JPS5921542A - Coating material for optical glass fiber - Google Patents

Coating material for optical glass fiber

Info

Publication number
JPS5921542A
JPS5921542A JP57129405A JP12940582A JPS5921542A JP S5921542 A JPS5921542 A JP S5921542A JP 57129405 A JP57129405 A JP 57129405A JP 12940582 A JP12940582 A JP 12940582A JP S5921542 A JPS5921542 A JP S5921542A
Authority
JP
Japan
Prior art keywords
optical fiber
epoxy resin
flexible
layer
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57129405A
Other languages
Japanese (ja)
Inventor
Mitsuo Yoshihara
吉原 三男
Keichu Morikawa
森川 敬忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP57129405A priority Critical patent/JPS5921542A/en
Publication of JPS5921542A publication Critical patent/JPS5921542A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To obtain the titled material having low viscosity, superior adhesive strength to an optical fiber and a high curring rate and giving a flexible resin coat, by blending a specified epoxy resin with a salt of Lewis acid. CONSTITUTION:A coating material obtd. by blending an epoxy resin contg. >=4C aliphatic epoxy resin having two or more epoxy groups in the moelcule such as long-chain aliphatic diglycidyl ether of 1,4-butanediol or diglycidyl ether of polyether polyol having >=200 average mol.wt. as the principal component with a salt of Lewis acid such as the diazonium salt of Lewis acid is used as a material for forming an intermediate layer which is more flexible than a surface layer between an optical glass fiber and the surface layer covering the fiber and having superior wear resistance such as a polyethylene or polyamide resin layer. The coating materil has low viscosity, superior adhesive strength to the optical fiber and a high curing rate, and the resulting resin coat is flexible.

Description

【発明の詳細な説明】 この発明は光伝送用の光学ガラスフアイバを被覆するた
めの材料に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to materials for coating optical glass fibers for light transmission.

光伝送に用いられる光学ガラスフアイバ(以下、単に光
フアイバという)は、脆く、傷がつきやすいうえに可と
う性に乏しいので、このような傷が原因になつてわずか
な外力によつても容易に破壊する。したがつて、従来よ
り、光フアイバはガラス棒などから製造した直後にその
表面に樹脂被覆が施されている。
Optical glass fibers (hereinafter simply referred to as optical fibers) used for optical transmission are fragile, easily damaged, and have poor flexibility. destroy it. Therefore, conventionally, an optical fiber is coated with a resin on its surface immediately after being manufactured from a glass rod or the like.

このような樹脂被覆のひとつとして、光フアイバの表面
に耐摩耗性にすぐれるポリアミド樹脂やポリエチレンの
如き表面層を設けると共にこの層と光フアイバとの間に
さらに上記層に較べて柔軟な中間層を設けたものが知ら
れている。上記中間層は、光フアイバの初期強度を高め
るためのプライマー層として、または硬い表面層を厚く
したときに光フアイバに与える影響を緩和するためのバ
ツフアー層として、あるいは上記プライマー層とバツフ
アー層とを兼ねた層として、機能するものである。
One such resin coating is to provide a surface layer such as polyamide resin or polyethylene, which has excellent abrasion resistance, on the surface of the optical fiber, and an intermediate layer that is more flexible than the above layer between this layer and the optical fiber. It is known that there is a The intermediate layer may be used as a primer layer to increase the initial strength of the optical fiber, or as a buffer layer to reduce the effect on the optical fiber when the hard surface layer is thickened, or as a combination of the primer layer and buffer layer. It functions as a double layer.

従来、かかる中間層を形成するための材料としては、ウ
レタン樹脂や一般のエポキシ樹脂の如き熱硬化タイプの
ものが用いられているが、硬化に長時間を要するため生
産性に劣るほか、硬化不足に起因して光フアイバとの密
着性が充分なものとならず、また柔軟性の面でも問題が
あり、このため側圧による伝送特性の低下か著しいなど
長期信頼性に欠ける憾みがあつた。
Conventionally, thermosetting materials such as urethane resins and general epoxy resins have been used to form such intermediate layers, but they require a long time to cure, resulting in poor productivity and poor curing. Due to this, the adhesion with the optical fiber was not sufficient, and there were also problems in terms of flexibility, and as a result, the transmission characteristics were significantly deteriorated due to lateral pressure, resulting in a lack of long-term reliability.

