fe合金になると第2相が増
加し、加工することにより第2aおよび第2b図に示づ
−ように繊維強化されることが判るーしがし電気、電子
機器などの導電性十14造部材として便用するには、伸
びと曲げ加工性が要求式れる。
Generally, the tetraelectricity is better when li'e is dispersed and precipitated in the Cu (ε phase) matrix than when it is supersaturated (mainly) dissolved in the Cu (ε phase) matrix. Therefore, the temperature is relatively low (450~b). Looking at the mechanical strength, Cu-2.5%Fe has a second phase of
Because of the small amount of ゛e(r), we cannot expect much work strengthening, but in the case of Cu-6~12%Fe alloys, the second phase increases, and by working, the strength increases as shown in Figures 2a and 2b. - It can be seen that it is fiber-reinforced. However, in order to use it as a conductive structural member for electrical and electronic equipment, elongation and bending workability are required.

1だ、これら電気、電子機器については、電気記載や他
σ)部材との手口]付による接合が行なわれることが多
いので、半田付自体が容易に1丁ないうること、半田に
より接合され実際に使用され℃いる間に発生し進行する
腐食に対する抵抗性、さらに半田付された部分の接合強
度が安来される。
1. These electrical and electronic devices are often joined by electrical markings and other σ) components, so soldering itself can easily be done in one piece. It is improved in resistance to corrosion that occurs and progresses during use in temperature conditions, and also in the joint strength of soldered parts.

本願発明は、従来のCu−2,5%Fe糸にイいハI!
′e5〜15%、好適には6〜12%までを言有さ−じ
ることによって、導電性は多少低下しても1機械的特性
The present invention is superior to conventional Cu-2,5% Fe yarn!
Even if the electrical conductivity is reduced to a certain extent, the mechanical properties are maintained by increasing the amount of 5% to 15%, preferably 6% to 12%.

展伸性および半田付特性が良好な合金を開発すること乞
目標としている。従って、これらの特性を満足し得る成
分範囲を実験により確認したもので現在使用されている
CDAl94について測定すると50%加ニオで、下記
のような成績が示されている。
The goal is to develop an alloy with good malleability and soldering properties. Therefore, the range of components that can satisfy these characteristics has been confirmed through experiments, and measurements of currently used CDAl94 have shown the following results at 50% potassium nitride.

IACS   引張強さ    伸    11RB6
5%   49〜53  2〜4  73〜76成分的
には、下記の範囲内にある。
IACS tensile strength elongation 11RB6
5% 49-53 2-4 73-76 Components are within the following ranges.

Cu     1!’ e     P     Z 
n97、θ〜97.8 2.1〜2.6 0.015〜
0.04 0.05〜0.2これ?見るに、今日要求さ
れている引張強ζ6θkg / [+1111’刀・ら
は約7〜10 kg/胛2はど少ないきらいがある口し
たしメッキ性、半田付性1曲げ性は満足すべきものと認
められて使用されている。
Cu 1! ' e P Z
n97, θ~97.8 2.1~2.6 0.015~
0.04 0.05~0.2 This? As you can see, the tensile strength ζ6θkg / [+1111' sword/ra] about 7 to 10 kg/sword 2 required today is not very good, and the plating properties, solderability, and bendability are satisfactory. approved and used.

今回開発した合金は1重量基準″′r:Feが5〜15
%。
The newly developed alloy has a 1 weight standard''r: Fe of 5 to 15
%.

好適には6〜12饅ヲ含むCu−Fe2元合金と、これ
にミノシュメタル(M 、 M、 、)0.02〜0.
1%、My、S i 0.2−一〇、6%を添加した合
金で■ノkCS55チ以上、引張強さ60kg/画2以
上乞示し、然も半田付性1曲げ性、耐食性、耐熱性伺れ
もCIJA194に匹敵するものであって以下各試験結
果馨実施例として述べることにする。
Preferably, a Cu-Fe binary alloy containing 6 to 12 mm, and 0.02 to 0.0 mm of Minos metal (M, M, , ) is added thereto.
An alloy containing 1%, My, Si 0.2-10, 6% has a CS of 55 or more, a tensile strength of 60kg/2 or more, and solderability, bendability, corrosion resistance, and heat resistance. The performance is also comparable to CIJA194, and the test results will be described below as examples.

先づ試別の溶解であるが、本糸合金ではCが0.02係
以上會1れると2相に分離し、健全tc鋳塊が得られな
いとされているので、電解鉄を用い高周波炉で短時間T
溶解するようにした。又るつほは当初マグネシャるつぼ
を用いたが”、後黒鉛るつほにアルミナをライニングし
て用いた。
First, the trial melting is carried out. It is said that if the carbon content of the main thread alloy exceeds 0.02, it will separate into two phases and a sound TC ingot will not be obtained. Short time in furnace
Made it dissolve. At first, a magnesia crucible was used, but later a graphite crucible was lined with alumina.

添加元素の影響 第2表に示す15種の合金を溶表し次のような加工方法
により1.0m+nφ、1.50酊φの)層材に約引加
工した。
Effects of Additive Elements Fifteen types of alloys shown in Table 2 were melted and processed into layered materials (1.0 m+nφ, 1.50 mmφ) using the following processing method.

