JPS5921380Y2 - liquid crystal display device - Google Patents

liquid crystal display device

Info

Publication number
JPS5921380Y2
JPS5921380Y2 JP12345183U JP12345183U JPS5921380Y2 JP S5921380 Y2 JPS5921380 Y2 JP S5921380Y2 JP 12345183 U JP12345183 U JP 12345183U JP 12345183 U JP12345183 U JP 12345183U JP S5921380 Y2 JPS5921380 Y2 JP S5921380Y2
Authority
JP
Japan
Prior art keywords
liquid crystal
orientation
display device
electrode plates
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12345183U
Other languages
Japanese (ja)
Other versions
JPS5946326U (en
Inventor
政則 藤田
Original Assignee
株式会社精工舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社精工舎 filed Critical 株式会社精工舎
Priority to JP12345183U priority Critical patent/JPS5921380Y2/en
Publication of JPS5946326U publication Critical patent/JPS5946326U/en
Application granted granted Critical
Publication of JPS5921380Y2 publication Critical patent/JPS5921380Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は液晶表示装置、特に電極板間で液晶分子がらせ
ん状構造をなすねじれ配向型の液晶表示装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid crystal display device, particularly a twisted alignment type liquid crystal display device in which liquid crystal molecules form a spiral structure between electrode plates.

液晶表示装置において、電極板間で液晶分子がらせん状
構造をなすように配向させるには電極板の電極面を綿布
などで一定方向にこするとか、綿布にポリ弗化カーボン
、ポリ弗化エチレンなどをつけてこするとか、配向剤を
蒸着しその上を綿布でこするとか、絶縁物を斜め蒸着す
るとかによりなされる。
In a liquid crystal display device, in order to orient the liquid crystal molecules between the electrode plates so that they form a spiral structure, the electrode surface of the electrode plate can be rubbed in a certain direction with a cotton cloth, or the cotton cloth can be coated with polyfluorocarbon or polyfluoroethylene. This can be done by applying and rubbing an alignment agent, by vapor depositing an alignment agent and rubbing it with a cotton cloth, or by diagonally vapor depositing an insulator.

このようにして配向処理された2枚の電極板をその配向
方向が90°に交差するように対向させ、シールしてそ
の間隙に正の誘導異方性をもった液晶を注入すると、液
晶分子はその電極板間でらせん状構造の分子配列をなす
Two electrode plates that have been oriented in this way are placed opposite each other so that their alignment directions intersect at 90°, and when they are sealed and a liquid crystal with positive induction anisotropy is injected into the gap, the liquid crystal molecules forms a helical molecular arrangement between the electrode plates.

このとき液晶分子のねじれの方向は2種類存在する。At this time, there are two types of twist directions of the liquid crystal molecules.

すなわち第1図示のように上部の電極面が底面縦方向か
ら上へY軸方向への配向処理がなされ、下部の電極面が
底面横方内在から右へX軸方向に配向処理がなされてい
る時(この時配向処理が右ねじれ方向であると言うこと
にする。
In other words, as shown in the first diagram, the upper electrode surface is oriented from the bottom vertical direction upward in the Y-axis direction, and the lower electrode surface is oriented from the bottom lateral direction to the right in the X-axis direction. (At this time, the orientation treatment is said to be in the right-handed twist direction.

)、液晶分子のねじれは上下の電極面に接する分子は電
極面をこすった方向にその長軸方向をそろえて配向した
分子1,2または3,4となり、その中間の分子は上下
の分子1゜2または3,4の力を受けて全体としてらせ
ん状に90°ねじれた構造となる。
), the twisting of liquid crystal molecules is such that the molecules in contact with the upper and lower electrode surfaces become molecules 1, 2 or 3, 4, which are oriented with their long axes aligned in the direction of rubbing the electrode surfaces, and the molecules in between are molecules 1, 2, and 3, which are oriented in the direction in which the electrode surfaces are rubbed. When subjected to a force of 2 or 3 or 4 degrees, the entire structure becomes twisted 90 degrees in a spiral shape.

