JPS59213897A - Shield drilling apparatus - Google Patents

Shield drilling apparatus

Info

Publication number
JPS59213897A
JPS59213897A JP8504183A JP8504183A JPS59213897A JP S59213897 A JPS59213897 A JP S59213897A JP 8504183 A JP8504183 A JP 8504183A JP 8504183 A JP8504183 A JP 8504183A JP S59213897 A JPS59213897 A JP S59213897A
Authority
JP
Japan
Prior art keywords
face
chamber
air
foaming
cutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8504183A
Other languages
Japanese (ja)
Other versions
JPH0633716B2 (en
Inventor
義正 近藤
有 野沢
俊男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aoki Construction Co Ltd
Original Assignee
Aoki Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aoki Construction Co Ltd filed Critical Aoki Construction Co Ltd
Priority to JP58085041A priority Critical patent/JPH0633716B2/en
Publication of JPS59213897A publication Critical patent/JPS59213897A/en
Publication of JPH0633716B2 publication Critical patent/JPH0633716B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はシールドを使用する土庄系掘進機の前面の切羽
部及び切羽面と対向するチャンバー内に適量の気泡を圧
送する装置を有するシールド掘削装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shield excavator having a device for pumping an appropriate amount of air bubbles into a face portion at the front of a Tonosho type excavator using a shield and a chamber facing the face surface.

従来、シールド掘進機により滞水した砂質土層(砂れき
層を含む)を掘進する場合、切羽の安定は掘進機のチャ
ンバー内に掘削土砂を充満させることによって保とうと
している。ところが実際には、掘削土砂をチャンバー内
に充満させた状態をつくるのは非常に難しい上に、“地
下水のチャンバー内への流入もおさえることが難しいた
め、切羽の安定度が低く崩壕しやすい状態にある。また
内部S擦角の大きい土砂をチャンバー内に充満させた場
合、掘進機のカッターの回転抵抗が大きくなり、場合に
よってはカッターの回転が不能、あるいは極度に悪くな
る結果、掘進速度が著しく低下するという問題があった
Conventionally, when excavating a water-logged sandy soil layer (including a gravel layer) with a shield excavator, the stability of the face has been maintained by filling the chamber of the excavator with excavated soil. However, in reality, it is extremely difficult to create a condition in which the chamber is filled with excavated soil, and it is also difficult to prevent groundwater from flowing into the chamber, resulting in low stability of the face and the tendency to collapse. In addition, if the chamber is filled with earth and sand with a large internal S friction angle, the rotational resistance of the cutter of the excavation machine will increase, and in some cases, the rotation of the cutter will become impossible or extremely slow, resulting in a decrease in the excavation speed. There was a problem in that the value decreased significantly.

チャンバー内への地下水の流入防止及びカッター回転の
抵抗力を減少させる方法としては・、泥しよう材(水と
ベントナイト、粘土等の粘土鉱物との混合物)をチャン
バー内に注入して、掘削土と混合させることにより、掘
削土を泥ねい状にりで地下水のチャンバー内への流入を
防止−1かつカッターの回転抵抗を軽減する方法が従来
性われているが、切羽の水圧が高い場合、あるいは大礫
を含む滞水層の場合は十分止水することができず、チャ
ンバー内への地下水の流入を防止できないことがある。
One way to prevent groundwater from flowing into the chamber and reduce the resistance to cutter rotation is to inject muddy material (a mixture of water and clay minerals such as bentonite and clay) into the chamber, and mix it with excavated soil. Conventional methods have been used to prevent underground water from flowing into the chamber by mixing the excavated soil into a slurry and reduce the rotational resistance of the cutter, but when the water pressure at the face is high or In the case of an aqueous layer containing cobbles, it may not be possible to sufficiently stop the water, and it may not be possible to prevent groundwater from flowing into the chamber.

またこの方法による泥ねい状の混合土はPHが高くまた
泥ねい状のため、廃棄処理に困難を伴い、廃棄により建
設二次公害の発住を生じている。
In addition, the muddy mixed soil produced by this method has a high pH and is muddy, making disposal difficult and causing secondary construction pollution.

