JP4617909B2 - Injection method of additives in shield method - Google Patents

Injection method of additives in shield method Download PDF

Info

Publication number
JP4617909B2
JP4617909B2 JP2005028613A JP2005028613A JP4617909B2 JP 4617909 B2 JP4617909 B2 JP 4617909B2 JP 2005028613 A JP2005028613 A JP 2005028613A JP 2005028613 A JP2005028613 A JP 2005028613A JP 4617909 B2 JP4617909 B2 JP 4617909B2
Authority
JP
Japan
Prior art keywords
pressure
additive
inlet
chamber
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005028613A
Other languages
Japanese (ja)
Other versions
JP2006214189A (en
Inventor
一彦 的場
英崇 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2005028613A priority Critical patent/JP4617909B2/en
Publication of JP2006214189A publication Critical patent/JP2006214189A/en
Application granted granted Critical
Publication of JP4617909B2 publication Critical patent/JP4617909B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

この発明は、シールド工法における添加材の注入方法に係わり、特に、シールド掘進機のチャンバー内の土圧に応じて添加材の注入量を制御して、土圧分布に対応した均一な添加材の注入が行えるようにした技術に関する。   The present invention relates to an additive injection method in a shield method, and in particular, controls the injection amount of the additive according to the earth pressure in the chamber of the shield machine, and provides a uniform additive material corresponding to the earth pressure distribution. The present invention relates to a technique that enables injection.

シールド工法は、例えば都市土木等において、地下水の存在する地盤や軟弱な地盤に対するトンネルの構築工法として一般に採用されるもので、シールド掘進機の後方にセグメントによってトンネルの掘削内周面を覆う覆工体を形成するとともに、形成した覆工体から推進反力を得ながらシールド掘進機によって掘進作業を行ってゆくものである。   The shield method is generally adopted as a tunnel construction method for ground where there is groundwater or soft ground, for example, in civil engineering, etc. The body is formed, and the excavation work is performed by the shield machine while obtaining the propulsion reaction force from the formed lining body.

このシールド掘進機は多数のカッタービットが立設されたカッタースポークを回転させながら当該カッタースポークに対向する地山の被掘削土の切羽を切り崩し、その掘削土をカッタースポーク後方のチャンバー内に取り込んで、さらに当該チャンバの下部に設けたスクリューコンベアで後方に搬送排出しながら前進していく。   This shield machine cuts the face of the ground excavated soil facing the cutter spoke while rotating the cutter spoke on which many cutter bits are erected, and takes the excavated soil into the chamber behind the cutter spoke. Furthermore, it advances while being conveyed and discharged backward by a screw conveyor provided at the lower part of the chamber.

ここで、このような土圧式シールド工法では、切羽の安定化と掘削土の止水性・流動性の向上、切羽圧の変動の抑制等を目的として、上記カッタースポークに設けた注入口から気泡やベントナイト、粘土等の添加剤を切羽およびチャンバー内に注入することが行われている。即ち、カッタースポークに沿って径方向に一直線上に並ぶ複数の添加材注入口を設けて、推進量に見合った排土量や排土状況に応じて設定される所定量の添加材を、チャンバーを区画形成するバルクヘッドのほぼマシン中心位置に取り付けられた圧力センサで検出した検出土圧に基づいて制御して上記注入口から注入するようにしている。   Here, in such earth pressure type shield method, for the purpose of stabilizing the face, improving the water stoppage and fluidity of the excavated soil, and suppressing the fluctuation of the face pressure, air bubbles and the like are introduced from the inlet provided in the cutter spoke. Injecting additives such as bentonite and clay into the face and the chamber is performed. That is, a plurality of additive inlets arranged in a straight line in the radial direction along the cutter spoke are provided, and a predetermined amount of additive that is set according to the amount of soil discharged and the state of soil discharge is set in the chamber. Is controlled based on a detected earth pressure detected by a pressure sensor attached to a substantially central position of the bulkhead of the bulkhead that forms the partition, and the injection is performed from the injection port.

