JPS59213410A - Apparatus for removing carbon dioxide in water - Google Patents

Apparatus for removing carbon dioxide in water

Info

Publication number
JPS59213410A
JPS59213410A JP8638683A JP8638683A JPS59213410A JP S59213410 A JPS59213410 A JP S59213410A JP 8638683 A JP8638683 A JP 8638683A JP 8638683 A JP8638683 A JP 8638683A JP S59213410 A JPS59213410 A JP S59213410A
Authority
JP
Japan
Prior art keywords
water
chamber
gas
partition wall
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8638683A
Other languages
Japanese (ja)
Inventor
Tatsuo Okazaki
龍夫 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8638683A priority Critical patent/JPS59213410A/en
Publication of JPS59213410A publication Critical patent/JPS59213410A/en
Pending legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To remove efficiently carbon dioxide by spouting compressed air which is atomized through a porous partition wall, supplying dispersed water to the surface of the partition wall, and bubbling all the water to enhance the gas and liquid contacting efficiency. CONSTITUTION:A porous partition wall 6 is provided at the top of a compressed air supplying chamber 5, and the air is sent with pressure through a blower 9, a heater 10, and a duct 7. The air, atomized through the partition wall 6, is supplied into a bubbling chamber 2. A water stream is spouted and dispersed from a port 11a of a water supply pipe 11 facing the partition wall 6 to cause bubbling. The sending pressure of the air to be supplied is set so that the amt. of the air may become enormous as compared with the amt. of the water to be dispersed. All the supplied water is made into foam, and goes upward. The water diverges from the ascending air current at the level of a port at the upper end of an overflowing cylinder 13 in a gas-liquid separation chamber 3, and flows down into a water storage chamber 4 through the overflow pipe 13. At this stage, the water foam is broken, and the air contg. CO2 is discharged to the outside from the duct 14.

Description

【発明の詳細な説明】 本発明は、主として上水を電気分解、電気滲透作用によ
り、飲用に供する適性の水に変換する場合などの目的に
おいて、例えば前処理として実行される水の炭酸除去装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water carbonation removal device that is carried out, for example, as a pretreatment, mainly for the purpose of converting tap water into drinkable water by electrolysis or electroosmosis. It is related to.

一般に、地下水、河川の水には遊離炭酸という炭酸が多
く含まれている。この炭酸の起源は、はとんど、雨水に
溶けている炭酸ガスであるが、才た、土壌中で生物の呼
吸作用、バクテリアの分解作用で発生する炭酸ガスでも
ある。そして炭酸ガスの溶解と解離の関係は、 CO□+H,0: H2CO,(炭酸)H2CO3−;
 H++  l−1covHCO,−二H+ 4− C
O,− である。
Generally, groundwater and river water contain a large amount of carbonic acid called free carbonate. The origin of this carbonic acid is usually carbon dioxide gas dissolved in rainwater, but it is also carbon dioxide gas that is generated in the soil through the respiration of living organisms and the decomposition of bacteria. The relationship between dissolution and dissociation of carbon dioxide gas is CO□+H,0: H2CO, (carbonic acid) H2CO3-;
H++ l-1covHCO, -2H+ 4- C
O,-.

したがって、’rvts作用によって、陰極室側の水に
水酸基を多量に発生しても、H十とHCO,−あるいは
1]+とCO,−に分かれた状態で、OH+H+ → 
H20 となり、水酸基を消耗してし捷うので、電解効率が著し
く低下することになる。
Therefore, even if a large amount of hydroxyl groups are generated in the water on the cathode chamber side due to the 'rvts action, they are separated into H0 and HCO,- or 1]+ and CO,-, and OH+H+ →
H20 and hydroxyl groups are consumed and shredded, resulting in a significant drop in electrolytic efficiency.

また、電解作用を与えた時、陰極室側には有用なカルシ
ウムイオン力どが集まるが、上記の炭酸は、 H2CO,−)−Ca −+ I−(、−4−CaCu
)、の反応を示し、炭酸カルシウムとなって、沈澱し、
もしくは、電極表面にスケールとして付着し、通電率を
低下させる。このため、Caを消耗してしまう欠点もあ
る。
In addition, when electrolysis is applied, useful calcium ion forces gather on the cathode chamber side, but the above carbonic acid
), shows the reaction, becomes calcium carbonate and precipitates,
Alternatively, it adheres to the electrode surface as scale, reducing the current conductivity. For this reason, it also has the disadvantage of consuming Ca.

