JPS59213896A - Shield drilling construction method - Google Patents

Shield drilling construction method

Info

Publication number
JPS59213896A
JPS59213896A JP8504083A JP8504083A JPS59213896A JP S59213896 A JPS59213896 A JP S59213896A JP 8504083 A JP8504083 A JP 8504083A JP 8504083 A JP8504083 A JP 8504083A JP S59213896 A JPS59213896 A JP S59213896A
Authority
JP
Japan
Prior art keywords
face
air
chamber
cutter
foaming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8504083A
Other languages
Japanese (ja)
Other versions
JPH0633715B2 (en
Inventor
義正 近藤
有 野沢
俊男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aoki Construction Co Ltd
Original Assignee
Aoki Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aoki Construction Co Ltd filed Critical Aoki Construction Co Ltd
Priority to JP58085040A priority Critical patent/JPH0633715B2/en
Publication of JPS59213896A publication Critical patent/JPS59213896A/en
Publication of JPH0633715B2 publication Critical patent/JPH0633715B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はシールドを使用する土庄系掘進機の前面の切羽
部及び切羽面と対向するチャンバー内に過員の気泡を圧
送しながら掘削を行うシールド掘削工法に関するもので
ある。
[Detailed description of the invention] The present invention relates to a shield excavation method in which excavation is carried out while pumping excess air bubbles into the front face of a Tonosho type excavator using a shield and into a chamber facing the face. .

従来、シールド掘進機により滞水した砂質土層(砂れき
層を含む)を掘進する場合、切羽の安定は掘進機のチャ
ンバー内に掘削土砂を充満させることによって保どうと
している。ところが実際には、掘削土砂をチャンバー内
に充満させた状態をつくるのは非常に辣しい上に、地下
水のチャンバー内への流入もおさえることが難しいため
、切羽の安定度が11t<崩壊しやずい状態にある。ま
た内部1γ擦角の大きい土砂をチャンバー内に充満させ
た場合、掘進機のカッターの回転抵抗が大きくなり、場
合によってはカッターの回転が不能、あるいは極度に悪
くなる結果、掘進速瓜が茗しく低下づるという問題があ
った。
Conventionally, when a shield excavator excavates a sandy soil layer (including a sandy gravel layer) with stagnant water, the stability of the face is maintained by filling the chamber of the excavator with excavated soil. However, in reality, it is very harsh to create a condition in which the chamber is filled with excavated soil, and it is also difficult to prevent groundwater from flowing into the chamber, so the stability of the face is less than 11 tons. I'm in a bad state. In addition, if the chamber is filled with earth and sand with a large internal 1γ friction angle, the rotational resistance of the cutter of the excavation machine will increase, and in some cases, the rotation of the cutter will become impossible or extremely slow, resulting in slower excavation speed. There was a problem with the drop.

チャンバー内への地下水の流入防止及びカッター回転の
抵抗力を減少させる方法としては、泥しようt、J (
水とベントナイト、粘土等の粘土鉱物との混合物)をチ
ャンバー内に注入して、掘削土と混合させることにより
、掘削土を泥ねい状にして地下水のチャンバー内への流
入を防止し、かつカッターの回転抵抗を軽減する方法が
従来性われているが、切羽の水圧が高い場合、あるいは
大礫をaむ滞水層の場合は−1−分止水することができ
ず、チャンバー内への地下水の流入を防止できないこと
がある。またこの方法による泥ねい状の混合土は(〕1
」が高くまた泥ねい状のため、廃棄処理に内勤を伴い、
廃棄により建設二次公害の発生を生じている。
As a method to prevent groundwater from flowing into the chamber and to reduce the resistance force of cutter rotation, mud sludge t, J (
By injecting a mixture of water and clay minerals such as bentonite and clay into the chamber and mixing it with the excavated soil, the excavated soil becomes muddy and prevents groundwater from flowing into the chamber. Conventional methods have been used to reduce the rotational resistance of the chamber, but if the water pressure at the face is high or if there is a water retention layer made up of cobbles, it is impossible to separate the water and the flow into the chamber is reduced. It may not be possible to prevent groundwater from flowing into the ground. Also, the muddy mixed soil obtained by this method is (〕1
” is high and muddy, so disposal requires office work.
Disposal is causing secondary construction pollution.