鋳塊(23X100X200+nm)→切Wr (20
X20X 130nin )→熱間加工(500℃、 
12.5 X 12.5 X 330++nn ) 4
焼な’EL(500℃、 10111 j rl )−
>冷間圧延−+1.5+Tl]nφ及び1 、 Oon
++φ→析出処3f(500℃〕→冷間圧延(55チ加
工〕→導電率副足→引張強さ測定。
Ingot (23X100X200+nm) → Cut Wr (20
X20X 130nin) → Hot processing (500℃,
12.5 x 12.5 x 330++nn) 4
Yakina'EL (500℃, 10111 j rl)-
>Cold rolling −+1.5+Tl]nφ and 1, Oon
++φ → Precipitation 3f (500°C) → Cold rolling (55-chi processing) → Electrical conductivity foot → Tensile strength measurement.

以上の結果、引張強さと導筒1率は第3表の通りであツ
タ。即ちCu−10Fe−o、l p合金、 ell−
2,5Fe−0,lHe−0,18i、 Cu−2,5
Fe−o、3Mg−o、3s i。
As a result of the above, the tensile strength and conductor ratio are as shown in Table 3. That is, Cu-10Fe-o, lp alloy, ell-
2,5Fe-0,lHe-0,18i, Cu-2,5
Fe-o, 3Mg-o, 3s i.

にu−2,51!’e−0,6Mg2S i−0,11
’ すどの合金が目標値に達していることが判る。
To u-2,51! 'e-0,6Mg2S i-0,11
' It can be seen that the alloy in the door has reached the target value.

第  3  表゛ 注 500℃″″C:100分間析出処理後、55%冷
間加工を行なった試料である。析出処理温度ケ450℃
にすると、  1000分(約16.7時間〕を要′1
−るので工業的に実相に適しないので除外した。
Table 3 Note: 500°C''C: Sample subjected to 55% cold working after precipitation treatment for 100 minutes. Precipitation treatment temperature: 450℃
, it takes 1000 minutes (approximately 16.7 hours)
This method was excluded because it is not suitable for actual industrial situations.

第4表は、Cu−Fe台金ニP、(、:、a、ミノシュ
メタル(Δ1.ΔL)、Ca−8i、八” g2 ” 
’ ”:((gW加し析出処理後55%冷IHJ加工し
た線材の導′tii率、引帳り強ぜおよび伸びを示した
。この結果〃・ら;v+ 、 rvi、 0.(12〜
0.1%を添加した舐相がL1掟1[L(をボし、しか
も伸びが改善されていることが判る。
Table 4 shows Cu-Fe base metal 2P, (,:,a, Minosh metal (Δ1.ΔL), Ca-8i, 8"g2"
''': ((g) The conductivity, tensile strength, and elongation of the wire subjected to 55% cold IHJ processing after precipitation treatment were shown.
It can be seen that the lick phase with 0.1% added exceeds L1 and 1[L(), and furthermore, the elongation is improved.

冷間加工の彩・古 板材の〃リエは矢の工ペイでイ1なった。鋳塊(23×
100X200 mn)→熱間圧延(10冊)→?jr
間圧延(2nrm )→97iな筐しく 500℃+ 
30rnin)−+冷間圧延(0,8,0,57,0,
5,0,,47mll+ ) →析出処1ffl(50
0℃、100rn l n ) −47を間圧螺(Q 
、 4 nun:入これ1でより力d工率15゜20、
30.50%σ〉0.4柵θ)仮相を得たO用いた合金
はCu−2,5F’e、Cu−10Fe、 Cu−2,
5Fe−0,6Mg2Siの3れ−の台金について比軟
試験≧で行なった。
The cold-processed Aya/old board material was ranked number 1 with arrow work pay. Ingot (23x
100X200 mn) → Hot rolling (10 books) →? jr
Inter-rolling (2nrm) → 97i cabinet 500℃+
30rnin) - + cold rolling (0, 8, 0, 57, 0,
5,0,,47ml+) → Precipitation treatment 1ffl(50
0°C, 100rn ln) -47 with pressure screw (Q
, 4 nun: In this 1, the force d power factor is 15°20,
30.50%σ>0.4 fence θ) The alloys using O that obtained the temporary phase are Cu-2,5F'e, Cu-10Fe, Cu-2,
A specific softness test was conducted on three base metals of 5Fe-0,6Mg2Si.

この結果を第5表に7J<シた。The results are shown in Table 5 below.

第5表 引張試験の結果 これ刀)ら判るようにb Ou  2.5Fe合金(以
下単に2 、5Fe合金と称1−)では引張り強さか5
0チ加工材で54kg/m2であるに対し* Cu−1
o%Fe舎金(以下、中にH)B’e合金と称丁)では
同じ<50条加工材で59に8/P”、 Cu−2,s
F’e−0,6D、・1g2S +合金T60〜62 
k+= /+mc”のイ0【ヲ示し、いずA1.も1申
びは4〜5予てあった。
Table 5 Tensile test results As can be seen from the results of the tensile test, the tensile strength of the 2.5Fe alloy (hereinafter simply referred to as 2,5Fe alloy 1-) is 5.
Compared to 54kg/m2 for 0-chi processed material* Cu-1
o%Fe alloy (hereinafter referred to as H in B'e alloy) has the same <50 strips processed material with 59 to 8/P'', Cu-2,s
F'e-0,6D, 1g2S + Alloy T60~62
k+= /+mc'' i0 [shown, there were 4 to 5 requests for 1 in A1.

W曲は試験 各試料を所定の形状(0−4X 5 X401111+
1 )に加工し。
For the W-curve, each test sample is shaped into a predetermined shape (0-4X 5 X401111+
1) Processed.