本発明は上述の問題点を解決するためなされたもので、
シールド掘進機のカッター前面に水に合っても消えにく
い空気泡を送り込んで空気泡の地中への侵入により、通
常の圧気工法よりも効果の高い圧気状態を作り、地下水
の切羽への流入を防ぎ、切羽の安定を図ると共に、チャ
ンバー内にも別系統で空気泡を注入して掘削上と混合さ
ゼ、混合土のぜん断力を低下させることによりカッター
の回転抵抗を軽減さけ、かつこの混合土をチャンバー及
びスクリュー内に充満させることにより、切羽のより一
層の安定を図ると共に、掘削土に難透水性、難透気性を
付与するものである。
The present invention was made to solve the above-mentioned problems.
Air bubbles that do not disappear even when exposed to water are sent to the front of the cutter of the shield excavator, and the air bubbles penetrate into the ground, creating a pressurized air condition that is more effective than the normal pressurized air construction method and preventing groundwater from flowing into the face. In addition to preventing and stabilizing the face, air bubbles are also injected into the chamber using a separate system to mix with the excavated soil, reducing the shear force of the mixed soil and reducing the rotational resistance of the cutter. By filling the chamber and screw with the mixed soil, the face is further stabilized, and the excavated soil has low water permeability and low air permeability.

実験結果によれば、砂礫分82%の地盤で気泡材を使用
した場合、通常の圧気工法で使用する空気量の約100
0分の1の気泡用の使用で十分圧気効果があった。
According to experimental results, when foam material is used on ground with a sand and gravel content of 82%, the amount of air used in the normal pressure air construction method is approximately 100%
It had a sufficient pressure effect even when used for 1/0 of a bubble.

また、マサ±(粗砂)と気泡とを体積Jtで、1:  
0.25の割合で混合すると、混合前において、スラン
プ7 cmのマV土がスランプ測定不能になるほどの流
動性を持つことが判った。このように気泡の混合により
土はせんj17i抵抗力を茗しく減する。
In addition, the volume Jt of masa ± (coarse sand) and air bubbles is 1:
It was found that when mixed at a ratio of 0.25, MAV soil with a slump of 7 cm had such fluidity that it was impossible to measure the slump before mixing. In this way, the mixing of air bubbles dramatically reduces the soil resistance.

J:た気泡を混合した混合土は、土捨場に運搬しC放置
づ−れば、気泡は自然に消滅して、通常の掘削上の状態
にもどるために、建設廃棄にともなって建設二次公害の
発すの心配がないという利点をもっている。
J: If the mixed soil mixed with air bubbles is transported to a soil dumping site and left alone, the air bubbles will naturally disappear and return to the normal excavation condition. It has the advantage of not having to worry about pollution.

本発明は上述のように、シールド掘進機のカッター前面
に水に強い空気泡を送り込んで通帛の圧気二「法より効
果の高い圧気状態を作って切羽の安定を(、Lかり、さ
らに別系統でチャンバー内に水に強い空気泡を送り、チ
ャンバー内のカッターの回転抵抗を軽減させ、この混合
土をチャンバー及びスクリュー内に充満させることによ
り、切羽のより一層の安定を図ると共に、掘削上に難透
水性及び難透気性を付与し、かつ批削土は廃棄しても建
設二次公害の発生の心配がないという公害対策上からも
有利なシールド掘削装置を提供することを目的とづるも
のである。
As described above, the present invention stabilizes the face by sending air bubbles that are resistant to water to the front of the cutter of the shield excavator to create a pressure state that is more effective than the conventional pressure method. The system sends air bubbles that are resistant to water into the chamber, reducing the rotational resistance of the cutter in the chamber, and filling the chamber and screw with this mixed soil, which further stabilizes the face and improves the stability of the excavation surface. The purpose of the present invention is to provide a shield excavation device which is advantageous from a pollution control point of view, which provides low water permeability and low air permeability to the ground, and eliminates the risk of secondary construction pollution even if the scraped soil is disposed of. It is something.