また、上記材料に代わるものとして、エポキシアクリレ
ートの如き紫外線硬化タイプのものが提案されているが
、この種の材料は空気中の酸素によつて重合硬化反応が
阻害されやすく、しかも硬化時の容積収縮率が大きいた
め、やはり生産性や光フアイバとの密着性に劣り、また
柔軟性の面でもいまひとつ充分なものとはいえなかつた
Furthermore, as an alternative to the above-mentioned materials, ultraviolet curing type materials such as epoxy acrylate have been proposed, but the polymerization and curing reaction of these types of materials is easily inhibited by oxygen in the air, and the volume at the time of curing is Due to the large shrinkage rate, productivity and adhesion to optical fibers were poor, and flexibility was still insufficient.

この発明は、上記の問題を解決するためになされたもの
であつて、とくに低粘度で光フアイバとの密着性にすぐ
れると共に硬化速度が速くさらに得られる樹脂被覆が柔
軟である光フアイバ用被覆材料を提供することを目的と
している。
The present invention was made to solve the above problems, and in particular, the coating for optical fiber has a low viscosity, excellent adhesion to the optical fiber, a fast curing speed, and a flexible resin coating. The purpose is to provide materials.

すなわち、この発明は、光フアイバとこれを取り囲む耐
摩耗性にすぐれる表面層との間に上記層に較べて柔軟な
中間層を設けた構造の被覆体における上記中間層を形成
するための材料であつて、分子内に2個以上のエポキシ
基を有する炭素数4以上の脂肪族エポキシ樹脂を主体と
したエポキシ樹脂にルイス酸塩を配合したことを特徴と
する光硬化型の光フアイバ用被覆材料に係るものである
That is, the present invention provides a material for forming the intermediate layer in a covering structure in which an intermediate layer, which is more flexible than the above layer, is provided between an optical fiber and a surrounding surface layer having excellent abrasion resistance. A photocurable coating for optical fiber, characterized in that a Lewis acid salt is blended into an epoxy resin mainly composed of an aliphatic epoxy resin having 4 or more carbon atoms and having 2 or more epoxy groups in the molecule. It is related to materials.

この発明の上記被覆材料は、光フアイバ用として好適な
粘度に調整でき、かつ光フアイバに施したのち紫外線な
どの光を照射することによつて空気中の酸素による重合
阻害現象を生じることなく速やかに硬化させることがで
き、その硬化速度は従来の熱硬化タイプおよび紫外線硬
化タイプのいずれに較べても著しく速くなる。また、硬
化時の容積収縮率は小さく硬化収縮に起因した内部歪を
生じさせる心配が全くない。
The coating material of the present invention can be adjusted to a suitable viscosity for optical fibers, and can be quickly applied to optical fibers and then irradiated with light such as ultraviolet rays without causing polymerization inhibition due to oxygen in the air. The curing speed is significantly faster than that of conventional heat curing types and ultraviolet curing types. In addition, the volumetric shrinkage rate during curing is small, and there is no concern that internal distortion will occur due to curing shrinkage.

このように、この発明の被覆材料によれば、光フアイバ
被覆体の生産性を大きく向上できると共に、光フアイバ
と中間層との密着性を改善することができる。しかもこ
のようにして形成される中間層はその柔軟性にすぐれて
おり、これと上記良好な密着性とにより、光フアイバの
伝送特性に非常に良好な結果を与える。
As described above, according to the coating material of the present invention, the productivity of the optical fiber coating can be greatly improved, and the adhesion between the optical fiber and the intermediate layer can be improved. Moreover, the intermediate layer formed in this manner has excellent flexibility, and this and the above-mentioned good adhesion give very good results to the transmission characteristics of the optical fiber.