また、上記チャンバー内の圧力を複数の圧力センサにより検出してその圧力勾配を求め、この圧力勾配と推定した地山圧力勾配との差に従って上記添加材の添加率を調整してチャンバーに向けてバルクヘッドの中心部に設けた注入口から注入するとともに、チャンバー内の土砂をチャンバー内圧力と推定した地山圧力との差に従って排出量を調整して掘進させるようにした技術が、下記特許文献1にて公知になっている。
特許第2700411号公報
Further, the pressure in the chamber is detected by a plurality of pressure sensors to determine the pressure gradient, and the addition rate of the additive is adjusted to the chamber according to the difference between the pressure gradient and the estimated natural pressure gradient. The following patent document describes a technique for injecting from the inlet provided in the center of the bulkhead and adjusting the discharge amount according to the difference between the chamber pressure and the estimated ground pressure, and excavating the earth and sand in the chamber. 1 is known.
Japanese Patent No. 2700411

ところで、シールド掘進機は中型のものであっても、その直径は5m程あり、大型のものになるとその直径は10mを超える。よって、中型のシールド掘進機であっても、チャンバー内の上端部と下端部とでは土圧差はかなりのものとなる。このため、注入口からの添加材注入量をチャンバー内の上端部と下端部とで同一に設定していると、土圧が高い下端部側ではその注入抵抗が大きくて不足気味になる一方、土圧が低い上端部側ではその注入抵抗が小さいため過剰となってしまい、チャンバー内に添加材を均一に注入し難いという課題があった。また、当該課題は、上記特許文献1に示されるようにチャンバーの中心部に設けた注入口から添加材を注入する様な構成のものではより顕著になる。 By the way, even if the shield machine is of a medium size, its diameter is about 5 m, and when it is large, its diameter exceeds 10 m. Therefore, even in a medium-sized shield machine, the earth pressure difference between the upper end and the lower end in the chamber is considerable. For this reason, when the additive material injection amount from the injection port is set to be the same at the upper end portion and the lower end portion in the chamber, on the lower end side where the earth pressure is high, the injection resistance is large and it seems to be insufficient. Since the injection resistance is small on the upper end side where the earth pressure is low, it becomes excessive, and there is a problem that it is difficult to uniformly inject the additive into the chamber. In addition, the problem becomes more conspicuous in a configuration in which an additive is injected from an injection port provided in the center of the chamber as shown in Patent Document 1.

そして、チャンバー内への添加材の注入量が不均一になると、掘削土砂の塑性流動性が悪くなり、チャンバー内やカッタースポークへの土砂の付着等が発生して、閉塞の原因ともなり得る虞がある。   If the amount of the additive material injected into the chamber becomes uneven, the plastic fluidity of the excavated earth and sand deteriorates, and adhesion of earth and sand to the chamber and cutter spoke may occur, which may cause clogging. There is.

また、特に、直径が10mを超えるような大断面の大型のシールド掘進機になると、チャンバー内の上端部と下端部との土圧差は0.1MPaにもなって非常に大きくなるため、上記課題はより深刻なものとなる。   In particular, in the case of a large shield machine having a large cross section with a diameter exceeding 10 m, the earth pressure difference between the upper end and the lower end in the chamber becomes as large as 0.1 MPa, so the above problem Will be more serious.

本発明は、上記事情に鑑みてなされたものであり、その目的は、土圧分布に対応した均一な添加材の注入が可能なシールド工法における添加材注入方法を提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the additive injection method in the shield construction method in which the injection | pouring of the uniform additive corresponding to earth pressure distribution is possible.

上記の目的を達成するために本発明の請求項1に係る構成は、シールド掘進機のチャンバー内土圧を圧力センサで検知し、該検出土圧に基づいてカッタースポーク上に設けた添加材注入口からの添加材注入量を調節するに際し、該圧力センサをチャンバーの上端部近傍と中央部との少なくとも2箇所以上に複数配置し、該添加材注入口の位置を該カッタースポークの回転角度から算出して、該注入口の位置に応じて複数の該圧力センサの中から該注入口に近接する圧力センサを選択して、該選択した圧力センサの検出土圧に基づいて該注入口からの添加材注入量を調節することを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, the earth pressure in the chamber of the shield machine is detected by a pressure sensor, and the additive material provided on the cutter spoke is based on the detected earth pressure. When adjusting the amount of additive material injected from the inlet, a plurality of the pressure sensors are arranged in at least two locations near the upper end and the center of the chamber, and the position of the additive material inlet is determined from the rotation angle of the cutter spoke. Calculating, selecting a pressure sensor close to the inlet from the plurality of pressure sensors according to the position of the inlet, and determining from the inlet based on the detected earth pressure of the selected pressure sensor It is characterized by adjusting the amount of additive material injected.