以下図面について本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

図中1は地盤、1aは立坑、2(第1図参照)はシール
ド掘進機、2′ (第2図参照)は推進用シールド掘進
機、3は切羽面、4は切羽面と対向するチャンバー、5
はスクリュー排土機、6(第1図参照)はセグメント、
7(第2図参照)は推進管、8は推進ジヤツキで、第1
図の場合は掘進機2とセグメント6の前端間に介装して
あり、第2図の場合は掘進機2′の後部と接続し゛て配
列した推進管7の立坑1a内の後端部を推進するように
配置しである。また9はスクリュ一式排土機5ど接続し
て設置した排土用コンベアーである。 −10は発泡装
置e1第1図の場合は立坑1a内に設け、第2図の場合
は地盤1上に設置しである。
In the figure, 1 is the ground, 1a is the shaft, 2 (see Figure 1) is the shield tunneling machine, 2' (see Figure 2) is the shield tunneling machine for propulsion, 3 is the face, and 4 is the chamber facing the face. , 5
is a screw earth remover, 6 (see Figure 1) is a segment,
7 (see Figure 2) is a propulsion pipe, 8 is a propulsion jack, and the first
In the case shown in the figure, the propulsion pipes 7 are installed between the front ends of the excavator 2 and the segment 6, and in the case of FIG. It is arranged so as to promote it. Further, 9 is an earth removal conveyor connected to the screw set earth removal machine 5. -10 is the foaming device e1 installed in the shaft 1a in the case of FIG. 1, and installed on the ground 1 in the case of FIG.

またスペ=スにより、1−ンネル坑内11に設置Jるこ
ともできる。発泡装置10からは送泡バイブ12で気泡
が送られ、このバイブ12を切羽注入バイブ13とチャ
ンバー内注入パイプ14に分岐してそれぞれに流■制御
弁15.15′を介挿してあり、切羽注入パイプ13に
は、切羽気泡圧力検出器16が取り付けである。シール
ド掘進機2.2′にはカッター圧力検出器11、スクリ
ュー排土圧力検出器18が取りイ・」()られて”いる
。19は前記lit進ジヤツキ8の変位検出器である。
Moreover, depending on the space, it can also be installed in the tunnel tunnel 11. Bubbles are sent from the foaming device 10 by a foaming vibrator 12, and this vibrator 12 is branched into a face injection vibe 13 and a chamber injection pipe 14, each of which has a flow control valve 15, 15' inserted. A face bubble pressure detector 16 is attached to the injection pipe 13 . The shield excavator 2.2' has a cutter pressure detector 11 and a screw discharge pressure detector 18. 19 is a displacement detector of the lit advance jack 8.

第3図は発泡装置100制御系統図を示づ゛もので、マ
イクロコンピュータ−20で気泡量とスクリュ一式n1
土機5のゲート5aの開度及びスクリュー5b  (第
1.2図参照)の回転数を制御する。21はマイクロコ
ンピュータ−20に入った各データーの統t1処理機能
を有するブロックである。22は切羽気泡圧力検出器1
6による切羽気泡圧Pの信号の増幅器であり、また23
は気泡液のタンクである。
FIG. 3 shows a control system diagram of the foaming device 100, in which the microcomputer 20 controls the amount of bubbles and the screw set n1.
The opening degree of the gate 5a of the earthen machine 5 and the rotation speed of the screw 5b (see Fig. 1.2) are controlled. Reference numeral 21 denotes a block having a t1 processing function for each data input to the microcomputer 20. 22 is face bubble pressure detector 1
6 is an amplifier for the signal of the face bubble pressure P, and 23
is a tank of bubble liquid.