第3図ζ=示−丁曲は治具¥ +’l(いてデコ式引張
試験機によって荷’j、4j 300既でJ]=府iし
た。−tの休・実体鉢1叔鋭乞用い’CiiJげられ7
’;L ::−1万一にっ1.示し1山ぴ1:1の部分
の状態により、A:良、i−i:Lわ小、シ:シわ中程
度、D:しわ大の4段階に評・1間して分知した。
Fig. 3 ζ = Showing - Jig ¥ +'l (loaded by Deco-type tensile testing machine, 4j 300 times J] = ¥) Usage'CiiJ Gere 7
';L::-1.1. Depending on the condition of the 1:1 ratio of the 1:1 ratio, the product was graded into 4 grades: A: Good, ii: Small wrinkles, B: Medium wrinkles, and D: Large wrinkles.

また、治具のエツジ部の先y+iaは曲星)二半径rに
加工されており、こσ)重音−午悦rはr=Q・2〜1
・On;+nの間で変化させることにより曲げの強さを
変化させた。
In addition, the tip y+ia of the edge part of the jig is machined to have two radii r, and the σ) double radius - hour r is r=Q・2~1
- The bending strength was changed by changing between On and +n.

合金試料を′実験方法に従がって(1、4mm L9に
加工後1曲は試験治具(曲垂牛径r=0.2.0.4.
0.6.0.8゜および1.ootm ) ’a:用い
て、試料の圧延方向に対して平行と垂直の2方向につい
て曲げ試験を行なった。その結果を第6表に示す。なお
評価はA、 B。
An alloy sample was processed according to the experimental method (1.4 mm).
0.6.0.8° and 1. ootm) 'a: Bending tests were conducted in two directions, parallel and perpendicular to the rolling direction of the sample. The results are shown in Table 6. The evaluation is A, B.

C1Dの4ランクとし、その評価基準を第4a〜4d図
に示す この基準は比較材である2、5Fe合金の試験
片yA〜Dと分類することにより相対的に決足した。
The four ranks of C1D were adopted, and the evaluation criteria are shown in Figs. 4a to 4d. This criterion was relatively determined by classifying the test specimens yA to D of 2,5Fe alloy, which are comparative materials.

第6表から、当然のことながら、各試料とも曲率半径が
小さくなるほど、′!た冷間加工度が進むことによりj
iflllIIのランクは低下している。加工方向によ
る差は平同万回が垂直方向よりも良好であツタ、まtc
 h  2−5 Fe合金と比較L テ2.sFe 十
0.6Mg、Siおよび10Fe合金の評価が良い。原
因として2.sFe+o、6Mg、Si合金LLMg、
Siミノ加により靭性が同上するためであり、Cu−1
0ル゛e合金についてはW曲げ試験の項で述べたように
初晶1i” eの複合材料的強化によると考えられる。
From Table 6, it can be seen that for each sample, the smaller the radius of curvature, the more '! As the degree of cold working increases,
The rank of ifllllII is decreasing. The difference depending on the processing direction is that 10,000 times in average is better than in the vertical direction.
h 2-5 Comparison with Fe alloy L Te2. sFe 10.6Mg, Si and 10Fe alloys are evaluated well. As a cause 2. sFe+o, 6Mg, Si alloy LLMg,
This is because the toughness is the same as above due to the addition of Si, and Cu-1
As mentioned in the section on the W bending test, the strength of the 0rue alloy is thought to be due to the composite reinforcement of the primary crystal 1i''e.

A:良 B:しわ小 C:しわ中程匪 ]J=しわ人半
田付性試験方法 半田付性試験としてJIS−Z−3197,半田付用樹
脂系フラックス試験方法を参考にしで、A:拡がり試験
、B:腐食試験を行ない、さらにC:引張試験を行なっ
た。ここで用いた半田は組成が60%S n −40%
 ” bb形状1.6冊φ棒状のヤニ入りのものを用い
た。
A: Good B: Small wrinkles C: Medium wrinkles] J = wrinkled solderability test method As a solderability test, JIS-Z-3197, resin flux test method for soldering was used as a reference, A: Spreading. Test, B: Corrosion test was conducted, and C: Tensile test was conducted. The solder used here has a composition of 60% Sn -40%
” BB shape 1.6 diameter rod-shaped resin-filled ones were used.

A:拡がり試験 Jis−z−a191m規定サレテイルヨ’)VC,(
1,4X 30 X 30市11の試験片をスチールウ
ールで研磨シ。
A: Spread test JIS-Z-A 191m standard sale') VC, (
Polish a 1,4×30×30×11 test piece with steel wool.