この発明において用いられるエポキシ樹脂は、分子内に
2個以上のエポキシ基を有する炭素数4以上の脂肪族エ
ポキシ樹脂を主体としたものであり、かかるエポキシ樹
脂を用いることによつて樹脂被覆の柔軟性に好結果が得
られる。上記脂肪族エポキシ樹脂は直鎖状であつても分
枝状であつてもよく、エーテル型、エステル型の各種タ
イプのものが含まれる。具体的には、1・4−ブタンジ
オール、1・5−ヘプタンジオール、1・6−ヘキサン
ジオールとの長鎖脂肪族ジグリシジルエーテル、平均分
子量200以上のポリエーテルポリオールのジグリシジ
ルエーテルなどが挙げられる。
The epoxy resin used in this invention is mainly an aliphatic epoxy resin having 4 or more carbon atoms and having 2 or more epoxy groups in the molecule, and by using such an epoxy resin, the flexibility of the resin coating can be improved. Good results in sex. The above-mentioned aliphatic epoxy resin may be linear or branched, and includes various types such as ether type and ester type. Specifically, long-chain aliphatic diglycidyl ethers with 1,4-butanediol, 1,5-heptanediol, and 1,6-hexanediol, and diglycidyl ethers of polyether polyols with an average molecular weight of 200 or more are listed. It will be done.

このような脂肪族エポキシ樹脂と共に、中間層の強度(
耐摩耗性)を向上させる目的で、芳香族エポキシ樹脂、
脂環式エポキシ樹脂、複素環式エポキシ樹脂などの他の
エポキシ樹子を併用しても差しつかえない。しかし、そ
の併用割合は、脂肪族エポキシ樹脂の前記特徴を損わな
いように、50重量%未満、好適には40重量%以下と
するのが望ましい。
Along with such aliphatic epoxy resins, the strength of the intermediate layer (
Aromatic epoxy resin,
Other epoxy resins such as alicyclic epoxy resins and heterocyclic epoxy resins may also be used in combination. However, in order not to impair the characteristics of the aliphatic epoxy resin, it is desirable that the proportion thereof be less than 50% by weight, preferably 40% by weight or less.

この発明において上述のエポキシ樹脂に配合するルイス
酸塩は、光重合開始剤として作用するものであり、具体
的には、つぎの一般式;(式中、Rは水素、塩素、臭素
、メチル基、メトキシ基、水酸基、N(CH3)2など
の一価の基である) で表わされるルイス酸ジアゾニウム塩、ルイス酸ヨード
ニウム塩、ルイス酸スルホニウム塩などが挙げられる。
In this invention, the Lewis acid salt blended into the above-mentioned epoxy resin acts as a photopolymerization initiator, and specifically, it has the following general formula; (wherein R is hydrogen, chlorine, bromine, or methyl group) , a methoxy group, a hydroxyl group, or a monovalent group such as N(CH3)2).

配合量は、エポキシ樹脂100重量部に対して通常0.
1〜10重量部程度である。
The blending amount is usually 0.00 parts by weight per 100 parts by weight of the epoxy resin.
It is about 1 to 10 parts by weight.

この光フアイバ用被覆材料には、以上の成分のほか、必
要に応じてアクリル樹脂、ポリアミド樹脂、ポリエーテ
ル、ポリウレタン、ポリアミドイミド、シリコーン樹脂
、フエノール樹脂などの各種の変性用樹脂や、硬化促進
剤、有機ケイ素化合物、界面活性剤などの各種添加剤を
配合してもよい。
In addition to the above-mentioned components, this optical fiber coating material also contains various modifying resins such as acrylic resin, polyamide resin, polyether, polyurethane, polyamideimide, silicone resin, and phenol resin, as well as a curing accelerator. , an organosilicon compound, a surfactant, and other various additives may be added.