このときの液晶分子のねじれの方向が、第2図示の如く
上部の分子1から順次反時計方向にねじれて下部の分子
2に至る左ねじれ配向Aのものと、第3図示の如く上部
の分子3から順次時計方向にねじれて下部の分子4に至
る右ねじれ配向Bのものと存在するわけである。
At this time, the direction of twist of the liquid crystal molecules is a left-handed twist orientation A, which is sequentially twisted counterclockwise from molecule 1 at the top to molecule 2 at the bottom, as shown in the second figure, and a left-handed twist orientation A, as shown in the third figure. There exists a right-twist orientation B that is sequentially twisted clockwise from 3 to molecule 4 at the bottom.

そして第4図示のように一つの液晶表示装置5内におい
て、左ねじれ配向Aからなる領域6と、右ねじれ配向B
からなる領域7ができる。
As shown in FIG. 4, in one liquid crystal display device 5, there is a region 6 with left-handed twist orientation A, and a region 6 with right-handed twist orientation B.
A region 7 consisting of

この二の領域6,7は電界印加のない場合は共に安定で
あり、電界印加の場合には領域6,7の間で表示のコン
トラスト、駆動の際の立ち上り時間、立ち下り時間、応
答限界周波数などが異なり、しかも交流電界や機械的な
力によって、状態の転移が起るなどにより、不規則な表
示むらを生じ、表示が見難いという欠点があった。
These two regions 6 and 7 are both stable when no electric field is applied, and when an electric field is applied, display contrast, rise time, fall time during driving, and response limit frequency are determined between regions 6 and 7. Moreover, due to changes in state due to alternating current electric fields and mechanical forces, irregular display unevenness occurs and the display is difficult to see.

本考案は対向する2枚の電極板の配向処理方向を90’
より僅かに大にすることによって、表示装置全体の液晶
分子をいずれか一方のわヒれ配向に揃った安定な状態に
導き、コントラスト、応答特性などの一様な見易い表示
装置を提供するものである。
In the present invention, the orientation processing direction of two opposing electrode plates is 90'.
By making the liquid crystal molecules slightly larger, the liquid crystal molecules in the entire display device are brought into a stable state aligned with one of the crack orientations, thereby providing an easy-to-read display device with uniform contrast and response characteristics. be.

まず液晶セルの構成を説明する。First, the configuration of the liquid crystal cell will be explained.

第5図において8は光源側の偏光板であり、その下に光
源側の電極板9とこれに対向する電極板10とがスペー
サ11により所定の間隙を有するように位置し、この間
隙内に正の誘電異方性をもったネマチイツク液晶12が
充填しである。
In FIG. 5, reference numeral 8 denotes a polarizing plate on the light source side, under which an electrode plate 9 on the light source side and an electrode plate 10 opposing it are positioned with a predetermined gap provided by a spacer 11. It is filled with nematic liquid crystal 12 having positive dielectric anisotropy.

その下部に偏光板13が位置している。A polarizing plate 13 is located below it.

電極板9,10の対向面には電極が形成されており、所
定の配向処理がなされるものである。
Electrodes are formed on opposing surfaces of the electrode plates 9 and 10, and are subjected to a predetermined orientation treatment.

ところで液晶12の配向を左ねじれ配向または右ねじれ
配向のいずれか一方に揃えるには、電極板9,10の配
向処理方向を90’±a (’a )Q)に交差させれ
ばよい。
By the way, in order to align the orientation of the liquid crystal 12 to either the left-twisted orientation or the right-twisted orientation, the orientation processing directions of the electrode plates 9 and 10 may be made to intersect at 90'±a ('a )Q).