メタノールで清浄にした。仄に大気中で150℃で1時
間酸化させて冷却後、  (1,3fの半田7a:′策
ゼ250℃の電気炉中で半田付けを行なった。半田が試
験片上に充分拡がってから取り出して冷却させ、その後
アルコールにてフラックスを取り除き半田の厚みの最大
値をマイクロメータにて測定し1次式D : 0.3 
yの半田7球としたときの直径(nIITl)H:試験
片上の半田の厚みの最大値(制御)B:$もつ1町試験 J l5−Z−3] 97の規定により0.4X 30
 X 30訓の試験片をスチールウールで研磨(−、メ
タノールで洗浄し、充分乾燥ζゼ、試験片」二に0.3
2の半田を乗せ250℃の′ば気炉中に入れ、半田が拡
がってから5秒間保持した後取り出した。試験片は各4
個作製し、1個は標準試験片とし箆温(20℃)で72
時間保持し、残り3個は40℃、湿度90%以上の雰囲
気中に72時13]保持し、試験後画省を目視にて外観
変化を観察して比較を行なった。
Cleaned with methanol. After oxidizing in the air at 150°C for 1 hour and cooling, soldering was carried out in an electric furnace at 250°C (1,3F solder 7a:').After the solder spread sufficiently on the test piece, it was removed. After that, the flux was removed with alcohol, and the maximum value of the solder thickness was measured with a micrometer, and the linear equation D: 0.3
Diameter when there are 7 solder balls of y (nIITl) H: Maximum value of solder thickness on test piece (control) B: 0.4X 30 according to the regulations of $Motsu 1 town test J l5-Z-3] 97
Polish the test piece with steel wool (-, wash with methanol, dry thoroughly, test piece with 0.3
The solder from No. 2 was applied and placed in an air oven at 250°C, and after the solder had spread, it was held for 5 seconds and then taken out. 4 test pieces each
One piece is used as a standard test piece at a temperature of 72°C (20°C).
The remaining three samples were kept in an atmosphere of 40° C. and a humidity of 90% or more at 72:13], and after the test, the appearance changes were visually observed and compared.

C:引張試験 0.4 X 5 X 30 X 30oIm(7)試験
片をスチールウールで研若り、メタノールで洗浄し2人
気中で150℃で1時間酸化させた。これに紬<:ip
l線Q、85nnnψを5mIn重ねて継手形状にし、
コテ先温度350℃の半田ゴテを用いて半田付けを行な
い、これを用いて引張試験を行なった・ 半田付性試験結果 A:拡がり試験 実験結果を第7衣に示す。
C: Tensile test 0.4 x 5 x 30 x 30oIm (7) A test piece was polished with steel wool, washed with methanol and oxidized at 150° C. for 1 hour in a hot water bath. This is Tsumugi<:ip
L wire Q, 85nnnψ is overlapped by 5mIn to make a joint shape,
Soldering was performed using a soldering iron with a soldering iron tip temperature of 350°C, and a tensile test was conducted using this. Solderability test results A: Spreading test The experimental results are shown in Section 7.

JIS基準によれは拡がり率8oφを上廻っているため
全て合格となるズバ、1oFe合金は他の2者に比べて
多少劣るようである。この原因として、コテ句の除にわ
ずかに半田がはじかれることによるようであって、これ
により1直がイ氏く出たものど考えられる。し刀1し試
験前に表面ヲ敵化させた状態でのかなり苛酷な条件下の
結果であるから、実用上はいずれも半田付性の良い合金
と認められる。
According to the JIS standard, Zuba and 1oFe alloys, which all pass the test because their spread rate exceeds 8oφ, seem to be somewhat inferior to the other two. The cause of this seems to be that the solder is slightly repelled when the iron is removed, and it is thought that this caused the first shift to fail. Since the results were obtained under fairly severe conditions with the surface made hostile before the test, all alloys are recognized as having good solderability in practical terms.

B:腐食実験結果 実験結果を第5a〜50図に示1−0それぞれの試料の
直下の記号中、a:標準試験片、b:湿朋90%雰囲気
中に72時間放置した試験片である。
B: Corrosion experiment results The experimental results are shown in Figures 5a to 50. In the symbols directly below each sample 1-0, a: standard test piece, b: test piece left in a 90% humidity atmosphere for 72 hours. .

第5a〜50図よりa、bと比較しても明瞭な腐食現象
は認められな〃・った。し刀h L 2,5 F eお
よび2 、5Fe−4−o 、 6Mg、 S i合金
では半田付周辺部に力・丁かに黒色の変色が認められた
。−万、1OFe合金にはこのような変色は認められな
かった。これは10F’e合金に含1れるPの影響と考
えられる。以上より*  2.51”e+0.6Mg2
Si合金VCもPk添加丁しは耐食性は向上すると考え
られる。その反面、導電率が低下することになる、第6
a〜6C図は上記第5a〜50図をスクッチして示した
ものである。1耐熱試験 耐熱試験としてA:時間一定の場合、B:温度一定の場
合の2種知の試験を行なった。
As shown in Figs. 5a to 50, no clear corrosion phenomenon was observed when compared with a and b. For the L2,5 Fe, 2,5Fe-4-o, 6Mg, and Si alloys, black discoloration was observed around the soldering area. No such discoloration was observed in the -10,000,1OFe alloy. This is considered to be due to the influence of P contained in the 10F'e alloy. From the above* 2.51”e+0.6Mg2
It is thought that the corrosion resistance of Si alloy VC also improves when Pk is added. On the other hand, the conductivity decreases.
Figures a to 6C are sketches of the above figures 5a to 50. 1 Heat Resistance Test Two types of heat resistance tests were conducted: A: constant time; B: constant temperature.

A:時間一定の場合 0.4 X 10 X ]Omの試験片ヲ0.300,
400,450゜500、550 および600℃の各
温度に保持した塩浴[KN Os+N a (N Ut
 ) t 〕中に5分間浸漬保持し、その後0.1%硝
酸水溶液を用いて洗浄し、エメリー紙にて研磨し表面の
水平を確保し、その後各温度で保持後の常温での硬さを
マイクロビッカース硬度計により測定し加熱温度の差に
よる硬さの変化を調べた。
A: When the time is constant, the test piece of 0.4 x 10 x ]Om is 0.300,
Salt bath [KN Os+N a (N Ut
) t ] for 5 minutes, then washed with 0.1% nitric acid aqueous solution, polished with emery paper to ensure a level surface, and then checked for hardness at room temperature after being held at each temperature. The hardness was measured using a micro-Vickers hardness meter to examine changes in hardness due to differences in heating temperature.