第4図は発泡装置10の発泡機構の一例を示す回路ブロ
ック図で、20は前記マイクロコンピュータ−124は
各13号をアナログ信号からデジタル信号1−変換する
A/D変換器、25はマイコンから出力されるディジタ
ル信号をアナログ信号に変換する[〕/A変換器、26
.26′ は電子式無断変速制OII盤、27.27′
 は同期回転比例制御モータ、28.28′ はクラッ
ヂブレーキであり、切羽気泡圧Pの上限下限を制限する
ためのブレーキ装置である。29は可変ポンプで、その
送液管30には逆止弁31を介挿しである。32はコン
プレッサーで、このコンプレッサー32からの空気は送
気管33を介して発泡管34に送られ、ここで気泡液と
混合して空気泡が作られ、この気泡が気泡バイブ12に
よって坑内へ送られる。
FIG. 4 is a circuit block diagram showing an example of the foaming mechanism of the foaming device 10, in which the microcomputer 124 is an A/D converter that converts each number 13 from an analog signal to a digital signal, and 25 is a microcomputer. Converts the output digital signal into an analog signal []/A converter, 26
.. 26' is electronic variable speed control OII board, 27.27'
28, 28' is a synchronous rotation proportional control motor, and 28, 28' is a clutch brake, which is a braking device for limiting the upper and lower limits of the face bubble pressure P. Reference numeral 29 denotes a variable pump, and a check valve 31 is inserted into the liquid feeding pipe 30 of the variable pump. 32 is a compressor, and the air from this compressor 32 is sent to the foaming tube 34 via the air supply pipe 33, where it is mixed with the foam liquid to create air bubbles, and the air bubbles are sent into the mine by the bubble vibrator 12. .

なお前記タンク23内に入れて使用する発泡液としては
、界面活性剤に高吸水性ポリマーを添加したもの、また
はタンパク質系の起泡剤が適当であり、例えば、ポリオ
キシエチレンアルキルフェノールエーテル硫酸す1−リ
ウムを主成分とづるエスコー1−L(商品名)に高吸水
性ポリマー、例えばビニールアルコールアクリル酸塩共
重合体を主成分どするスミカゲル(商品名)あるいは、
ポリアクリル酸ソーダを主成分とづるアクアキープ(商
品名)を添加したもの、または、部分h1r水分解タン
パク質を主成分とするニスコートK(商品名〉等がある
The foaming liquid used in the tank 23 is suitably a surfactant with a superabsorbent polymer added thereto, or a protein-based foaming agent, such as polyoxyethylene alkylphenol ether sulfate 1 - Sumikagel (trade name), which consists of Esko 1-L (trade name) whose main component is Rium, and a super absorbent polymer such as vinyl alcohol acrylate copolymer, or
Examples include those to which Aqua Keep (trade name), whose main component is sodium polyacrylate, and Varnish Coat K (trade name), which has partial H1R water-splitting protein as its main component.

つぎに上述のように構成しハ本発明装置による工法の実
施例を説明する。この工法は掘進時、可変ポンプ29を
駆動しCタンク23内の発泡液を発泡管34に送り込む
と共に、コンプレッサー32により送気管33を介して
空気を発泡管34に送り込んで発泡させ、発泡した強い
空気泡を送泡バイブ12により掘進機2.2′のカッタ
ー前面の切羽面3、及びブ」7ンバー4内。に送り込む
。このようにづると通常の圧気工法より効果の高い圧気
状態が作られ、切羽3の安定が図れる。また、チャンバ
ー4内のカッターの回転抵抗を軽減さけることができる
上に、この混合上をチャンバー4及びスクリコー排十(
幾5内に充満させることにより、切羽3のより一層の安
定を図ると共に、掘削上に難透気性の状態を付与するこ
とができる。またこの気泡混合土砂は土捨場に放置すれ
ば自然に気泡が消滅して通常の掘削土砂と同様になるた
め、公害対策−F問題どなるおそれはない。
Next, an embodiment of the construction method using the apparatus of the present invention constructed as described above will be described. During excavation, this construction method drives the variable pump 29 to send the foaming liquid in the C tank 23 into the foaming tube 34, and at the same time, the compressor 32 sends air through the air pipe 33 to the foaming tube 34 to foam it, resulting in strong foaming. Air bubbles are sent to the face 3 in front of the cutter of the excavator 2.2' and the inside of the bubble 7 member 4 using the bubble-feeding vibrator 12. send to. In this way, a more effective pressurized air condition is created than with the normal pressurized air construction method, and the face 3 can be stabilized. In addition, it is possible to reduce the rotational resistance of the cutter in the chamber 4, and also to avoid reducing the rotational resistance of the cutter in the chamber 4.
By filling the hole 5, it is possible to further stabilize the face 3 and to provide a state of low air permeability on the excavation. In addition, if this air bubble mixed soil is left in a soil dumping site, the air bubbles will naturally disappear and it will become similar to ordinary excavated soil, so there is no risk of causing the pollution countermeasure-F problem.