なぜならば対向する2枚の電極板9.10の配向処理方
向が90’±aに交差するようにした場合、この電極板
9,10に接する液晶分子はその分子の長軸方向が配向
処理方向に決定されるが、中間層の液晶分子は必すねじ
れの容易な方向、すなわち90°−aの角度の方にらせ
ん状にねじれるからである。
This is because when the orientation processing directions of the two opposing electrode plates 9 and 10 are made to intersect at 90'±a, the long axis direction of the liquid crystal molecules in contact with the electrode plates 9 and 10 is in the orientation processing direction. This is because the liquid crystal molecules in the intermediate layer are twisted spirally in the direction of easy twisting, that is, in the direction of the 90°-a angle.

たとえば第6図示の如く、上部の電極板9を下から上へ
矢印14方向に配向処理し、下部の電極板10を矢印に
対し時計方向に90°+aの開き角をもって左から右へ
矢印15方向に配向処理すると(このときの配向処理方
向の示すねじれは右ねじれ方向である。
For example, as shown in Figure 6, the upper electrode plate 9 is oriented from bottom to top in the direction of arrow 14, and the lower electrode plate 10 is oriented clockwise with respect to the arrow at an opening angle of 90°+a from left to right in direction of arrow 15. When the orientation treatment is performed in the direction (at this time, the twist indicated by the orientation treatment direction is a right-handed twist direction).

)、液晶分子の配向は第7図示の如くセル全体に一様に
左ねじれ配向となる。
), the liquid crystal molecules are oriented uniformly in a left-handed twisted orientation throughout the cell as shown in Figure 7.

また配向処理方向の示すねじれが同じ右ねじれ方向であ
っても、第8図示の如く、配向処理方向(矢印16と1
7)のなす角を90°−aにすると、液晶分子の配向は
第9図示の如くセル全体に一様に右ねしれ配向となる。
Furthermore, even if the twists indicated by the orientation treatment directions are the same right-handed twist direction, as shown in FIG.
When the angle formed by 7) is set to 90°-a, the orientation of the liquid crystal molecules becomes a right-handed orientation uniformly throughout the cell as shown in FIG. 9.

このように対向する2枚の電極板の配向処理方向が90
°±aに交差するように対向させると、液晶分子が上記
左ねじれ配向または右ねじれ配向のいずれか一方に一様
に配向する。
In this way, the orientation treatment direction of the two opposing electrode plates is 90°.
When the liquid crystal molecules are opposed to each other so as to intersect with the angle ±a, the liquid crystal molecules are uniformly aligned in either the left-handed or right-handed twisted orientation.

したがって2枚の電極板の配向処理方向90°に交差さ
せていた場合に問題となっていた第4図示のような縞模
様は完全に消滅し、直流駆動の際には共に良好なる結果
が得られた。
Therefore, the striped pattern shown in Figure 4, which was a problem when the two electrode plates were crossed at 90° in the alignment direction, completely disappeared, and good results were obtained in both cases during DC drive. It was done.

一方交流駆動の際には、2枚の電極板の配向処理方向を
90°+aに交差させた場合と90°−aに交差させた
場合とで、立ち上り時間、立ち下がり時間、応答限界周
波数などが異なった。
On the other hand, in the case of AC drive, the rise time, fall time, response limit frequency etc. was different.

前者の配向処理の方が立ち上り時間、立ち下り時間、応
答限界周波数などの面で優れており、最適な視角の変動
はなく安定していた。
The former orientation process was superior in terms of rise time, fall time, response limit frequency, etc., and was stable with no fluctuation in the optimal viewing angle.

また後者の配向処理の場合、機械的な力によってまたは
高電界で駆動時および駆動後しばらくの間一時的に右ね
じれ配向から左ねじれ配向に転移する現象が起こり、こ
のためコントラストの良い状態で見得る角度が次第にず
れるなど、交流駆動の際に不安定であった。
In addition, in the case of the latter orientation treatment, a phenomenon occurs in which the right-twisted orientation temporarily transitions to the left-twisted orientation during and for a while after driving due to mechanical force or in a high electric field, and for this reason, it can be seen in a state with good contrast. It was unstable during AC drive, with the obtained angle gradually shifting.