本発明は上述の問題点を解決するためなされたもので、
シールド掘進機のカッター前面に水に合っても消えにく
い空気泡を送り込んで空気泡の地中への侵入により、通
常の圧気工法よりも効果の高い圧気状態を作り、地下水
の切羽への流入を防ぎ、切羽の安定を図ると共に、チャ
ンバー内にも別系統で空気泡を注入して掘削土と混合さ
せ、混合土のせん断力を低下させることによりカッター
の回転抵抗を軽減させ、かつこの混合土をチャンバー及
びスクリュー内に充満さゼることにより、切羽のより一
層の安定を図ると共に、掘削土に辣透水性、難透気性を
付与するものである。
The present invention was made to solve the above-mentioned problems.
Air bubbles that do not disappear even when exposed to water are sent to the front of the cutter of the shield excavator, and the air bubbles penetrate into the ground, creating a pressurized air condition that is more effective than the normal pressurized air construction method and preventing groundwater from flowing into the face. In addition to stabilizing the face, air bubbles are also injected into the chamber through a separate system to mix it with the excavated soil, reducing the shear force of the mixed soil and reducing the rotational resistance of the cutter. By filling the chamber and screw, the face is further stabilized, and the excavated soil has good water permeability and low air permeability.

実験結果によれば、砂礫分82%の地盤で気泡材を使用
した場合、通常の圧気工法で使用する空気量の約100
0分の1の気泡用の使用で十分圧気効果があった。
According to experimental results, when foam material is used on ground with a sand and gravel content of 82%, the amount of air used in the normal pressure air construction method is approximately 100%
It had a sufficient pressure effect even when used for 1/0 of a bubble.

また、マサ土(粗砂)と気泡とを体積比で、1:  0
.25の割合で混合すると、混合前において、スランプ
7CIllのマサ土がスランプ測定不能になるほどの流
動性を持つことが判った。このように気泡の混合により
土はせ/υ断抵抗力を著しく減する。
In addition, the volume ratio of masa soil (coarse sand) and air bubbles is 1:0.
.. It was found that when mixed at a ratio of 25%, masa soil with a slump of 7 CIll had such fluidity that it was impossible to measure the slump before mixing. In this way, the mixing of air bubbles significantly reduces the soil shedding/sheathing resistance.

また気−泡を混合した混合土は、土捨場に運搬して放置
づれば、気泡は自然に消滅して、通常の掘削土の状態に
もどるために、建設廃棄にともなって建設二次公害の発
生の心配がないという利点をもっている。
In addition, if mixed soil containing air and bubbles is transported to a soil dump and left unattended, the air bubbles will naturally disappear and return to the state of normal excavated soil, resulting in secondary construction pollution due to construction abandonment. It has the advantage of not having to worry about

本発明は上述のように、シールド掘進機のカッター前面
に水に強い空気泡を送り込んで通常の圧気工法より効果
の高い圧気状態を作って切羽の安定をはかり、さらに別
系統′で、チャンバー内に水に強い空気泡を送り、チャ
ンバー内のカッターの回転抵抗を軽減させ、この混合土
をチャンバー及びスクリュー内に充満させることにより
、切羽のより一層の安定を図ると共に、掘削上に難透水
性及び難透気性を付与し、かつ掘削土は廃棄しても建設
二次公害の発生の心配がないという公害対策上−17“
ら−b右利なシールド掘削工法を提供することを目的と
するものである。
As mentioned above, the present invention aims to stabilize the face by sending air bubbles that are resistant to water to the front of the cutter of the shield excavator to create a pressure air condition that is more effective than the normal pressure air construction method. By sending air bubbles that are resistant to water to reduce the rotational resistance of the cutter in the chamber, and filling the chamber and screw with this mixed soil, we aim for further stability of the face and create a water-resistant surface on the excavation. As a pollution control measure, it provides low air permeability and there is no risk of secondary construction pollution even if the excavated soil is disposed of.
The purpose of the present invention is to provide a shield excavation method that is advantageous to the public.

以下図面について本発明の詳細な説明Jる。A detailed description of the invention will be given below with reference to the drawings.