ここで、請求項2に示すように、前記チャンバー内が周方向に沿って左右対称な上部制御領域と中間部制御領域と下部制御領域とに分けられるとともに、該中間部制御領域と該下部制御領域とにはそれぞれ左右対称に複数の圧力センサが配置され、前記添加剤注入口が該上部領域内にあるときには、チャンバー内の上端部近傍に設けられた圧力センサからの出力値を制御土圧とし、該中間部領域内と該下部制御領域内とにあるときには、それぞれの領域内にある複数の圧力センサのうち検出土圧が最も小さい圧力センサの出力値を制御土圧とする構成になし得る。   Here, as shown in claim 2, the inside of the chamber is divided into an upper control region, an intermediate control region, and a lower control region that are symmetrical in the circumferential direction, and the intermediate control region and the lower control region. A plurality of pressure sensors are arranged symmetrically with respect to each region, and when the additive inlet is in the upper region, the output value from the pressure sensor provided near the upper end of the chamber is controlled by the control earth pressure. In the middle area and the lower control area, the output value of the pressure sensor having the smallest detected earth pressure among the plurality of pressure sensors in each area is used as the control earth pressure. obtain.

上記のようにしてなる本発明のシールド工法における添加材注入方法によれば、断面に対して、土圧分布に対応した均一な気泡の注入が可能となる。このため、大断面であっても、ベアリング効果、塑性流動性の向上が図れ、カッタートルクの低減、閉塞防止が可能となる。   According to the additive injecting method in the shield method of the present invention as described above, uniform air bubbles corresponding to the earth pressure distribution can be injected into the cross section. For this reason, even with a large cross section, the bearing effect and the plastic fluidity can be improved, and the cutter torque can be reduced and the blockage can be prevented.

以下に、本発明に係るシールド工法における添加材注入方法の好適な一実施の形態について、添付図面に基づいて詳述する。   Hereinafter, a preferred embodiment of an additive injection method in the shield method according to the present invention will be described in detail with reference to the accompanying drawings.

図1は土圧式シールド工法に用いるシールド掘進機の一例を示す概略側断面図である。同図に示すように、シールド掘進機2は多数のカッタービット4が立設されたカッタースポーク6を回転させて、当該カッタースポーク6に対向する地山の被掘削土の切羽を切り崩し、その掘削土をカッタースポーク6後方のチャンバー7内に取り込んで、さらにスクリューコンベア8で後方に搬送排出しながら前進していくものであり、推進用のジャッキ10を反力受けに当接させた状態で伸長させることによって前進力を得るようになっている。この反力受けは、シールド掘進機2の後方に形成されるトンネルTの掘削内周面を覆って逐次セグメント12aで組み立てられて行くに覆工体12が利用される。   FIG. 1 is a schematic sectional side view showing an example of a shield machine used in the earth pressure shield method. As shown in the figure, the shield machine 2 rotates a cutter spoke 6 on which a large number of cutter bits 4 are erected, and cuts the face of the soil to be excavated in the natural ground facing the cutter spoke 6. The soil is taken into the chamber 7 behind the cutter spoke 6 and further advanced while being transported and discharged rearward by the screw conveyor 8, and is extended in a state where the jack for propulsion 10 is in contact with the reaction force receiver. It is designed to gain a forward force. For this reaction force reception, the lining body 12 is used to cover the inner peripheral surface of the tunnel T formed behind the shield machine 2 and is sequentially assembled by the segments 12a.

そして、その掘進に際しては、切羽の安定化と掘削土の止水性・流動性の向上、切羽圧の変動の抑制等を目的として、カッタースポーク6に設けられた添加材注入口14から切羽に向けて添加材が注入されるようになっている。当該実施の形態では、添加材には気泡が用いられている。この気泡は起泡材に空気を混合発泡させてなるもので、起泡材は地上に設置された起泡材生成プラント16から立坑18を通じてシールド掘進機2後方のトンネルT内に供給されてくる。   Then, during the excavation, for the purpose of stabilizing the face, improving the water stoppage and fluidity of the excavated soil, and suppressing the fluctuation of the face pressure, the additive material inlet 14 provided in the cutter spoke 6 is directed to the face. Additives are injected. In the embodiment, bubbles are used as the additive. The bubbles are formed by mixing and foaming air in the foaming material, and the foaming material is supplied from the foaming material generation plant 16 installed on the ground into the tunnel T behind the shield machine 2 through the shaft 18. .