B:温度一定の場合 0.4 X 10 X 10mmの試験片ヲ500℃の
塩浴に0゜2.3,6.10.30 、60,100,
300,600および1000秒の各時間保持し、その
後0.1%硝酸水溶液にて洗浄し。
B: When the temperature is constant, a 0.4 x 10 x 10 mm test piece is placed in a 500°C salt bath at 0°2.3, 6.10.30, 60,100,
It was held for 300, 600, and 1000 seconds, and then washed with a 0.1% nitric acid aqueous solution.

エメリー紙にて表面の水平を確保する。その後各時間保
持後の硬さをマイクロビッカース硬度計にて測足り、加
熱時間の変化による硬さの変化を調べた。
Ensure the surface is level with emery paper. Thereafter, the hardness after holding for each time was measured using a micro Vickers hardness meter, and changes in hardness due to changes in heating time were investigated.

耐熱試験の結果 A:時間一定(等時加熱)の場合 試料を所定の大き爆に加工後熱処理を行ない。Heat resistance test results A: For constant time (isochronous heating) After processing the sample into a predetermined large explosion, heat treatment is performed.

処理後常温での硬さをビッカース硬度計にて測足し、そ
の結果を第8表および第7図に示す。
After treatment, the hardness at room temperature was measured using a Vickers hardness meter, and the results are shown in Table 8 and FIG.

これらの結果からどの加工度においても2.ryh’e
合金が最も低い温度で軟化している。さらに2.5Fe
 十0 、6Mg、 8 i合金ト1oFe 、!l:
 Y比較すると、2゜5Fe+0.6Mg2Si合金は
冷間加工の状態での硬さは1gFeより高いが、ある加
熱温度になると急激に硬ざが低下することがわ7ノ・る
。それに比べてlol’e合金はどの加工度でも軟化は
ゆるや〃・T:ある。
These results show that 2. ryh'e
The alloy is softening at the lowest temperature. Furthermore, 2.5Fe
10, 6Mg, 8i alloy and 1oFe,! l:
A comparison shows that the hardness of the 2°5Fe+0.6Mg2Si alloy in cold working is higher than 1gFe, but the hardness decreases rapidly when a certain heating temperature is reached. In comparison, lol'e alloy softens slowly at any working degree.

これらの原因としては、2.51“’e −1−0゜6
Mg、Si合金では添加元素によるマトリックス独化で
あるため。
These causes include 2.51"'e -1-0゜6
In Mg and Si alloys, the matrix is independent due to the added elements.

基本的には2゜51゛e合金と同じと考えられる。よっ
て添加Allにより軟化温度は上昇されても、この軟化
温度を丁きると急激に軟化するものと考えられる。L刀
・し101:′’e合金ではCuマトリックス中に初晶
Feが存在し、これが加工されることによりリボン状と
なり1強化に寄与しているためFeの軟化温度まではC
uマトリックスが軟化しても、リボン状のFeの強化が
生じているために軟化がゆるや刀へに進行するものと考
えられる。
It is basically considered to be the same as the 2゜51゛e alloy. Therefore, even if the softening temperature is increased by adding All, it is thought that once this softening temperature is lowered, the material softens rapidly. L sword/shi101: In the ''e alloy, primary Fe exists in the Cu matrix, and when processed, it becomes a ribbon shape and contributes to 1 strengthening, so C up to the softening temperature of Fe.
Even if the u-matrix softens, it is thought that the softening progresses slowly into a sword due to the ribbon-like reinforcement of Fe.

B:温度一定の場合 合金試料を所足の大きさに加工欽、決められた熱処理を
行ない、その後ビッカース硬糺計により硬さを測定した
。その結果を第9表および第8図に示す。
B: When the temperature was constant, the alloy sample was processed to the required size, subjected to a prescribed heat treatment, and then its hardness was measured using a Vickers hardness tester. The results are shown in Table 9 and FIG.

第9表からIOI”e、 2.5i”e+Q、6Mg2
8 i合金ともに2゜5Fe合金より軟化1での時間は
長いo′また。どの合金についても加工度の増加により
軟化時間は長くなっている。10B’eと2.5Fe+
0.6Δ’g2” Itt金に比較してみると2゜51
!’e + 0 、6Mg2Si合金の方が初期の硬度
が高いにもか刀・わらず軟化時間が早い。この理由とし
てはAで述べたように2゜5Fe−4−o、6N1g2
Siと10Fe合金の強化機構の違いによると考えられ
る・半田付は部の引張試験 銅肪を半田付けした試験片を6・1重160城で引張試
験を行なったが、その結果は全て銅線部で破断していた
。この試験でも試験片の表in−+ ’¥臣化させた後
に半田付けを行なったにも力・刀・わらず半田付部はp
J (7)変化もな〃・った。さらにこの部分を曲けて
も5曲けはく離は生じなかった。以上の結果から、いず
れの合金試料でも半田1」け部の強度に関しては信頼性
が高いことが認められた。
From Table 9, IOI”e, 2.5i”e+Q, 6Mg2
Both the 8i and 2°5Fe alloys have a longer softening time than the 2°5Fe alloy. For all alloys, the softening time becomes longer as the degree of working increases. 10B'e and 2.5Fe+
0.6Δ'g2" Itt 2゜51 compared to gold
! 'e + 0, 6Mg2Si alloy has a higher initial hardness, but has a faster softening time. The reason for this is as mentioned in A, 2゜5Fe-4-o, 6N1g2
This is thought to be due to the difference in the strengthening mechanism of Si and 10Fe alloys. ・Tensile test of the soldering part A tensile test was conducted on a test piece with soldered copper fat at 6.1 weight 160mm, but all the results were that of copper wire. It was broken in some parts. In this test, even though the surface of the test piece was soldered after being made into
J (7) There was no change. Furthermore, even when this portion was bent, no peeling occurred during the 5 bends. From the above results, it was confirmed that all alloy samples had high reliability regarding the strength of the solder joint.