そこで、水中に空気を吹き込むことにより、泡立てを行
ない、炭酸ガスの除去を行彦う方式が採用された。こ\
では、水のガス溶存度が条件(気圧・温度)で一定であ
ることを利用し、炭酸ガスと空気との置換で、実質的に
炭酸ガス溶存量を低下させるのである。この具体的方式
としては、水槽底部に多数の孔を穿った板を介して空気
を供給し、水槽中の水を通って気泡状態で上昇する空気
を、その泡の表面で水と接触し、水中の炭酸ガスとの置
換を達成するものがある。しかし、この方式では、水量
に対する空気の供給量が少なく、また、気泡が大きく、
充分な気液の接触表面積が得られないので、予期したよ
うな炭酸除去が達成されない状況である。
Therefore, a method was adopted in which air was blown into the water to create bubbles and remove carbon dioxide gas. child\
Taking advantage of the fact that the degree of gas solubility in water is constant depending on conditions (pressure and temperature), the amount of dissolved carbon dioxide is substantially reduced by replacing carbon dioxide with air. In this specific method, air is supplied through a plate with many holes at the bottom of the aquarium, and the air rises in the form of bubbles through the water in the aquarium, and is brought into contact with the water on the surface of the bubbles. There are some that achieve replacement of carbon dioxide gas in water. However, with this method, the amount of air supplied relative to the amount of water is small, and the bubbles are large.
Since a sufficient gas-liquid contact surface area is not obtained, the expected carbon dioxide removal cannot be achieved.

本発明は、上記事情にもとづいて々されたもので、ポー
ラスな隔壁を介して細分化した圧力空気を噴出している
状況のもとで、この隔壁に対して水を分散供給すること
で、はとんど、全ての水を泡立たせて、高度の空気接触
状態を実現し、これによって短時間で効果的な炭酸除去
を行なえるようにした水の炭酸除去装置を提供しようと
するものである。
The present invention was developed based on the above-mentioned circumstances, and by dispersing and supplying water to the porous partition wall under the condition where fragmented pressurized air is ejected through the partition wall, The aim is to provide a water carbonation removal device that foams all of the water to achieve a high degree of air contact, thereby effectively removing carbonation in a short period of time. be.

以下、本発明の一実施例を図面を参照して具体的に説明
する。図において、符号1は、円筒状の装置本体であり
、上部に泡立て室2および気液分離室3を隣設し、下部
に貯水室4を設置したものである。上記泡立て室2には
、その底部に圧力空気供給室5が設けられていて、上記
圧力空気供給室5の頂部には素焼や、合成樹脂細粒を半
溶集結して作る、例えば、商品名「パルコン」々どの通
気多孔質板、その他、無数の気孔を有するポーラスな隔
壁6が増付けられている。また、上記圧力空気供給室5
にはその一側に空気ダクト7が設けてあり、この空気ダ
クl−7は、装置本体1のJJ’i部に形成した空気室
8に連通されている。上記空気室8には、ブロア9の吐
出口が開口していて、上記プロア9の駆動で上記空気室
8に圧力空気が導入され、ダクト7を介して圧力空気供
給室5へと供給されるようになっている。なお、この実
施例では、上記空気室8には、電熱によるヒータ10が
設けてあって、供給空気を加熱するように力っている。
Hereinafter, one embodiment of the present invention will be specifically described with reference to the drawings. In the figure, reference numeral 1 denotes a cylindrical main body of the apparatus, in which a bubbling chamber 2 and a gas-liquid separation chamber 3 are arranged adjacent to each other in the upper part, and a water storage chamber 4 is installed in the lower part. The foaming chamber 2 is provided with a pressurized air supply chamber 5 at its bottom, and the top of the pressurized air supply chamber 5 is made by unglazing or semi-molten agglomeration of fine particles of synthetic resin. A ventilation porous plate such as "Palcon" and other porous partition walls 6 having countless pores are added. In addition, the pressure air supply chamber 5
An air duct 7 is provided on one side of the apparatus body 1, and this air duct 1-7 communicates with an air chamber 8 formed in the JJ'i section of the main body 1 of the apparatus. A discharge port of a blower 9 is open in the air chamber 8, and pressurized air is introduced into the air chamber 8 by driving the blower 9, and is supplied to the pressurized air supply chamber 5 via the duct 7. It looks like this. In this embodiment, the air chamber 8 is provided with an electric heater 10 to heat the supplied air.

寸た、上記隔壁6に対向して、上記泡立て室2の下部に
は、水供給管11の開0112が位置しており、上記水
供給管11は、電磁弁12を介して水道管(図示せず)
(で接続されている。
An opening 0112 of the water supply pipe 11 is located at the lower part of the whisking chamber 2, facing the partition wall 6, and the water supply pipe 11 is connected to the water pipe (Fig. (not shown)
(Connected with.