図中1は地盤、1aは立坑、2(第1図参照)はシール
ド掘進機、2’  (12図参照)は推進用シールド掘
進機、3は切羽面、4は切羽面と対向するチャンバー、
5はスクリュー排土機、6(第1図参照)はセグメント
、7(第2図参照゛)は推進管、8は推進ジヤツキで、
第1図の場合は掘進機2とレグメントロの前端間に介装
して郭り、第2図の場合は掘進機2′の後部と接続して
配列した推進管7の立坑1a内の後端部を推進するよう
に配置しである。また9はスクリュ一式排土Ia5と接
続して設置した排土用コンベアーである。
In the figure, 1 is the ground, 1a is a shaft, 2 (see Figure 1) is a shield tunneling machine, 2' (see Figure 12) is a propulsion shield tunneling machine, 3 is a face, 4 is a chamber facing the face,
5 is a screw earth remover, 6 (see Figure 1) is a segment, 7 (see Figure 2) is a propulsion pipe, 8 is a propulsion jack,
In the case of Fig. 1, the propulsion pipes 7 are installed between the front ends of the excavator 2 and the legentro, and in the case of Fig. 2, the rear end in the shaft 1a of the propulsion pipes 7 is connected and arranged to the rear of the excavator 2'. It is arranged to promote the division. Further, 9 is an earth removal conveyor installed in connection with the screw set earth removal Ia5.

10は発泡装置で、第1図の場合は立坑1a内に設け、
第2図の場合は地盤1上に設置しである。
10 is a foaming device, which in the case of FIG. 1 is installed in the shaft 1a,
In the case of Figure 2, it is installed on the ground 1.

またスペースにより、トンネル坑内11に設置りること
もできる。発泡装置10がらは送泡バイブ12で気泡が
送られ、このパイプ12を切羽注入バイブ13とチャン
バー内注入バイブ14に分岐してそれぞれに原石制御弁
15.15′ を介挿してあり、切羽注入パイプ13に
は、切羽気泡圧力検出器16が取り付けである。シール
ド掘進12.2’にはカッターり付けられている。19
は前記推進ジヤツキ8の変位検出器である。
Depending on the space, it can also be installed inside the tunnel 11. Bubbles are sent to the foaming device 10 by a foaming vibrator 12, and this pipe 12 is branched into a face injection vibe 13 and an in-chamber injection vibe 14, each of which has an ore control valve 15, 15' inserted. A face bubble pressure detector 16 is attached to the pipe 13. A cutter is attached to shield excavation 12.2'. 19
is a displacement detector of the propulsion jack 8.

第3図は発泡装置10の制御系統図を示ずもので、マイ
クロコンピュータ−20で気泡量とスクリュ一式枡土機
5のゲート5aの開度及びスクリュ〜5b  (第1.
2図参照)の回転数を制御する。21はマイクロコンピ
ュータ−20に入った各データーの統計処理機能を有す
るブロックで、22は切羽気泡ルカ検出器16による切
羽気泡圧Pの信号の増幅器Cあり、また23は気泡液の
タンクである。
FIG. 3 does not show the control system diagram of the foaming device 10, and the microcomputer 20 controls the amount of air bubbles, the opening degree of the gate 5a of the screw set masonry machine 5, and the screws 5b (1st.
(see Figure 2). 21 is a block having a statistical processing function for each data input to the microcomputer 20, 22 is an amplifier C for the signal of the face bubble pressure P from the face bubble detector 16, and 23 is a tank for bubble liquid.

第4図は発泡装置10の発泡機構の一例を示づ回路ブロ
ック図で、20は前記マイクロコンピュータ−124は
各信号をアナログ信号からデジタル信号に変換するA/
D変換器、25はマイコンがら出ツノされるデジタル信
号をアナログ信号に変換゛す゛るD/A変換器、26.
26′ は電子式無断変速制n盤、27.27′ は同
期回転比例制御モータ、28.28′ はクラッチブレ
ーキであり、切羽気泡圧Pの上限下限を制限するための
ブレーキ装Uである。29は可である。32はコンプレ
ツナ−で、このコンプレッサー32からの空気【ま送気
管33を介して発泡管34に送られ、ここで気泡液と混
合して空気泡が作られ、この気泡が気泡パイプ12によ
って坑内へ送られる。
FIG. 4 is a circuit block diagram showing an example of the foaming mechanism of the foaming device 10, and 20 is the microcomputer 124 that converts each signal from an analog signal to a digital signal.
D converter 25 is a D/A converter that converts the digital signal output from the microcomputer into an analog signal, 26.
Reference numeral 26' indicates an electronic continuously variable speed control plate, 27.27' indicates a synchronous rotation proportional control motor, and 28.28' indicates a clutch brake, which is a brake device U for limiting the upper and lower limits of the face bubble pressure P. 29 is acceptable. 32 is a compressor, and the air from the compressor 32 is sent to the foaming tube 34 via the air supply pipe 33, where it is mixed with the foam liquid to create air bubbles, and the air bubbles are sent into the mine via the foam pipe 12. Sent.