なおaは約20°以下の範囲で実施するのが好ましい。Note that a is preferably implemented within a range of about 20° or less.

つぎにこのように2枚の電極板の配向処理方向が90’
から僅かにずれているので、従来のように光吸収軸方向
が平行または垂直な2枚の偏光板を上記のような液晶セ
ルを挾むよう配設すると、液晶セルの厚さが厳密に均一
でない場合に干渉色が見えることになり見苦しい。
Next, in this way, the orientation treatment direction of the two electrode plates is 90'.
If two polarizing plates with parallel or perpendicular light absorption axes are placed between them to sandwich the liquid crystal cell as shown above, the thickness of the liquid crystal cell will not be strictly uniform. In some cases, interference colors become visible, which is unsightly.

そこで第5図示の2枚の偏光板8,13の光吸収軸方向
を、それぞれ対接する電極板9,10の配向処理方向と
平行もしくは垂直にした。
Therefore, the directions of the light absorption axes of the two polarizing plates 8 and 13 shown in FIG.

すなわち2枚の偏光板8,13同志の光吸収軸方向の開
き角度も、2枚の電極板9,10の配向処理方向の開き
角度と同様に90°から僅かにずれねいることになる。
That is, the opening angle of the two polarizing plates 8 and 13 in the light absorption axis direction also deviates slightly from 90°, similar to the opening angle of the two electrode plates 9 and 10 in the orientation process direction.

このようにすることにより干渉色が見えることを排除で
きる。
By doing so, it is possible to eliminate the appearance of interference colors.

このように考案によれば2枚の電極板の配向処理方向を
90°より僅かに大にすることによって表示セル全体の
液晶分子のねじれ方向を一定にし縞模様を排除すること
ができ、コントラスト、応答特性の一様な見易い表示装
置とし、液晶駆動時の立ち上り時間、立ち下り時間、応
答限界周波数および交流駆動時の安定性の点で一層優れ
たものとすることができる。
According to the invention, by making the direction of orientation of the two electrode plates slightly larger than 90°, the twist direction of the liquid crystal molecules in the entire display cell can be made constant and striped patterns can be eliminated, resulting in improved contrast and It is possible to provide an easy-to-read display device with uniform response characteristics, which is even more excellent in terms of rise time, fall time, response limit frequency during liquid crystal drive, and stability during AC drive.

また液晶表示セルを挾むように配設される偏光板の光吸
収軸方向を電極板の配向処理方向に対応させることによ
り干渉色を排除できる。
Furthermore, interference colors can be eliminated by making the direction of the light absorption axis of the polarizing plates arranged to sandwich the liquid crystal display cell correspond to the alignment direction of the electrode plates.