またこの工法においては、シールド掘進時の切羽気泡圧
、カッター圧、スクリュー排土圧及び掘進速度のそれぞ
れのデータを随時マイクロコンピュ−ター20で取り、
それらを統計的に解析し、その解析結果に基いてカッタ
ー前面の切羽3への気泡注入量、及びチャンバー4内へ
の気泡注入量を制御llプると共に、スクリュー排土機
5の回転数及び開度も制御して、切羽気泡圧を一定に保
つと共に、カッターの回転抵抗も適度にして、最適な掘
進状態を作り出すよう制御するこ、とができる。
In addition, in this construction method, data on face bubble pressure, cutter pressure, screw earth removal pressure, and excavation speed are collected by the microcomputer 20 at any time during shield excavation.
These are analyzed statistically, and based on the analysis results, the amount of air bubbles injected into the cutter face 3 and into the chamber 4 are controlled, and the rotation speed of the screw earth remover 5 and the amount of air bubbles injected into the chamber 4 are controlled. By controlling the opening degree, the face bubble pressure can be kept constant, and the rotational resistance of the cutter can be moderated to create an optimal excavation state.

1なわち切羽気泡圧力検出器16、カッター圧力検出器
17、スクリコー111土圧力検出器18で各圧力を検
出し、また−推進ジヤツキ8による変位を変位検出器1
9で検出し、これらの出力信号をA/D変換器24でA
/D変換して、マイクロコンピュータ−20に送り込み
、これらのデータを統計的に解析し、その解析結果に基
いてマイク【]コンピューター20を介して最適制御信
号を電子式無断変速制御盤26.26′ に送り、これ
により同期回転比例制御モータ21.27′ の回転数
を変化させて可変ポンプ29の吐出量を制御りると共に
、コンプレッサー32からの空気量も制御することによ
り、発泡管34より発生ずる気泡量及び気泡液量と空気
量の混合比も変化させて@適値に調節することができる
1, each pressure is detected by a face bubble pressure detector 16, a cutter pressure detector 17, a scrico 111 and a soil pressure detector 18, and the displacement caused by the propulsion jack 8 is detected by a displacement detector 1.
9, and these output signals are A/D converter 24.
/D conversion and sent to the microcomputer 20, these data are statistically analyzed, and based on the analysis results, an optimal control signal is sent to the electronic variable speed control panel 26.26 via the microphone computer 20. ', thereby changing the rotational speed of the synchronous rotation proportional control motor 21, 27' to control the discharge amount of the variable pump 29, and also controlling the amount of air from the compressor 32. The amount of bubbles generated and the mixing ratio of the amount of bubble liquid and the amount of air can also be changed to adjust them to appropriate values.

また、発泡管34より送泡バイブ12で送られる気泡【
よ、切羽注入バイブ13とチャンバー4内への注入バイ
ブ14に分流し、それぞれの流量制御弁15.15′を
マイクロコンピュータ−20で制御づることにより気泡
量をrawし、切羽気泡圧を一定に保も、カッターの回
転抵抗を制御することができる。さらにこれらの調整を
精密にするために、スクリコ−T IJI土機5の回転
数及び開度も制御して最適な掘進状態を作り出づことが
できる。
In addition, air bubbles are sent from the foaming tube 34 by the foaming vibrator 12 [
Then, the flow is divided into the injection vibe 13 at the face and the injection vibe 14 into the chamber 4, and the flow rate control valves 15 and 15' of each are controlled by the microcomputer 20 to control the amount of bubbles raw and keep the bubble pressure at the face constant. The rotational resistance of the cutter can also be controlled. Furthermore, in order to make these adjustments more precise, the rotational speed and opening degree of the Scrico-T IJI earth machine 5 can also be controlled to create an optimal excavation state.