トンネルT内には、地上から送られてくる起泡材を貯留する起泡材坑内貯留槽20と、この貯留槽20内の起泡材を圧送する起泡材注入ポンプ22、起泡材に混合する空気を圧送するコンプレッサ24、起泡材の注入量と空気の混合量とを調節する注入ユニット26、この注入ユニット26の作動を制御する気泡注入制御装置28、及び発泡装置30等とからなる気泡材注入手段31が設けられている。上記注入ユニット26で調量された起泡材と空気とは、それぞれ独立したラインを通じてシールド掘進機2内のバルクヘッド7a後方に設けられている発泡装置30に送られて発泡された後、カッタースポーク6に設けられた注入口14から切羽に向けて発泡された気泡材が注入されるようになっている。また、コンプレッサ24及び気泡注入制御装置28は、中央制御装置からの指令信号によって作動制御されるようになっている。   In the tunnel T, the foam material mine storage tank 20 for storing the foam material sent from the ground, the foam material injection pump 22 for pumping the foam material in the storage tank 20, and the foam material From the compressor 24 that pumps the air to be mixed, the injection unit 26 that adjusts the injection amount of the foaming material and the mixing amount of the air, the bubble injection control device 28 that controls the operation of the injection unit 26, and the foaming device 30 A bubble material injection means 31 is provided. The foaming material and air metered by the injection unit 26 are sent to a foaming device 30 provided behind the bulkhead 7a in the shield machine 2 through independent lines, and then foamed. A foam material foamed toward the face is injected from an inlet 14 provided in the spoke 6. The compressor 24 and the bubble injection control device 28 are controlled by a command signal from the central control device.

図2はシールド掘進機2の前端面を示す正面図であり、図3は図2中のIII−III線矢視部の断面図、図4は図3中のIV−IV線矢視部の断面図である。図2に詳しく示すように、この実施の形態にあっては、カッタースポーク6は、中心部から半径方向に60度間隔で放射状に延びるメインカッタースポーク6aと、これらのメインカッタースポーク6a間に位置されて、径方向の外周側に放射状に設けられた半径の約半分程の長さのサブカッタースポーク6bとからなっている。これらのカッタースポーク6を図示する12時の方向から逆時計回り方向に順次No.1〜No.12までの番号を付すと、気泡材の注入口14は回転中心部に1つ(14-1)と、No.3スポークに1つ(14-2)、No.7スポークに2つ(14−3,14−4)、No.11スポークに1つ(14-5)の合計5つが設けられており、これらの注入口14(1〜6)はマシン中心部からの距離が相互に異ならされている。   2 is a front view showing the front end face of the shield machine 2, FIG. 3 is a sectional view taken along the line III-III in FIG. 2, and FIG. 4 is a view taken along the line IV-IV in FIG. It is sectional drawing. As shown in detail in FIG. 2, in this embodiment, the cutter spokes 6 are located between the main cutter spokes 6a extending radially from the center at radial intervals of 60 degrees, and between these main cutter spokes 6a. The sub-cutter spokes 6b having a length of about a half of the radius provided radially on the outer peripheral side in the radial direction. These cutter spokes 6 are sequentially No. 1 in the counterclockwise direction from the 12 o'clock direction shown in the figure. 1-No. When the numbers up to 12 are assigned, the number of the foam material inlet 14 is one at the center of rotation (14-1). 1 in 3 spokes (14-2), no. Two in 7 spokes (14-3, 14-4), no. A total of five ones (14-5) are provided for 11 spokes, and these inlets 14 (1 to 6) have different distances from the center of the machine.

また、図4に示すように、チャンバーの背面を画成するバルクヘッド7aには、9つの圧力センサー32が配置されている。これら圧力センサ32は交換可能な3つの交換型圧力センサ32a(1〜3)と、交換不可な6つの固定型圧力センサ32b(1〜6)とからなっている。即ち、交換型圧力センサ32aは、マシン中芯を通る縦軸上に上端部側に位置されて1つ(32a-1)と、横軸上にその径方向外側部寄りに位置されて左右に1つずつ(32a-2,32a-3)配置されている。また、固定型圧力センサ32bは、マシン中芯を通る縦軸を基準に上端と下端とからそれぞれ左右に50度回転した位置の径方向外側寄りに4つ(32b-1,32b-2,32b-3,32b-4)が配置され、マシン中芯を通る横軸上に半径の1/3程の箇所に位置して左右に2つ(32b-5,32b-6)が配置されている。なお、同図中に仮想線の引き出し線で14(1〜6)の符合を付してあるものは、図2に示してある注入口の位置を示している。   As shown in FIG. 4, nine pressure sensors 32 are arranged on the bulkhead 7a that defines the back surface of the chamber. These pressure sensors 32 are composed of three replaceable pressure sensors 32a (1 to 3) which can be replaced and six fixed pressure sensors 32b (1 to 6) which cannot be replaced. That is, the interchangeable pressure sensor 32a is located on the vertical axis passing through the center of the machine, one on the upper end side (32a-1), and on the horizontal axis is positioned closer to the outer side in the radial direction and left and right. One (32a-2, 32a-3) is arranged. Further, four fixed pressure sensors 32b (32b-1, 32b-2, 32b) are arranged on the outer side in the radial direction at positions rotated 50 degrees left and right from the upper end and the lower end with respect to the vertical axis passing through the center of the machine. -3, 32b-4), two on the left and right (32b-5, 32b-6) are located on the horizontal axis passing through the center of the machine at a position about 1/3 of the radius. . In the drawing, the phantom line with 14 (1 to 6) is the position of the injection port shown in FIG.