【図面の簡単な説明】 第1図は従来の対向する電極板の配向処理方向を説明す
る斜視図、第2図および第3図は上記配向処理により生
じる液晶分子の2種類のねじれ配向状態模型図、第4図
は異なったねじれ配向領域が存在する液晶表示装置の平
面図、第5図は液晶表示装置の断面図、第6図は本考案
の配向処理方向を示す図、第7図は同上処理により生じ
る液晶分子のねじれ配向状態模型図、第8図は本考案の
他の配向処理方向を示す図、第9図は同上処理により生
じる液晶分子のねじれ配向状態模型図である。 8・・・・・・光源側の偏光板、9・・・・・・光源側
の電極板、10・・・・・・電極板、12・・・・・・
液晶、13・・・・・・偏光板、14,15゜16.1
7・・・・・・配向処理方向。
[Brief Description of the Drawings] Fig. 1 is a perspective view illustrating the direction of conventional alignment treatment of opposing electrode plates, and Figs. 2 and 3 are models of two types of twisted alignment states of liquid crystal molecules caused by the above alignment treatment. 4 is a plan view of a liquid crystal display device in which different twisted alignment regions exist, FIG. 5 is a cross-sectional view of the liquid crystal display device, FIG. FIG. 8 is a diagram showing another orientation treatment direction of the present invention, and FIG. 9 is a model diagram of the twisted orientation state of liquid crystal molecules produced by the above treatment. 8... Polarizing plate on the light source side, 9... Electrode plate on the light source side, 10... Electrode plate, 12...
Liquid crystal, 13...Polarizing plate, 14, 15° 16.1
7... Orientation processing direction.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ねじれ配向型の液晶表示装置において、対向する2枚の
電極板に施される配向処理方向が90’より僅かに大に
することにより、上記電極板の間隙に介在させた液晶の
分子のねじれ方向を上記配向処理方向の示すねじれ方向
と逆方向で90°より僅かに小さいねじれ角度にし、上
記電極基板間に交流電圧を印加して駆動するもので、上
記の対向する2枚の電極板にそれぞれ対接する偏光板は
、その光吸収軸方向が上記電極板の配向処理方向と平行
もしくは垂直であることを特徴とする液晶表示装置。
In a twisted alignment type liquid crystal display device, by making the alignment treatment direction applied to two opposing electrode plates slightly larger than 90', the twist direction of the liquid crystal molecules interposed in the gap between the electrode plates can be adjusted. is set to a twist angle slightly smaller than 90° in the direction opposite to the twist direction indicated by the orientation processing direction, and is driven by applying an AC voltage between the electrode substrates, and the two electrode plates facing each other are driven. A liquid crystal display device characterized in that the light absorption axis direction of the opposing polarizing plate is parallel or perpendicular to the alignment direction of the electrode plate.
JP12345183U 1983-08-09 1983-08-09 liquid crystal display device Expired JPS5921380Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12345183U JPS5921380Y2 (en) 1983-08-09 1983-08-09 liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12345183U JPS5921380Y2 (en) 1983-08-09 1983-08-09 liquid crystal display device

Publications (2)

Publication Number Publication Date
JPS5946326U JPS5946326U (en) 1984-03-27
JPS5921380Y2 true JPS5921380Y2 (en) 1984-06-23

Family

ID=30281795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12345183U Expired JPS5921380Y2 (en) 1983-08-09 1983-08-09 liquid crystal display device

Country Status (1)

Country Link
JP (1) JPS5921380Y2 (en)

Also Published As

Publication number Publication date
JPS5946326U (en) 1984-03-27

Similar Documents

Publication Publication Date Title
JP5767687B2 (en) Liquid crystal display device and manufacturing method thereof
US6900870B2 (en) Liquid crystal display having wide viewing angle
CA2053345A1 (en) Liquid crystal display
US20020149727A1 (en) Ferroelectric liquid crystal display and method of manufacturing the same
JP2000137238A (en) Broad visual angle liquid crystal display device and its substrate and their production
EP0793134A1 (en) Liquid crystal display having alternating cuts in electrodes
WO2010097879A1 (en) Liquid crystal display device
CN105785657A (en) All-viewing-angle blind-zone-free liquid crystal display
JPS5921380Y2 (en) liquid crystal display device
Park et al. Fast fringe-field-switching liquid crystal cell with a protrusion structure
JP2000193980A (en) Liquid crystal display element and its manufacture
JP2551848B2 (en) Ferroelectric liquid crystal panel
US20040125276A1 (en) Liquid crystal display
JPH05173137A (en) Liquid crystal display device
JP4759884B2 (en) Liquid crystal display
JP2000131698A (en) Liquid crystal display element and its production
KR20010005217A (en) a liquid crystal display
JP3227624B2 (en) Manufacturing method of liquid crystal display device
US20040183979A1 (en) In-plane switching liquid crystal display and method for manufacturing the same
JPH02216124A (en) Nematic liquid crystal cell
JPS61105527A (en) Liquid crystal display device
JPS62174723A (en) Liquid crystal element
JPH04102828A (en) Liquid crystal element
KR100658070B1 (en) Fringe field switching lcd
JPS61262723A (en) Liquid crystal display device