本発明装置は、上述の通りであるから、この装置によれ
ば、通常の圧気工法より効果の高い圧気状態を作り、切
羽の安定をはかると共に、チャンバー内のカッターの回
転抵抗を軽減して掘進性能を向上させ、混合土をチレン
バー及びスクリコー内に充満させることにより、切羽の
より一層の安定を図ることができるという効果が得られ
る。また掘削土に難透気性を付与覆ることがでさる土に
、この掘削土は産業廃棄物あつかいする必要がないから
、本発明は公害対策上からも非電に右利であるというす
ぐれた効果が得られる。
As described above, the device of the present invention creates a pressurized air condition that is more effective than the normal pressurized air method, stabilizes the face, and reduces the rotational resistance of the cutter in the chamber to allow excavation. By improving performance and filling the chillen bar and scrico with mixed soil, the effect of further stabilizing the face can be obtained. In addition, since the excavated soil can be covered with air-impermeability, there is no need to treat the excavated soil with industrial waste, so the present invention has an excellent effect in that it is advantageous for non-electronics in terms of pollution control. is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明装置による地盤の掘削状態
を示す立面面図、 第3図はその発泡装置の制御系統を示す略図、第4図は
その発泡装置の構成を示す略図である。 1・・・地盤      1a・・・立坑2・・・シー
ルド掘進機 2′・・・推進用シールド掘進機 3・・・切羽面     4・・・チャンバー5・・・
スクリュー排土機 6・・・セグメント    7・・・推進管8・・・t
Ii進ジVツキ   9・・・排土用コンベヤー10・
・・発泡装置    11・・・トンネル坑内12・・
・送泡パイプ   13・・・切羽注入パイプ14・・
・チャンバー内注入パイプ 15・・・流量制御弁(切羽側) 15′・・・流量制御弁(ヂャンバー内)16・・・切
羽気泡圧力検出器 17・・・カッター圧力検出器 18・・・スクリュー排土圧力検出器 19・・・変位検出器 20・・・マイクロコンピュータ− 21・・・データ処LrptfM能を有するブロック2
2・・・増幅器     23・・・気泡液タンク24
・・・Δ/D変換器  25・・・D/Δ変換器26・
・・電子式無斯変速制御m<気泡液量)26′電子式無
断変速制御盤(空気量)27・・・同期回転比例制御モ
ータ(気泡液■)27′同期回転比例制御モータ(空気
m)28・・・クラッチブレーキ(気泡液量)28′・
・・クラッチブレーキ(空気側)29・・・可変ポンプ
   30・・・送液管31・・・逆止弁     3
2・・・コンブυツサー33・・・送気管     3
4・・・発泡管35・・・送泡パイプ。
Figures 1 and 2 are elevational views showing the state of ground excavation by the device of the present invention, Figure 3 is a schematic diagram showing the control system of the foaming equipment, and Figure 4 is a schematic diagram showing the configuration of the foaming equipment. be. 1...Ground 1a...Shaft 2...Shield excavator 2'...Propulsion shield excavator 3...Face surface 4...Chamber 5...
Screw earth remover 6...Segment 7...Propulsion pipe 8...t
Ii Shinji V Tsuki 9...Earth removal conveyor 10.
...Foaming device 11...Tunnel underground 12...
- Foaming pipe 13... Face injection pipe 14...
・Chamber injection pipe 15...Flow rate control valve (face side) 15'...Flow rate control valve (inside the chamber) 16...Face bubble pressure detector 17...Cutter pressure detector 18...Screw Discharge pressure detector 19...Displacement detector 20...Microcomputer 21...Block 2 having data processing LrptfM function
2... Amplifier 23... Bubbly liquid tank 24
...Δ/D converter 25...D/Δ converter 26.
...Electronic variable speed control m<bubble liquid amount) 26'Electronic variable speed control panel (air amount) 27...Synchronous rotation proportional control motor (bubble liquid ■)27'Synchronous rotation proportional control motor (air m ) 28...Clutch brake (bubble liquid amount) 28'.
...Clutch brake (air side) 29...Variable pump 30...Liquid feed pipe 31...Check valve 3
2...Kombutsusa 33...Air pipe 3
4... Foaming pipe 35... Foaming pipe.