図5は5つの注入口14(1〜5)のそれぞれに繋がれた気泡材注入手段31とその制御系を概略的に示すブロック図である。図示するように、各気泡材注入手段31の気泡注入制御装置28は起泡材注入ポンプ22のポンプ回転数を制御するとともに、注入ユニット26のエアーバルブ開度とを制御して、起泡材流量と空気流量とを調節するようになっており、その調節量は中央制御装置40からの指令信号に基づいて算出されるようになっている。即ち、中央制御装置40はシールド掘進機2の掘削スピードと土圧とに応じて気泡材の発泡倍率と注入率とを設定し、この設定値に基づいて空気流量と起泡材流量とを算出して気泡注入制御装置28に当該算出値を指令信号として送るようになっている。なお、気泡流量と空気流量及び起泡材流量は一般的に下式のようにして算出する。
気泡流量=断面積×(掘削速度/1000)×(注入率/100)×1000
空気流量=気泡流量×(発砲倍率−1)/発泡倍率×(1+制御土圧×10)
起泡材流量=気泡流量/発砲倍率
FIG. 5 is a block diagram schematically showing the bubble material injection means 31 connected to each of the five injection ports 14 (1 to 5) and its control system. As shown in the figure, the bubble injection control device 28 of each bubble material injection means 31 controls the rotation speed of the foaming material injection pump 22 and the air valve opening degree of the injection unit 26 to control the foaming material. The flow rate and the air flow rate are adjusted, and the adjustment amount is calculated based on a command signal from the central controller 40. That is, the central controller 40 sets the foaming ratio and the injection rate of the foam material according to the excavation speed and earth pressure of the shield machine 2, and calculates the air flow rate and the foaming material flow rate based on the set values. Then, the calculated value is sent to the bubble injection control device 28 as a command signal. The bubble flow rate, the air flow rate, and the foaming material flow rate are generally calculated as follows.
Bubble flow rate = cross-sectional area × (excavation speed / 1000) × (injection rate / 100) × 1000
Air flow rate = Bubble flow rate × (foaming magnification-1) / foaming magnification × (1 + control earth pressure × 10)
Foaming material flow rate = bubble flow rate / firing magnification

ところで、中央制御装置40は各注入口からの気泡流量および当該気泡流量となすための空気流量と起泡材流量とを算出するに当たり、制御土圧を各々の注入口の位置により変更するようにしている。即ち、中央制御装置40は各添加材注入口14(14-1〜14-5)の位置をカッタースポーク6の回転角度から算出し、各々の注入口14(14-1〜14-5)の位置に応じて複数の圧力センサの中からそれぞれの注入口14(14-1〜14-5)に近接する圧力センサ32(32a-1〜32a-3、32b-1〜32b-6)を選択して、当該選択した圧力センサ14の検出土圧に基づいてそれぞれの注入口14(14-1〜14-5)からの添加材注入量を算出して、その算出値を各注入口に繋がれる気泡材注入手段31の気泡注入制御装置28に指令信号として送信し、気泡注入制御装置28はその算出値に応じて、起泡材注入ポンプ22のポンプ回転数を制御するとともに、注入ユニット26のエアーバルブ開度とを制御して、起泡材流量と空気流量とを調節するようになっている。   By the way, the central controller 40 changes the control earth pressure depending on the position of each inlet when calculating the bubble flow rate from each inlet and the air flow rate and the foaming material flow rate for the bubble flow rate. ing. That is, the central controller 40 calculates the position of each additive inlet 14 (14-1 to 14-5) from the rotation angle of the cutter spoke 6, and each of the inlets 14 (14-1 to 14-5) is calculated. Pressure sensor 32 (32a-1 to 32a-3, 32b-1 to 32b-6) close to each inlet 14 (14-1 to 14-5) is selected from a plurality of pressure sensors according to the position. Then, based on the detected earth pressure of the selected pressure sensor 14, the amount of additive material injected from each inlet 14 (14-1 to 14-5) is calculated, and the calculated value is connected to each inlet. Is transmitted as a command signal to the bubble injection control device 28 of the bubble material injection means 31, and the bubble injection control device 28 controls the number of rotations of the foaming material injection pump 22 according to the calculated value, and the injection unit 26. The foaming material flow rate and the air flow rate are adjusted by controlling the air valve opening degree.