以上の結果をまとめると、本発明合金の代表的成分であ
るCu−10%Feでは目標値である導電率はIAeS
単位55%以上、引偏り強さ60kg/画2以上を示し
、Lカ・も曲げ性、半田句性、耐熱性、半田付附近の耐
食性1強度に丁ぐれていることが判った。史に受胴のN
1.M f O,02〜0.1%、Ntg2SjkO6
2〜0.6%添加することにより強度、伸びが改善され
ることが判明し、リードフレーム材として安価で高性能
を竹するものである。
To summarize the above results, for Cu-10%Fe, which is a typical component of the alloy of the present invention, the target value of conductivity is IAeS.
It was found that the unit was 55% or more, the tensile strength was 60 kg/stroke 2 or more, and the L force was also excellent in bendability, solderability, heat resistance, and corrosion resistance near soldering. N of the receiving body in history
1. M f O, 02-0.1%, Ntg2SjkO6
It has been found that addition of 2 to 0.6% improves strength and elongation, making it an inexpensive and high-performance lead frame material.

【図面の簡単な説明】[Brief explanation of the drawing]

褐1図は銅−鉄(Uu−F’e)2元合金の主として網
側を示す平衡状態図、第23および第2b図はFe1咋
を含有する本発明合金の50φ冷間加工後の圧延面と圧
延面に平行なN1面の光学顕微跳組織写真(X200 
) 、第3図はW曲は試験組曲は治具の形状寸法を示す
側面図、第4a〜4d図はW曲は試験での試験結果の評
−基準を示¥顕微鏡写X(X6・5)、第5a〜5C図
は腐食試験後の試料の表面状態を示す写真、第6a〜6
0図は第5a〜5c図のスケッチ図、第7図は耐熱試験
での等時加熱曲線、第8図は同じり500℃での等温加
熱の保持時間による硬さの変化を示す曲線である。 代理人 弁理士 藤  本     礒代理人 弁理士
 後  藤  武  夫中1図 第3霞 第2a図 用延面 第2b図 圧延平行断面 第4a図 評価A      第’4 b図 評価13
第4(:図 評価C第4d図 評価り 第5a図 2.5”Fe 第5b図 2::’:””5’Fcト0’、: 、6 
M& S i第5a図 1oFe 手続補正書(方式) 昭和58年9月28日 特許庁長官        殿 1、事件の表示 昭和58年特許願第86684号 2、発明の名称 導電用高力Cu−上゛e合金 6、補正をする者 事件との関係  特許出願人 住所 千葉県へ千代市へ千代台北5−4−8氏名   
 渡  辺  久  藤 4、代理人〒106電話05−274−!1466住所
  東京都中央区日本橋2丁目16番ソ号第2パーカー
ビル別館 昭和58年8月10日(発送日昭和58年B月60日す
6、補正の対象 明細書の発明の詳細な説明の欄、 図面の簡単な説明の欄、 図面 Z 補正の内容  別紙のとおり 補正の内容 (1)明細書第15頁第4行〜第フイ1の[−C,JJ
の4ランクとし、・・・・・・・・・決定した。」を[
’C,IJの4ランクとした。その評価基準は比較拐で
ある2、51’e合金の試験片をA、IJの4等級に分
り“てそれらと目視比較により相対的に決定した。」と
訂正する。 (2)同第19貞第15行〜第17行(同頁下刃・ら第
4行〜末行)の「実験結果ケ・・・・・・・・・明瞭な
」をr実験結果を第4a、4b、5a、5b、6aおよ
び6b図に示す1、第4a、5aおよび63図ハそれぞ
れ2.5i’e、2.5Fe + 0.6 Mg2Si
オヨび10Fe合金の標準試験片で、第4b、5bおよ
び6b図はそノしそれ前tj己2.5Fe、2.5に’
e十0.6Mg2Si オJ:び10Fe合金を湿度9
0%の)8囲気中に72時間放直した汝の状態でりるか
、明瞭な」と訂正する。 (3)同第20頁第7行〜第9行の「その反面、・・・
・・・・・・示したものである。」の記載を削除する。 (4)同第21頁末行の「第7図」をI′第73.71
)、70図」と訂正する。 (5)同第24頁第2行の「第8図」を「第88.8b
および80図」と訂正する。 (6)同26頁第16行〜第27員第2行の「状寸法を
示す・・・・・・・・・曲線である。」をI″状寸法を
示す側面図、第4a、4b、5a、5b、Oaおよび6
b図は腐食試験後の試料の表面状態を示すスケッチ図、
第7a、7’bおよび7c図は耐熱試験での等時υ1熱
曲線、第8a、81〕および80図は同じく500℃で
の等温加熱の保持時間による。1硬さの変化を示す曲線
である。」と訂正する。 (7)本願添付の図面中第4a、it)、4C14d図
および第5a、5b、50図を削除する。 (8)  本願添付の図面中第28.2b図、第6a〜
60図、第7図および第8図全そiLそれ本手続補正四
に添付の第2a、2b図、第4d、4b、5a、5b、
6a、6b図、第7a、7b、7c図および第88.8
b、g c図と差し替える。 (注)参考写真1a、1b、1c、xclおよび参考写
真2a、2b、2cを別紙として提出する。 第2二図 第40図  第4b図 第5o図 第5b図 第6o図  第6b図
Figure 1 is an equilibrium phase diagram showing mainly the mesh side of a copper-iron (Uu-F'e) binary alloy, and Figures 23 and 2b are rolling diagrams of the alloy of the present invention containing Fe1 after 50φ cold working. Optical microscopic structure photograph (X200
), Figure 3 is a side view showing the shape and dimensions of the test suite for the W song, and Figures 4a to 4d show the evaluation criteria for the test results for the W song. ), Figures 5a to 5C are photographs showing the surface condition of the sample after the corrosion test, Figures 6a to 6