この発明の光フアイバ用被覆材料を用いて実際に光フア
イバを被覆するには、従来公知の方法に準じて行なえば
よく、一般には紡糸工程に引き続く工程で光フアイバの
表面にこの発明の被覆材料を塗布したのち、紫外線など
の光を照射して重合硬化させる。このときの厚みは、プ
ライマー層であれば薄くまたバツフアー層であれば比較
的厚くされるが、一般には20〜150μ程度の範囲か
ら適宜選択される。このようにして中間層を形成したの
ち、さらにその表面にポリエチレンやポリアミド樹脂な
どの硬質で耐摩耗性にすぐれる表面層を設けることによ
り、目的とする光フアイバ被覆体を得ることができる。
In order to actually coat an optical fiber with the optical fiber coating material of the present invention, it may be carried out according to a conventionally known method, and generally, the coating material of the present invention is coated on the surface of the optical fiber in a process subsequent to the spinning process. After coating, it is polymerized and cured by irradiation with light such as ultraviolet rays. The thickness at this time is thin in the case of a primer layer and relatively thick in the case of a buffer layer, but is generally appropriately selected from a range of about 20 to 150 .mu.m. After forming the intermediate layer in this way, the desired optical fiber coating can be obtained by further providing a hard surface layer of polyethylene, polyamide resin, or the like with excellent abrasion resistance on the surface of the intermediate layer.

以上詳述したとおり、この発明の光フアイバ用被覆材料
によれば、光フアイバとこれを取り囲む耐摩耗性にすぐ
れる表面層との間に上記層に較べて柔軟な中間層を設け
た構造の光フアイバ被覆体の生産性、上記中間層の柔軟
性および光フアイバに対する密着性をいずれも向上させ
ることができる。
As detailed above, the optical fiber coating material of the present invention has a structure in which an intermediate layer that is more flexible than the above layer is provided between the optical fiber and the surrounding surface layer that has excellent wear resistance. The productivity of the optical fiber coating, the flexibility of the intermediate layer, and the adhesion to the optical fiber can all be improved.

以下に、この発明の実施例を記載してより具体的に説明
する。なお、以下において部とあるのは重量部を意味す
るものとする。
EXAMPLES Below, examples of the present invention will be described in more detail. In addition, in the following, parts shall mean parts by weight.

実施例1 平均分子量300のポリプロピレングリコールジグリシ
ジルエーテル70部とEpon1004(シエル石油社
製のビスフエノールA型エポキシ樹脂)30部とに、四
フツ化ホウ素の4−メチルフエニルジアゾニウム塩3部
を溶解して、この発明の光フアイバ用被覆材料とした。
Example 1 3 parts of 4-methylphenyldiazonium salt of boron tetrafluoride was dissolved in 70 parts of polypropylene glycol diglycidyl ether with an average molecular weight of 300 and 30 parts of Epon 1004 (bisphenol A type epoxy resin manufactured by Shell Oil Co.) Thus, the optical fiber coating material of the present invention was obtained.

実施例2 Epon871(シエル石油社製のダイマー酸グリシジ
ルエステル;脂肪族エポキシ樹脂)50部と1・4−ブ
タンジオールジグリシジルエーテル50部とに、四フツ
化ホウ素のヨードニウム塩3部を溶解して、この発明の
光フアイバ用被覆材料とした。
Example 2 3 parts of iodonium salt of boron tetrafluoride was dissolved in 50 parts of Epon 871 (dimer acid glycidyl ester manufactured by Shell Oil Co., Ltd.; aliphatic epoxy resin) and 50 parts of 1,4-butanediol diglycidyl ether. , the optical fiber coating material of the present invention.