即ち、当該実施の形態では図4に示すように、マシン中心を通る鉛直線を基準にして、上端位置(12時位置)から周方向に±50度の範囲を上部制御領域とし、下端位置(6時位置)から周方向に±50度の範囲を下部制御領域とし、これら上部制御領域と下部制御領域とに挟まれた範囲を中間部制御領域としている。そして、注入口14(14-2〜14-5)が設けられたカッタースポーク(No.3,No.7,No.11)6aが上部制御領域に入った場合には、当該カッタースポークに設けられた注入口14(14-2〜14-5)の制御土圧は、バルクヘッド7aの上端に設けれた圧力センサ32a−1からの出力値を選択して採用するようになっている。また、下部領域に入っている場合には、圧力センサ32b−3または32B−4からの出力値のいずれか低い方を制御土圧として採用するようになっている。さらに、左右の中間部制御領域に入っている場合には、それぞれ外周寄りの圧力センサ32a−2または32a−3からの出力値を制御土圧として採用するようになっている。   That is, in the present embodiment, as shown in FIG. 4, a range of ± 50 degrees in the circumferential direction from the upper end position (12 o'clock position) is set as the upper control region with respect to the vertical line passing through the machine center, and the lower end position ( A range of ± 50 degrees in the circumferential direction from the 6 o'clock position is defined as a lower control region, and a range sandwiched between these upper control region and lower control region is defined as an intermediate control region. When the cutter spoke (No. 3, No. 7, No. 11) 6a provided with the inlet 14 (14-2 to 14-5) enters the upper control region, it is provided in the cutter spoke. The control earth pressure of the injection port 14 (14-2 to 14-5) is selected and adopted from the output value from the pressure sensor 32a-1 provided at the upper end of the bulkhead 7a. Further, in the lower region, the lower one of the output values from the pressure sensor 32b-3 or 32B-4 is adopted as the control earth pressure. Further, when the left and right intermediate control regions are entered, the output value from the pressure sensor 32a-2 or 32a-3 closer to the outer periphery is adopted as the control earth pressure.

つまり、前記チャンバー7内が周方向に沿って左右対称な上部制御領域と中間部制御領域と下部制御領域とに分けられるとともに、中間部制御領域と下部制御領域とにはそれぞれ左右対称に複数の圧力センサ32a−2,32a−3,32b−1,32b-2,32b−3,32b-4が配置される。   That is, the inside of the chamber 7 is divided into an upper control area, an intermediate control area, and a lower control area that are symmetrical in the circumferential direction, and the intermediate control area and the lower control area have a plurality of left and right symmetry. Pressure sensors 32a-2, 32a-3, 32b-1, 32b-2, 32b-3, and 32b-4 are arranged.

ここで、前記添加剤注入口14が上部領域内にあるときには、チャンバー7内の上端部近傍に設けられた圧力センサ32a−1からの出力値を制御土圧とし、中間部領域内と下部制御領域内とにあるときには、それぞれの領域内にある複数の圧力センサ32a−2,32a−3,32b−1,32b-2,32b−3,32b-4のうち、検出土圧が最も小さい圧力センサの出力値を制御土圧としても良い。また、各領域内に設置されている複数のセンサの出力値を平均してこれを制御土圧として採用するようにしても良い。   Here, when the additive inlet 14 is in the upper region, the output value from the pressure sensor 32a-1 provided in the vicinity of the upper end in the chamber 7 is used as the control earth pressure, and the intermediate region and lower control are performed. When in the area, the pressure with the lowest detected earth pressure among the plurality of pressure sensors 32a-2, 32a-3, 32b-1, 32b-2, 32b-3, 32b-4 in each area. The output value of the sensor may be used as the control earth pressure. Further, the output values of a plurality of sensors installed in each region may be averaged and used as the control earth pressure.

あるいは、注入口14(14-2〜14-5)が設けられているカッタースポーク(No.3,No.7,No.11)6aのそれぞれの回転角度に応じて、当該カッタースポーク(No.3,No.7,No.11)6aに設けられているそれぞれの注入口14(14-2〜14-5)に最も近接している圧力センサからの出力値を各々の注入口の制御土圧として採用する様にしても良い。   Or according to each rotation angle of the cutter spoke (No. 3, No. 7, No. 11) 6a provided with the inlet 14 (14-2 to 14-5), the cutter spoke (No. 3, No. 7, No. 11) The output value from the pressure sensor closest to each inlet 14 (14-2 to 14-5) provided in 6a is used as the control soil of each inlet. You may make it employ | adopt as pressure.