・本発明工法においては、上述の装置を使用して、シー
ルド拙進機の前面の切羽部とチャンバーに気泡を圧送し
、シールド掘進時の切羽気泡圧、カッター圧、スクリュ
ー排土圧、及び掘進速度のそれぞれの検出数値をマイク
ロコンピュータ−20に順次送り、それらを統計的に解
析し、その解析結果に基い′てカッター前面への気泡注
入量、及びチトンバー内への気泡注入量を制御すると共
に、スクリュー排土圧5の回転数及び開度も制御して、
切羽気泡圧を一定に保つと共に、カッターの回転抵抗も
適度にして、最適な掘進状態をつくり出すようにする。
・In the construction method of the present invention, the above-mentioned device is used to pump air bubbles into the face and chamber at the front of the shield excavation machine, and control the face bubble pressure, cutter pressure, screw earth removal pressure, and excavation progress during shield excavation. The detected speed values are sequentially sent to the microcomputer 20, which statistically analyzes them, and based on the analysis results, controls the amount of air bubbles injected into the front surface of the cutter and into the chiton bar. At the same time, the rotation speed and opening degree of the screw earth discharge pressure 5 are also controlled,
In addition to keeping the face bubble pressure constant, the rotational resistance of the cutter is also moderated to create the optimum digging condition.

なお前記タンク23内に入れて使用する発泡液としては
、界面活性剤に高吸水性ポリマーを添加したもの、また
はタンパク質系の起泡剤が適当であり、例えば、ポリオ
−キシエチレンアルキルツボ−ノール:r−チル硫酸ナ
トリウムを主成分とづるコニス]−1−L(商品名)に
高吸水性ポリマー、例え番Sビニールアルj−ルアクリ
ルM塩共重合体を主成分とするスミカゲル(商品名)あ
るい(、i、31;1ノアクリル酸ソーダを主成分とす
るアクアキープ(商品名)を添加したもの、または、部
分加水分解タンパク貿を主成分とするニスコートK(商
品名)等がある。
The foaming liquid used in the tank 23 is suitably a surfactant with a superabsorbent polymer added thereto, or a protein-based foaming agent, such as polyoxyethylene alkyltubonol. : Conis whose main component is r-methyl sodium sulfate] -1-L (trade name) is a super absorbent polymer, for example, Sumikagel (trade name) whose main component is a vinyl aljyl acrylic M salt copolymer. (, i, 31; 1) There are products with the addition of Aqua Keep (trade name) whose main ingredient is sodium acrylate, and Niskort K (trade name) whose main ingredient is partially hydrolyzed protein. .