実施例3 平均分子量600のポリプロピレングリコールジグリシ
ジルエーテル70部とEpon828(シエル石油社製
のビスフエノールA型エポキシ樹脂)30部とに、四フ
ツ化ホウ素のスルホニウム塩3部を溶解して、この発明
の光フアイバ用被覆材料とした。
Example 3 3 parts of a sulfonium salt of boron tetrafluoride was dissolved in 70 parts of polypropylene glycol diglycidyl ether having an average molecular weight of 600 and 30 parts of Epon 828 (bisphenol A type epoxy resin manufactured by Shell Oil Co., Ltd.). It was used as a coating material for optical fibers.

比較例 ビスフエノールAジグリシジルエーテルジアクリレート
30部とポリエチレングリコール(平均分子量400)
ジアクリレート70部とに、ベンゾインイソブチルエー
テル3部を溶解して、光フアイバ用被覆材料とした。
Comparative Example 30 parts of bisphenol A diglycidyl ether diacrylate and polyethylene glycol (average molecular weight 400)
An optical fiber coating material was prepared by dissolving 3 parts of benzoin isobutyl ether in 70 parts of diacrylate.

上記実施例1〜3および比較例の各材料の特性を調べた
ところ、つぎの表に示されるとおりであつた。
When the characteristics of each material of Examples 1 to 3 and Comparative Example were investigated, they were as shown in the following table.

1)ガラス板上に50μ厚で塗布したのち、80W/c
m×2燈の高圧水銀ランプで光硬化させたときの硬化速
度。
1) After coating on a glass plate with a thickness of 50μ, 80W/c
Curing speed when photocuring with a high-pressure mercury lamp of m x 2 lamps.

2)コンベアスピード10m/分で0.3mm厚のシー
トを作製し、10枚重ねて測定した。
2) 0.3 mm thick sheets were produced at a conveyor speed of 10 m/min, and 10 sheets were stacked and measured.

3)ガラス板上にアプリケータにて50μ厚で塗布し、
コンベアスピード10m/分で硬化させ、ごばん目テー
プ剥離試験を行つた。
3) Apply it on a glass plate with an applicator to a thickness of 50μ,
It was cured at a conveyor speed of 10 m/min, and a cross-cut tape peeling test was conducted.

表中の数値は、分母が試料個数、分子が剥離されなかつ
たものの個数である。
In the numerical values in the table, the denominator is the number of samples and the numerator is the number of samples that were not peeled off.

つぎに、実施例1および比較例の材料につき、実際に光
フアイバの被覆試験を行ない、その性能を評価した。結
果は下記に示されるとおりであつた。なお、本試験では
、簡略のため、中間層に相当する被覆のみを施して行な
つた。中間層上にさらにポリエチレンなどの表面層を設
けたときの性能は、上記試験結果から充分に予測できる
ためである。
Next, the materials of Example 1 and Comparative Example were actually subjected to an optical fiber coating test to evaluate their performance. The results were as shown below. In this test, for simplicity, only a coating corresponding to the intermediate layer was applied. This is because the performance when a surface layer such as polyethylene is further provided on the intermediate layer can be sufficiently predicted from the above test results.

試験例1 50m/分の速度で紡糸した直径125μmの光フアイ
バの表面に、紡糸工程に引き続く工程において、実施例
1に示した被覆材料を塗布したのち、紫外線(ランプ出
力2KW2本)を照射して硬化させた。被覆後の外径は
約200μmであり、表面は均一であつた。また、破断
強度は5.0Kgであり、−40℃まで伝送損失の増加
は認められなかつた。
Test Example 1 In a step subsequent to the spinning process, the coating material shown in Example 1 was applied to the surface of an optical fiber with a diameter of 125 μm spun at a speed of 50 m/min, and then ultraviolet rays (two lamps with an output of 2 KW) were irradiated. and cured. The outer diameter after coating was approximately 200 μm, and the surface was uniform. Moreover, the breaking strength was 5.0 kg, and no increase in transmission loss was observed up to -40°C.