Claims (1)

【特許請求の範囲】[Claims] 1、シールド掘進機に付随させて発泡装置を設け、この
発泡装置で発泡した気泡をシールド掘進機の前面の切羽
部に圧送すると共に、チャンバー内にも気泡を圧送する
ようにし、これらの気泡の送泡量をシールド掘進機の掘
進状態に応じて制御できるように構成したことを特徴と
するシールド掘削装置。
1. A foaming device is attached to the shield tunneling machine, and the bubbles generated by this foaming device are forced to the front face of the shield tunneling machine, and the bubbles are also forced into the chamber. A shield excavation device characterized in that the amount of bubbles sent can be controlled according to the excavation state of the shield excavation machine.
JP58085041A 1983-05-17 1983-05-17 Shield drilling equipment Expired - Lifetime JPH0633716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58085041A JPH0633716B2 (en) 1983-05-17 1983-05-17 Shield drilling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58085041A JPH0633716B2 (en) 1983-05-17 1983-05-17 Shield drilling equipment

Publications (2)

Publication Number Publication Date
JPS59213897A true JPS59213897A (en) 1984-12-03
JPH0633716B2 JPH0633716B2 (en) 1994-05-02

Family

ID=13847598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58085041A Expired - Lifetime JPH0633716B2 (en) 1983-05-17 1983-05-17 Shield drilling equipment

Country Status (1)

Country Link
JP (1) JPH0633716B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61282597A (en) * 1985-06-05 1986-12-12 株式会社熊谷組 Foaming method and device for method of construction of shield excavation
JPS6375291A (en) * 1986-09-16 1988-04-05 株式会社大林組 Automatic excavation system of bubble shield machine
JPH05202693A (en) * 1992-01-23 1993-08-10 Ohbayashi Corp Mechanical shield excavation method using foaming agent
JP2006214189A (en) * 2005-02-04 2006-08-17 Ohbayashi Corp Additive injection method for use in shielding method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50103129A (en) * 1974-01-23 1975-08-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50103129A (en) * 1974-01-23 1975-08-14

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61282597A (en) * 1985-06-05 1986-12-12 株式会社熊谷組 Foaming method and device for method of construction of shield excavation
JPH0371560B2 (en) * 1985-06-05 1991-11-13 Kumagai Gumi Co Ltd
JPS6375291A (en) * 1986-09-16 1988-04-05 株式会社大林組 Automatic excavation system of bubble shield machine
JPH05202693A (en) * 1992-01-23 1993-08-10 Ohbayashi Corp Mechanical shield excavation method using foaming agent
JP2006214189A (en) * 2005-02-04 2006-08-17 Ohbayashi Corp Additive injection method for use in shielding method
JP4617909B2 (en) * 2005-02-04 2011-01-26 株式会社大林組 Injection method of additives in shield method

Also Published As

Publication number Publication date
JPH0633716B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
Jancsecz et al. Advantages of soil conditioning in shield tunnelling: experiences of LRTS Izmir
CA2281278C (en) Method for filling voids with aggregate material
US3645101A (en) Method and apparatus for constructing impervious underground walls
Langmaack Advanced technology of soil conditioning in EPB shield tunnelling
US20020123433A1 (en) Composition and method for dual function soil grouting excavating or boring fluid
WO1998034994A1 (en) Composition and method for a dual-function soil-grouting excavating or boring fluid
JPS59213897A (en) Shield drilling apparatus
CN112010669A (en) Underground cavity filling method and system
US5180252A (en) Earth pressure system shield process
JPS59213896A (en) Shield drilling construction method
JP3168501B2 (en) Shielding method for Dotan layer
JPH10317878A (en) Mud shield method
JP3124368B2 (en) Earth pressure shield excavation method
JPH10169365A (en) Method of shield tunneling method for weak soil and drilling-fluid additive
JPS6349036B2 (en)
JPS6349035B2 (en)
JP2001207436A (en) Slurry composition
JPS6128699A (en) Shield drilling method using muddy water having clogging material for sand and gravel foundation
JPH0548332B2 (en)
JPH0711868A (en) Fluidizing method of shield excavated soil
JP2001049994A (en) Tunnel back-filling construction method of using surplus soil
JP2686514B2 (en) Non-excavation propulsion method of sludge injection type
JP2000336648A (en) Long-sized member burying or driving method
JPS61137994A (en) Soil pressure shield excavation method
JPH02266090A (en) Construction with grout