なお、固定型圧力センサ32b−1,32b−2,32b−5,32b−6の4つが使用されていないが、これらは故障時のバックアップ用として、及び状況に応じてより適切な制御を行う際に適宜切替られて使用されるようになっている。   The four fixed pressure sensors 32b-1, 32b-2, 32b-5, and 32b-6 are not used, but these are used for backup at the time of failure and more appropriate control according to the situation. At this time, it is used by switching appropriately.

本発明を適用する土圧式シールド工法に用いるシールド掘進機の概略構成を示す側断面図である。It is side sectional drawing which shows schematic structure of the shield machine used for the earth pressure type shield method to which this invention is applied. 図2はシールド掘進機2の前端面を示す正面図である。FIG. 2 is a front view showing the front end face of the shield machine 2. 図2中のIII−III線矢視部の断面図である。It is sectional drawing of the III-III arrow line part in FIG. 図3中のIV−IV線矢視部の断面図である。It is sectional drawing of the IV-IV arrow line part in FIG. 気泡材注入手段とその制御系を概略的に示すブロック図である。It is a block diagram which shows a bubble material injection | pouring means and its control system roughly.

符号の説明Explanation of symbols

2 シールド掘進機
6 カッタースポーク
7 チャンバー
8 スクリューコンベア
10 推進ジャッキ
12 覆工体
14 気泡注入口
16 起泡材生成プラント
20 起泡材坑内貯留槽
22 注入ポンプ
24 コンプレッサ
26 注入ユニット
28 気泡注入制御装置
31 気泡材注入手段
32 圧力センサ
DESCRIPTION OF SYMBOLS 2 Shield machine 6 Cutter spoke 7 Chamber 8 Screw conveyor 10 Propulsion jack 12 Covering body 14 Bubble injection port 16 Foaming material production plant 20 Foaming material underground storage tank 22 Injection pump 24 Compressor 26 Injection unit 28 Bubble injection control device 31 Bubble material injection means 32 Pressure sensor

Claims (2)

シールド掘進機のチャンバー内土圧を圧力センサで検知し、該検出土圧に基づいてカッタースポーク上に設けた添加材注入口からの添加材注入量を調節するに際し、
該圧力センサをチャンバーの上端部近傍と中央部近傍との少なくとも2箇所以上に複数配置し、該添加材注入口の位置を該カッタースポークの回転角度から算出して、該注入口の位置に応じて複数の該圧力センサの中から該注入口に近接する圧力センサを選択して、該選択した圧力センサの検出土圧に基づいて該注入口からの添加材注入量を調節することを特徴とするシールド工法における添加材の注入方法。
When detecting the earth pressure in the chamber of the shield machine with a pressure sensor, and adjusting the additive injection amount from the additive inlet provided on the cutter spoke based on the detected earth pressure,
A plurality of the pressure sensors are arranged in at least two locations near the upper end portion and near the central portion of the chamber, and the position of the additive inlet is calculated from the rotation angle of the cutter spoke, and the position is determined according to the position of the inlet. Selecting a pressure sensor close to the inlet from a plurality of the pressure sensors, and adjusting an additive material injection amount from the inlet based on a detected earth pressure of the selected pressure sensor. The injection method of the additive in the shield method.
前記チャンバー内が周方向に沿って左右対称な上部制御領域と中間部制御領域と下部制御領域とに分けられるとともに、該中間部制御領域と該下部制御領域とにはそれぞれ左右対称に複数の圧力センサが配置され、前記添加剤注入口が該上部領域内にあるときには、チャンバー内の上端部近傍に設けられた圧力センサからの出力値を制御土圧とし、該中間部領域内と該下部制御領域内とにあるときには、それぞれの領域内にある複数の圧力センサのうち検出土圧が最も小さい圧力センサの出力値を制御土圧とすることを特徴とする請求項1記載のシールド工法における添加材の注入方法。
The inside of the chamber is divided into an upper control region, an intermediate control region, and a lower control region that are symmetrical in the circumferential direction, and a plurality of pressures are symmetrically applied to the intermediate control region and the lower control region. When the sensor is disposed and the additive inlet is in the upper region, the output value from the pressure sensor provided near the upper end of the chamber is used as the control earth pressure, and the control in the middle region and the lower control is performed. 2. The addition in the shield method according to claim 1, wherein when it is within the area, the output value of the pressure sensor having the smallest detected earth pressure among the plurality of pressure sensors in each area is set as the control earth pressure. Material injection method.
JP2005028613A 2005-02-04 2005-02-04 Injection method of additives in shield method Active JP4617909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005028613A JP4617909B2 (en) 2005-02-04 2005-02-04 Injection method of additives in shield method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005028613A JP4617909B2 (en) 2005-02-04 2005-02-04 Injection method of additives in shield method