試験例2 50m/分の速度で紡糸した直径125μmの光フアイ
バの表面に、紡糸工程に引き続く工程において、比較例
に示した被覆材料を塗布したのち、試験例1の場合と同
様にして硬化させた。被覆後の外径は約200μmであ
り、表面は粘着感が残つていた。また、強度は3〜5K
gとばらついており、−20℃以下では伝送損失の急激
な増加が認められた。
Test Example 2 In a step subsequent to the spinning process, the coating material shown in the comparative example was applied to the surface of an optical fiber with a diameter of 125 μm spun at a speed of 50 m/min, and then cured in the same manner as in Test Example 1. Ta. The outer diameter after coating was approximately 200 μm, and the surface remained sticky. Also, the strength is 3-5K
g, and a rapid increase in transmission loss was observed below -20°C.

上述のとおり、この発明の光フアイバ用被覆材料は、硬
化速度が速いため光フアイバの紡糸工程に引き続く工程
において速やかにかつ密着良好に被覆でき、また硬化後
の柔軟性に富むものであるため、この上にさらに耐摩耗
性にすぐれる表面層を設けることによつて、伝送特性に
すぐれる光フアイバ被覆体を得ることができる利点があ
る。
As mentioned above, the optical fiber coating material of the present invention has a fast curing speed, so it can be coated quickly and with good adhesion in the process subsequent to the optical fiber spinning process, and it is highly flexible after curing, so it has the following advantages: By further providing a surface layer with excellent abrasion resistance, there is an advantage that an optical fiber coating with excellent transmission characteristics can be obtained.

特許出願人 日東電気工業株式会社 代理人 弁理士 祢宜元邦夫Patent applicant: Nitto Electric Industry Co., Ltd. Agent Patent Attorney Moto Kunio Negi

Claims (1)

【特許請求の範囲】[Claims] (1)光学ガラスフアイバとこれを取り囲む耐摩耗性に
すぐれる表面層との間に上記層に較べて柔軟な中間層を
設けた構造の波覆体における上記中間層を形成するため
の材料であつて、分子内に2個以上のエポキシ基を有す
る炭素数4以上の脂肪族エポキシ樹脂を主体としたエポ
キシ樹脂にルイス酸塩を配合したことを特徴とする光硬
化型の光学ガラスフアイバ用被覆材料。
(1) A material for forming the intermediate layer in a corrugated body having a structure in which an intermediate layer that is more flexible than the above layer is provided between the optical glass fiber and the surrounding surface layer that has excellent wear resistance. A photocurable coating for optical glass fiber, characterized in that a Lewis acid salt is blended into an epoxy resin mainly consisting of an aliphatic epoxy resin having 4 or more carbon atoms and having 2 or more epoxy groups in the molecule. material.
JP57129405A 1982-07-23 1982-07-23 Coating material for optical glass fiber Pending JPS5921542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57129405A JPS5921542A (en) 1982-07-23 1982-07-23 Coating material for optical glass fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57129405A JPS5921542A (en) 1982-07-23 1982-07-23 Coating material for optical glass fiber

Publications (1)

Publication Number Publication Date
JPS5921542A true JPS5921542A (en) 1984-02-03

Family

ID=15008735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57129405A Pending JPS5921542A (en) 1982-07-23 1982-07-23 Coating material for optical glass fiber

Country Status (1)

Country Link
JP (1) JPS5921542A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4657779A (en) * 1986-03-19 1987-04-14 Desoto, Inc. Shrinkage-resistant ultraviolet-curing coatings
FR2727972A1 (en) * 1994-12-13 1996-06-14 Vetrotex France Sa SIZING COMPOSITION FOR GLASS WIRES, PROCESS USING THIS COMPOSITION AND RESULTING PRODUCTS
EP0722914A1 (en) * 1995-01-19 1996-07-24 Vetrotex France Sized glass fibres for organic material reinforcement
WO1997017304A1 (en) * 1995-11-07 1997-05-15 Vetrotex France Glass yarn sizing composition, method using same and resulting products
FR2743361A1 (en) * 1996-01-05 1997-07-11 Vetrotex France Sa Glass yarn sizing composition
FR2743362A1 (en) * 1996-01-05 1997-07-11 Vetrotex France Sa SIZING COMPOSITION FOR GLASS WIRES, PROCESS USING THIS COMPOSITION AND RESULTING PRODUCTS