つぎに上述のように椙成した装置による本発明に法の実
施例を説明する。本発明工法【ま掘進時、可変ポンプ2
つを駆動して、タンク23内の発泡液を発泡管34に送
り込むと共に、コンブレラ1ナー32により送気管33
を介して空気を発泡管34に送り込lしで発泡させ、発
泡した強い空気泡を送泡lくイブ12にj:り掘進機2
C2’のカッター前面の切羽面3、及びチャンバー4内
に送り込む。このようにすると通常の圧気]:法より効
果の高い圧気状態が作られ、切羽3の安定が図れる。ま
た、チャンバー4内のカッターの回転抵抗を軽減させる
ことができる上に、この混合上をチャンバー4及びスク
リュー排土機5内に充満させることにより、り羽3のよ
り一層の安定を図ると共に、掘削土に難透気性の状態を
付与づることができる。またこの気泡混合土砂は土捨場
に放置すれば自然に気泡が消滅して通常の掘削土砂と同
様になるため、公害対策上問題となるおそれはない。
Next, an embodiment of the method of the present invention using the apparatus constructed as described above will be explained. This invention construction method [When excavating, variable pump 2
At the same time, the foaming liquid in the tank 23 is sent to the foaming pipe 34 by the combrella 1ner 32.
Air is sent into the foaming tube 34 through the foaming tube 34 and foamed, and the foamed strong air bubbles are sent to the eve 12 to the drilling machine 2.
It is sent into the face 3 in front of the cutter of C2' and into the chamber 4. In this way, a more effective air pressure condition than the normal air pressure method is created, and the face 3 can be stabilized. In addition, it is possible to reduce the rotational resistance of the cutter in the chamber 4, and by filling the chamber 4 and the screw earth remover 5 with this mixture, it is possible to further stabilize the plowing blade 3. It is possible to impart a state of low air permeability to excavated soil. Furthermore, if this air bubble mixed soil is left in a soil dumping site, the air bubbles will naturally disappear and it will become similar to ordinary excavated soil, so there is no risk of it becoming a problem in terms of pollution control.

また本発明工法においては、シールド掘進118の切羽
気泡圧、カッター圧、スクリュー排土圧及び掘進速度の
それぞれのデータを随時マイクロコンピュータ−20で
取り、それらを統計的に解析し、その解析結果に基いて
カッター前面の切羽3への気泡注入量、及びチャンバー
4内への気泡注入量を制御づるど共に、スクリュー排土
機5の回転数及び聞度如制御してミ切羽気泡圧を一定に
保つと共に、カッターの回転抵抗も31!!度にして、
最適な掘進状態を作り出すよう制御することができる。
In addition, in the construction method of the present invention, data on the face bubble pressure, cutter pressure, screw earth removal pressure, and excavation speed of the shield excavation 118 are collected by the microcomputer 20 at any time, statistically analyzed, and the analysis results are Based on this, the amount of bubbles injected into the face 3 on the front of the cutter and the amount of bubbles injected into the chamber 4 is controlled, and the number of revolutions and the volume of the screw earth remover 5 are controlled to keep the bubble pressure at the face constant. In addition to maintaining the rotational resistance of the cutter, it is also 31! ! degree,
It can be controlled to create optimal digging conditions.

づなわち切羽気泡圧力検出器16、カッター圧力検出器
17、スクリュー排土圧力検出器18で各圧力を検出し
、また推進ジヤツキ8による変位を変位検出器19で検
出し、こ−れらの出力信号をA’/D変換器24でΔ/
D変換して、マイクロコンピュータ−20に送り込み、
これらのデータを統h1的に解析し、その解析結果に基
いてマイクロコンビコータ、20を介して最適制御信号
を電子式無断変速制御盤26.26′ に送り、こへに
J:り同期回転比例制御七−夕27.27′ の回転数
を変化させて可変ポンプ29の吐出mを制御すると共に
、コンプレッサー32からの空気量も制御することによ
り、発泡管34より発生づる気泡量及び気泡液量ど空気
量の混合比0変化させて最適値に調節することができる
That is, each pressure is detected by the face bubble pressure detector 16, cutter pressure detector 17, and screw discharge pressure detector 18, and the displacement due to the propulsion jack 8 is detected by the displacement detector 19. The output signal is converted to Δ/ by the A'/D converter 24.
Convert it into D and send it to the microcomputer-20.
These data are analyzed in a unified manner, and based on the analysis results, an optimal control signal is sent to the electronic variable speed control panel 26, 26' via the micro combi coater 20, and the synchronous rotation is performed. By controlling the discharge m of the variable pump 29 by changing the rotation speed of the proportional control Tanabata 27.27', and also controlling the amount of air from the compressor 32, the amount of bubbles generated from the foaming tube 34 and the bubble liquid can be controlled. It is possible to adjust the mixing ratio to the optimum value by changing the mixing ratio of the amount of air.