Figure 0 is a sketch of Figures 5a to 5c, Figure 7 is an isochronous heating curve in a heat resistance test, and Figure 8 is a curve showing changes in hardness depending on holding time during isothermal heating at 500°C. . Agent Patent Attorney Isao Fujimoto Agent Patent Attorney Takeo Goto Naka 1 Figure 3 Kasumi Figure 2a Rolled surface Figure 2b Rolled parallel cross section Figure 4a Evaluation A Figure '4B Evaluation 13
4th (: Figure Evaluation C Figure 4d Evaluation Figure 5a 2.5"Fe Figure 5b 2::':""5'Fcto0',:,6
M&S i Figure 5a 1oFe Procedural Amendment (Method) September 28, 1980 Commissioner of the Japan Patent Office 1. Indication of the case 1986 Patent Application No. 86684 2. Name of the invention High strength Cu-top for conductive use e Alloy 6, Relationship with the person making the amendment Patent applicant address Chiba Prefecture Chiyo City Chiyo Taipei 5-4-8 Name
Hisato Watanabe 4, agent 106 phone 05-274-! 1466 Address No. 2 Parker Building Annex, 2-16 So, Nihonbashi, Chuo-ku, Tokyo August 10, 1981 (Delivery date B/60, 1981, Detailed description of the invention in the specification to be amended) Column, Column for brief explanation of drawings, Drawing Z Contents of amendments Contents of amendments as shown in the attached sheet (1) [-C, JJ
The following four ranks were decided. "of[
It was ranked as 4 ranks: 'C and IJ. The evaluation criteria was determined by visually comparing test specimens of 2 and 51'e alloys, which were used for comparison, into four grades, A and IJ.'' (2) In the same No. 19 Tei lines 15 to 17 (same page Shimoba et al. lines 4 to last line), "experimental results... clearly" should be replaced with r experimental results. 1 shown in Figures 4a, 4b, 5a, 5b, 6a and 6b, 2.5i'e, 2.5Fe + 0.6 Mg2Si, respectively.
Figures 4b, 5b and 6b are standard specimens of 10Fe alloy.
e10.6Mg2Si OJ:10Fe alloy with humidity 9
It's clear that you're in the same state as if you were left alone in a 0%) atmosphere for 72 hours.'' (3) On page 20, lines 7 to 9, “On the other hand,...
...is shown. ” will be deleted. (4) "Figure 7" at the end of page 21 of the same page I' 73.71
), Figure 70”. (5) Change “Figure 8” in the second line of page 24 to “Figure 88.8b.”
and Figure 80”. (6) "It is a curved line indicating the shape dimension" in the 16th line to the 27th line 2nd line on page 26. Side view showing the "shaped dimension", No. 4a, 4b , 5a, 5b, Oa and 6
Figure b is a sketch diagram showing the surface condition of the sample after the corrosion test.
Figures 7a, 7'b and 7c are isochronous υ1 thermal curves in the heat resistance test, and Figures 8a, 81] and 80 are also based on the holding time of isothermal heating at 500°C. 1 is a curve showing changes in hardness. ” he corrected. (7) Figures 4a, it), 4C14d, and 5a, 5b, and 50 of the drawings attached to this application are deleted. (8) Figures 28.2b and 6a- in the drawings attached to this application
Figures 2a, 2b, 4d, 4b, 5a, 5b attached to Amendment 4 of this procedure, all of Figure 60, Figure 7, and Figure 8.
Figures 6a, 6b, 7a, 7b, 7c and 88.8
b, g Replace with figure c. (Note) Reference photos 1a, 1b, 1c, xcl and reference photos 2a, 2b, 2c should be submitted as separate sheets. Figure 22 Figure 40 Figure 4b Figure 5o Figure 5b Figure 6o Figure 6b

Claims (1)