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204847A (en) * 1982-05-25 1983-11-29 Hitachi Chem Co Ltd Preparation of optical fiber covered with resin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204847A (en) * 1982-05-25 1983-11-29 Hitachi Chem Co Ltd Preparation of optical fiber covered with resin

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4657779A (en) * 1986-03-19 1987-04-14 Desoto, Inc. Shrinkage-resistant ultraviolet-curing coatings
WO1987005540A1 (en) * 1986-03-19 1987-09-24 Desoto, Inc. Shrinkage-resistant ultraviolet-curing coatings
FR2727972A1 (en) * 1994-12-13 1996-06-14 Vetrotex France Sa SIZING COMPOSITION FOR GLASS WIRES, PROCESS USING THIS COMPOSITION AND RESULTING PRODUCTS
WO1996018683A1 (en) * 1994-12-13 1996-06-20 Vetrotex France Glass yarn sizing composition, method using same, and resulting products
US5882792A (en) * 1994-12-13 1999-03-16 Vetrotex France Sizing composition for glass threads, process using this composition and resulting products
EP0722914A1 (en) * 1995-01-19 1996-07-24 Vetrotex France Sized glass fibres for organic material reinforcement
FR2729654A1 (en) * 1995-01-19 1996-07-26 Vetrotex France Sa ENSIMES GLASS YARNS FOR STRENGTHENING ORGANIC MATERIALS
WO1997017304A1 (en) * 1995-11-07 1997-05-15 Vetrotex France Glass yarn sizing composition, method using same and resulting products
FR2743361A1 (en) * 1996-01-05 1997-07-11 Vetrotex France Sa Glass yarn sizing composition
FR2743362A1 (en) * 1996-01-05 1997-07-11 Vetrotex France Sa SIZING COMPOSITION FOR GLASS WIRES, PROCESS USING THIS COMPOSITION AND RESULTING PRODUCTS
WO1997025288A1 (en) * 1996-01-05 1997-07-17 Vetrotex France Glass yarn sizing composition, method using same and resulting products

Similar Documents

Publication Publication Date Title
KR100264705B1 (en) Optical disk and its manufacturing method
JPH0556297B2 (en)
JPH04298514A (en) Curable composition and optical fiber coated therewith
US4929051A (en) Optical glass fiber with a primary coating of organo-polysiloxanes containing acrylic acid ester groups
JPS5921542A (en) Coating material for optical glass fiber
US4639080A (en) Optical fibers coated with modified 1,4-polybutadienes
KR100460365B1 (en) Optical fiber equipped with cladding and method of manufacturing the same
JPH0445524B2 (en)
JP2008308589A (en) Curable composition and optical device using the same
KR100502993B1 (en) Optical adhesives for optical transmission parts
KR100748149B1 (en) Cationically photopolymerizable resin composition and optical disk surface protection material
CN110358487B (en) Low-shrinkage UV glue, preparation method and application
JPS647018B2 (en)
JP2529671B2 (en) Optical glass fiber with synthetic resin coating and curable elastomer-forming material
JPH038522B2 (en)
JP4837187B2 (en) Active energy ray-curable resin composition
JPS6220144B2 (en)
JPS6083908A (en) Coating material for optical glass fiber
JPH01201052A (en) Coating material for optical glass fiber
CN104950380B (en) A kind of optical fiber
JPH02219009A (en) Coated optical fiber
JPS632834A (en) Primary coating material for optical glass fiber
JP2003226558A (en) Electron beam curing type resin composition for coating optical fiber and coated optical fiber
JPH0818006B2 (en) Fluorine-containing low refractive index resin composition and its application
JPS6083909A (en) Coating material for optical glass fiber