また、発泡管34より送泡パイプ12で送られる気泡は
、切羽注入パイプ13とチャンバー4内への注入パイプ
14に分流し、それぞれの流(6)制御弁15.15′
をマイクロコンピュータ−20で制御することにより気
泡量を調節し、切羽気泡圧を一定に保ち、カッターの回
転抵抗を制御することができる。さらにこれらの調整を
精密にするために、スクリュ−1ノ11機5の回転数及
び開度も制御して最適な掘進状態を作り出す゛ことがで
きる。
Further, the bubbles sent from the foaming pipe 34 through the foaming pipe 12 are divided into the injection face injection pipe 13 and the injection pipe 14 into the chamber 4, and each flow (6) control valve 15.15'
By controlling this with a microcomputer 20, the amount of bubbles can be adjusted, the face bubble pressure can be kept constant, and the rotational resistance of the cutter can be controlled. Furthermore, in order to make these adjustments more precise, the rotational speed and opening degree of the screws 1 and 11 can also be controlled to create an optimal digging condition.

本発明工法は、上述の通りであるから、この工沫によれ
ば、通常の圧気工法より効果の高い汁気状態を作り、切
羽の安定をはかると共に、ヂャンバー内のカッターの回
転抵抗を軽減して掘進性能を向上させ、混合土をチVン
バー及びスクリュー内に充満させることににす、切羽の
より一層の安定を図ることができるという効果が得られ
る。また掘削上にtU透気性を付与することができる上
に、この掘削土は産業廃棄物あつかいする必要がないか
ら、本発明工法は公害対策上からも非常に右利マ であるというすぐれた効果が得られる。
As described above, the construction method of the present invention creates a more effective wet air condition than the normal pressure construction method, stabilizes the face, and reduces the rotational resistance of the cutter in the dam. This has the effect of improving excavation performance, filling the chamber and screw with mixed soil, and further stabilizing the face. In addition, it is possible to impart tU air permeability to the excavated soil, and since this excavated soil does not need to be treated with industrial waste, the method of the present invention has the excellent effect of being extremely advantageous in terms of pollution control. is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明工法による地盤の掘削状態
を示す立面面図、 第3図は発泡装置の制御系統を示す略図、第4図はその
発泡装置の構成を示1略図である。 1・・・地盤      1a・・・立坑2・・・シー
ルド掘進(幾 2′・・・推進用シールド掘進機 3・・・切羽面      4・・・チャンバー5・・
・スクリュー排土機 6・・・レグメント    7・・・推進管8・・・推
進ジヤツキ  9・・・排土用1ンベヤー10・・・発
泡装置    11・・・1〜ンネル坑内12・・・送
泡バイブ   13・・・切羽注入パイプ14・・・ヂ
ャンバー内注入バイブ 15・・・流量制御弁(切羽側) 15′・・・流量制御弁ベチレンバー内)1G・・・切
羽気泡圧力検出器 17・・・カッター圧力検出器 18・・・スクリュー排土圧力検出器 19・・・変位検出器 20・・・マイクロコンピュータ− 21・・・デー・夕処理機能を有するブロック22・・
・増幅器     23・・・気泡液タンク24・・・
A/D変換器  25・・・D/△変換器2′6・・・
電子式無断変速制御1!(気泡液量)26′電子式無断
変速制御盤(空気量)21・・・同期回転比例制御モー
タ(気泡液量)27′同期回転比七制御モータ(空気量
)28・・・クラッチブレーキ(気泡液量)28′ ・
・・クラッチブレーキ(空気側)29・・・可変ポンプ
   30・・・送液管31・・・逆止弁     3
2・・・コンプレッサー33・・・送気管     3
4・・・発泡管35・・・送泡パイプ。 特許出願人   株式会社青木建設
Figures 1 and 2 are elevational views showing the state of ground excavation by the method of the present invention, Figure 3 is a schematic diagram showing the control system of the foaming equipment, and Figure 4 is a schematic diagram showing the configuration of the foaming equipment. be. 1...Ground 1a...Shaft 2...Shield excavation (2'...Propulsion shield excavation machine 3...Face surface 4...Chamber 5...
・Screw earth removal machine 6...Legment 7...Propulsion pipe 8...Propulsion jack 9...1 conveyor for soil removal 10...Foaming device 11...1 to tunnel underground 12...Transmission Foam vibrator 13... Face injection pipe 14... Injection vibe in the chamber 15... Flow rate control valve (face side) 15'... Flow rate control valve (inside the vetylene bar) 1G... Face bubble pressure detector 17. ...Cutter pressure detector 18...Screw discharge pressure detector 19...Displacement detector 20...Microcomputer 21...Block 22 with day/evening processing functions...
・Amplifier 23...Bubble liquid tank 24...
A/D converter 25...D/Δ converter 2'6...
Electronic variable speed control 1! (Bubble liquid amount) 26' Electronic variable speed control panel (Air amount) 21... Synchronous rotation proportional control motor (Bubble liquid amount) 27' Synchronous rotation ratio 7 Control motor (Air amount) 28... Clutch brake ( Bubble liquid amount) 28' ・
...Clutch brake (air side) 29...Variable pump 30...Liquid feed pipe 31...Check valve 3
2... Compressor 33... Air pipe 3
4... Foaming pipe 35... Foaming pipe. Patent applicant Aoki Construction Co., Ltd.