【特許請求の範囲】 (1)  重量でFe5−ts%で残部がCuと不可避
的不純物からなり、析出処理後50%冷間加工を行なっ
た状態での導電率が1Aesss係以上、引張強さが6
0kg/I[12以上で半田付は特性75K J 18
基準の拡がり率で80%以上をMすることを特徴とする
導電用高力Cu −F e合金。 (2、特許請求の範囲第1項に記載の合金において、F
eが6−12%で導電率力IACS 60 % 以上で
あることを特徴とする導電用重力Cu−Fe合金。 (3)特許請求の範囲第1項に記載の合金において、さ
らにミツシュメタル0.02〜0.1%を含有すること
によって鋳造性と冷間加工性が改良されていることを特
徴とする導゛亀用筒力Cu−F e合金。 (4)  特許請求の範囲第2唄に記載の合金において
、さらにMy2S i q O,3〜0,6%含有し引
張強さが62kg /rr++n2以−ヒであることを
特徴とする導電用高力Cu −F’ e合金。
[Scope of Claims] (1) Fe5-ts% by weight, the balance being Cu and unavoidable impurities, having an electrical conductivity of 1Aesss or higher after 50% cold working after precipitation treatment, and a tensile strength. is 6
0kg/I[12 or more soldering characteristic 75K J 18
A high-strength Cu-Fe alloy for conductive use, characterized by a standard spreading rate of 80% or more. (2. In the alloy according to claim 1, F
A gravity Cu-Fe alloy for electrical conduction, characterized in that e is 6-12% and the conductivity IACS is 60% or more. (3) An alloy according to claim 1, characterized in that castability and cold workability are improved by further containing 0.02 to 0.1% of mitsch metal. Turtle cylinder force Cu-Fe alloy. (4) An alloy for conductivity according to claim 2, further containing 3 to 0.6% My2SiqO and having a tensile strength of 62 kg/rr++n2 or more. force Cu-F'e alloy.
JP8668483A 1983-05-19 1983-05-19 High-strength cu-fe alloy for electric conduction Granted JPS59215445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8668483A JPS59215445A (en) 1983-05-19 1983-05-19 High-strength cu-fe alloy for electric conduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8668483A JPS59215445A (en) 1983-05-19 1983-05-19 High-strength cu-fe alloy for electric conduction

Publications (2)

Publication Number Publication Date
JPS59215445A true JPS59215445A (en) 1984-12-05
JPS6320291B2 JPS6320291B2 (en) 1988-04-27

Family

ID=13893827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8668483A Granted JPS59215445A (en) 1983-05-19 1983-05-19 High-strength cu-fe alloy for electric conduction

Country Status (1)

Country Link
JP (1) JPS59215445A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283129A (en) * 2005-03-31 2006-10-19 Nikko Kinzoku Kk High strength and high conductivity copper alloy, copper alloy spring material, copper alloy foil, and method for producing high strength and high conductivity copper alloy
JP5761400B1 (en) * 2014-02-21 2015-08-12 株式会社オートネットワーク技術研究所 Wire for connector pin, method for manufacturing the same, and connector
CN114231789A (en) * 2021-12-20 2022-03-25 清远楚江铜业有限公司 Processing technology of copper strip for LED

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283129A (en) * 2005-03-31 2006-10-19 Nikko Kinzoku Kk High strength and high conductivity copper alloy, copper alloy spring material, copper alloy foil, and method for producing high strength and high conductivity copper alloy
JP4601063B2 (en) * 2005-03-31 2010-12-22 Jx日鉱日石金属株式会社 High strength and high conductivity copper alloy, copper alloy spring material and copper alloy foil, and method for producing high strength and high conductivity copper alloy
JP5761400B1 (en) * 2014-02-21 2015-08-12 株式会社オートネットワーク技術研究所 Wire for connector pin, method for manufacturing the same, and connector
CN114231789A (en) * 2021-12-20 2022-03-25 清远楚江铜业有限公司 Processing technology of copper strip for LED

Also Published As

Publication number Publication date
JPS6320291B2 (en) 1988-04-27

Similar Documents

Publication Publication Date Title
US5863493A (en) Lead-free solder compositions
Shi et al. Investigation of rare earth-doped BiAg high-temperature solders
JP5191725B2 (en) Cu-Zn-Sn based copper alloy sheet, manufacturing method thereof, and connector
KR100352213B1 (en) Leadless free-cutting copper alloy
US6361742B2 (en) Solder alloy composition
JP5075438B2 (en) Cu-Ni-Sn-P copper alloy sheet and method for producing the same
CA1241897A (en) Processing of copper alloys
JP2014527578A (en) Copper alloy
JP5132467B2 (en) Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength
Liu et al. Development of creep-resistant, nanosized Ag particle-reinforced Sn-Pb composite solders
US3364016A (en) Copper alloys for springs
JP4810704B2 (en) Method for producing Cu-Ni-Si-Zn-based copper alloy having excellent resistance to stress corrosion cracking
JPH10314980A (en) Solder material
JPS59215445A (en) High-strength cu-fe alloy for electric conduction
Galib et al. Study of off-eutectic Zn–xMg high temperature solder alloys
Choi et al. Effects of Pb contamination on the eutectic Sn‐Ag solder joint
EL‐Bahay et al. Study of the mechanical and thermal properties of Sn–5 wt% Sb solder alloy at two annealing temperatures
Kobayashi et al. Tensile and fatigue properties of miniature size specimens of Sn-5Sb lead-free solder
Hammad et al. Advancement solidification microstructure and mechanical properties of Sn–2.0 Ag–0.5 Cu alloy by applying a rotary magnetic field
JPS5841782B2 (en) IC lead material
JP2001214226A (en) Copper base alloy for terminal, alloy bar thereof and producing method for the alloy bar
Breyer et al. Liquid metal embrittlement of 4145 steel by lead-tin and lead-antimony alloys
JP4568092B2 (en) Cu-Ni-Ti copper alloy and heat sink
US3373016A (en) Brazing alloy
Mhd Noor et al. Effect of fluxes on Sn-Zn-Bi solder alloys on copper substrate