Publications (2)

Publication Number Publication Date
JP2006214189A JP2006214189A (en) 2006-08-17
JP4617909B2 true JP4617909B2 (en) 2011-01-26

Family

ID=36977637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005028613A Active JP4617909B2 (en) 2005-02-04 2005-02-04 Injection method of additives in shield method

Country Status (1)

Country Link
JP (1) JP4617909B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5584649B2 (en) * 2011-04-22 2014-09-03 大成建設株式会社 Earth pressure management device
JP5584650B2 (en) * 2011-05-09 2014-09-03 大成建設株式会社 Earth pressure management device
CN111058854B (en) * 2019-12-10 2022-04-08 中铁十四局集团隧道工程有限公司 Shield constructs cutter head and shield and constructs machine
CN111400645B (en) * 2020-03-20 2020-11-13 南京坤拓土木工程科技有限公司 Simplified method for estimating soil pressure distribution condition of water-rich sand layer at opening of cutter head

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59497A (en) * 1982-06-25 1984-01-05 石川島播磨重工業株式会社 Muddy water shield drilling apparatus
JPS59165795A (en) * 1983-03-08 1984-09-19 三菱重工業株式会社 Shield type tunnel drilling machine
JPS59213897A (en) * 1983-05-17 1984-12-03 株式会社青木建設 Shield drilling apparatus
JPS63136091U (en) * 1987-02-25 1988-09-07
JPH04198587A (en) * 1990-11-28 1992-07-17 Okumura Corp Slush impregnation control method in shield method
JPH05202693A (en) * 1992-01-23 1993-08-10 Ohbayashi Corp Mechanical shield excavation method using foaming agent
JP2700411B2 (en) * 1989-06-02 1998-01-21 建設省土木研究所長 Shield method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59497A (en) * 1982-06-25 1984-01-05 石川島播磨重工業株式会社 Muddy water shield drilling apparatus
JPS59165795A (en) * 1983-03-08 1984-09-19 三菱重工業株式会社 Shield type tunnel drilling machine
JPS59213897A (en) * 1983-05-17 1984-12-03 株式会社青木建設 Shield drilling apparatus
JPS63136091U (en) * 1987-02-25 1988-09-07
JP2700411B2 (en) * 1989-06-02 1998-01-21 建設省土木研究所長 Shield method
JPH04198587A (en) * 1990-11-28 1992-07-17 Okumura Corp Slush impregnation control method in shield method
JPH05202693A (en) * 1992-01-23 1993-08-10 Ohbayashi Corp Mechanical shield excavation method using foaming agent

Also Published As

Publication number Publication date
JP2006214189A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
CN110306991B (en) Muddy water soil pressure dual-mode shield tunneling machine
JP4617909B2 (en) Injection method of additives in shield method
CN101191417A (en) Bentonite mud water pressurization equilibration shield machine
JP2015101910A (en) Shield tunneling machine, and shield tunneling method
CN111322075B (en) Backfill slip casting system behind wall for shaft boring machine
JP7449634B2 (en) Mud water type shield excavator and its excavation method
JP6898890B2 (en) Shield excavator
US6082930A (en) Shield driving machine
JP5599224B2 (en) Method and apparatus for managing traceability of concrete
JP7427342B2 (en) Mud water type shield excavation machine and compressed air pressure adjustment method in muddy water type shield excavation machine
CN112253152A (en) Shield constructs quick-witted dregs improvement system
JP4273031B2 (en) Stabilization method of ground in shield method
CN112343616A (en) Shield tunneling machine muck improving method
CN114810105A (en) Deep layer regulating and water draining tunnel shield machine
JP2020193437A (en) Shield excavator
CN214007156U (en) Shield machine and muck improvement system thereof
KR102230972B1 (en) Eco-friendly semi-shield machine
JP7430026B2 (en) Mud water shield excavator
KR101023565B1 (en) Micro tunneling machine
JP7481080B2 (en) Slurry shield tunneling machine
JP3292525B2 (en) Small diameter pipe thruster and control method thereof
JP2023138063A (en) Fluid pumping system for shield tunneling machine
JPH07116909B2 (en) Water pressure balance type pumping and discharging shield method and shield machine
JP6804067B2 (en) Tunnel boring machine
JPS6224597B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4617909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150