Claims (1)

【特許請求の範囲】 1、シールド掘進機の前面の切羽部に過員の気泡を圧送
して切羽に気泡圧をか【プ切羽の安定を保つと共に、チ
ャンバーにも気泡を圧送して掘削土と混合するようにし
たことを特徴とするシールド掘削工法。
[Claims] 1. To maintain the stability of the face by force-feeding excess air bubbles to the face at the front of the shield excavation machine. A shield excavation method characterized by mixing with.
JP58085040A 1983-05-17 1983-05-17 Shield excavation method Expired - Lifetime JPH0633715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58085040A JPH0633715B2 (en) 1983-05-17 1983-05-17 Shield excavation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58085040A JPH0633715B2 (en) 1983-05-17 1983-05-17 Shield excavation method

Publications (2)

Publication Number Publication Date
JPS59213896A true JPS59213896A (en) 1984-12-03
JPH0633715B2 JPH0633715B2 (en) 1994-05-02

Family

ID=13847569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58085040A Expired - Lifetime JPH0633715B2 (en) 1983-05-17 1983-05-17 Shield excavation method

Country Status (1)

Country Link
JP (1) JPH0633715B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61142292A (en) * 1984-12-14 1986-06-30 株式会社大林組 Drilling of pit using shield excavator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50103129A (en) * 1974-01-23 1975-08-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50103129A (en) * 1974-01-23 1975-08-14

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61142292A (en) * 1984-12-14 1986-06-30 株式会社大林組 Drilling of pit using shield excavator
JPH0374317B2 (en) * 1984-12-14 1991-11-26

Also Published As

Publication number Publication date
JPH0633715B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
US3645101A (en) Method and apparatus for constructing impervious underground walls
US6897186B2 (en) Composition and method for dual function soil grouting excavating or boring fluid
US6248697B1 (en) Composition and method for a dual-function soil-grouting excavating or boring fluid
US4165129A (en) Shield tunneling machine and method
JPS59213896A (en) Shield drilling construction method
US5180252A (en) Earth pressure system shield process
JPS59213897A (en) Shield drilling apparatus
CN104108919A (en) Environment-friendly water-stop curtain
PL169345B1 (en) Method of making a sheeting
JP2840880B2 (en) Method for producing self-hardening backfill material
JP4555911B2 (en) Low noise, low vibration sediment pump additive and sediment pump pumping method
JP3168501B2 (en) Shielding method for Dotan layer
JPS5996396A (en) Shield drilling apparatus
JPH10169365A (en) Method of shield tunneling method for weak soil and drilling-fluid additive
JPS5996395A (en) Shield drilling method
JPH0711868A (en) Fluidizing method of shield excavated soil
JPS61137994A (en) Soil pressure shield excavation method
JPH10317878A (en) Mud shield method
JP3150298B2 (en) Tunnel excavation method and shield machine
JP2686514B2 (en) Non-excavation propulsion method of sludge injection type
JPH05311985A (en) Earth pressure shield driving method
JPS6128699A (en) Shield drilling method using muddy water having clogging material for sand and gravel foundation
JPH10231685A (en) Slurry excavation system and mud-water treatment
JPS62125196A (en) Soil pressure shield excavating method using muddy slurry
JPH108450A (en) Soil improving work method