また、上記泡立て室2と気液分離室3との境界域におい
て、上記泡立て室2の実質高さを設定するところの溢流
筒13.+3がその上端を開[]シており、この溢流筒
13.1.3はその下端を貯水室4に連通している。ま
た、気液分離室3の頂部にはダクト14が設けてあり、
上記ダクト14ばL字形に屈曲していて、その屈曲1〜
て水平に延びた端の下面に開口14aを具備し、気液分
離室3で分離された空気(炭酸ガスを含む)を外部へ放
出できるようにしである。
Also, in the boundary area between the whisking chamber 2 and the gas-liquid separation chamber 3, an overflow tube 13 is provided which sets the actual height of the whisking chamber 2. +3 is open at its upper end, and this overflow tube 13.1.3 communicates at its lower end with the water storage chamber 4. Further, a duct 14 is provided at the top of the gas-liquid separation chamber 3.
The duct 14 is bent in an L-shape, and the bend 1~
An opening 14a is provided on the lower surface of the horizontally extending end so that the air (including carbon dioxide gas) separated in the gas-liquid separation chamber 3 can be discharged to the outside.

なお、外部から、塵埃が入り込ま々いように、適当なフ
ィルタ素子15を設けている。
Note that a suitable filter element 15 is provided to prevent dust from entering from the outside.

上記貯水室4には、処理済みの水を電気分解装置へ供給
する供給管16が連通されている。
A supply pipe 16 for supplying treated water to the electrolyzer is connected to the water storage chamber 4 .

なお、図中、符号17は、貯水室4の液レベル検出器で
あり、四本のレベルセンサ17a、1.7bおよび17
C,,17dがある。
In addition, in the figure, the reference numeral 17 is a liquid level detector for the water storage chamber 4, and four level sensors 17a, 1.7b, and 17
There is C,,17d.

次にこの装置の動作を具体的に説明する。貯水室4の水
レベルがレベルセンサ17bより下にさがると、OFF
伯号がレベル検出器17で検知され、プロア9が駆動信
号を受けて駆動されると共に、電磁弁が開放信号をうけ
て開放される。これによって、隔壁6を介して、細分化
された空気流が泡立て室2内に入るが、隔壁6上には、
水供給管11より開口11aを介して水流が噴出拡散さ
れるので、こ\で泡立ちが起る。供給水量に対して空気
流量は厖大であるから、泡の発生状況は著しく、供給水
は、全て泡状となって上昇する。その泡は、頭初、細か
いが、上昇過程で−F側の泡による抑止力が小さくなる
ため、膨張し、−ヒ方の気液分離室3へと行く過程で成
長する。とくに、この実施例のように空気が加熱されて
いると、その成長も容易に達成される。気液分離室3で
は、溢流筒13,13の上端開口のレベルで上昇空気流
(水泡となって上昇)から外れて、溢流筒13゜13に
流れ、上記溢流筒より貯水室4に流下する。
Next, the operation of this device will be specifically explained. When the water level in the water storage chamber 4 falls below the level sensor 17b, the switch is turned OFF.
The bar number is detected by the level detector 17, the prower 9 is driven in response to the drive signal, and the solenoid valve is opened in response to the open signal. As a result, the segmented air flow enters the whisking chamber 2 through the partition wall 6, but on the partition wall 6,
Since a water stream is ejected and diffused from the water supply pipe 11 through the opening 11a, foaming occurs. Since the air flow rate is enormous compared to the amount of water supplied, the occurrence of bubbles is significant, and all of the supplied water rises in the form of bubbles. The bubbles are fine at first, but as the deterrent force of the bubbles on the -F side decreases during the rising process, the bubbles expand and grow in the process of going to the gas-liquid separation chamber 3 on the -H side. In particular, when the air is heated as in this example, its growth is easily achieved. In the gas-liquid separation chamber 3, the air separates from the rising air flow (rising as water bubbles) at the level of the upper end openings of the overflow tubes 13, 13, flows to the overflow tube 13°13, and flows from the overflow tube to the water storage chamber 4. flows down to.

そして、水泡は溢流筒に入る直前、捷たけ溢流筒を流れ
る過程あるいは貯水室4に入ってから破れ、炭酸ガスを
含む空気は気液分離室3よりダクト14を介して外部に
放出される。この場合、水源が水道水の場合は塩素ギス
除去の作用も同時に達成゛されて都合がよい。
Then, the water bubbles burst just before entering the overflow tube, during the process of flowing through the overflow tube, or after entering the water storage chamber 4, and the air containing carbon dioxide gas is released from the gas-liquid separation chamber 3 to the outside via the duct 14. Ru. In this case, if the water source is tap water, it is convenient because the action of removing chlorine gas is also achieved at the same time.

貯水室4の水レベルがレベルセンサ173に到達すると
、信号がレベル検出器17に入り、ブロア9を停止し、
電磁弁を閉じる。なお、レベルセンサ17c、17dは
別の用途に用いられるので、こ\では説明しない。
When the water level in the water storage chamber 4 reaches the level sensor 173, a signal enters the level detector 17 to stop the blower 9,
Close the solenoid valve. Note that the level sensors 17c and 17d are used for other purposes, so they will not be explained here.

なお、この実施例では、隔壁に対して水供給管11の開
口より水を噴出拡散させたが、充分な水泡の発生を達成
するための種々の配慮を行なうことは、必要に応じてな
され得るところである。更に、上記供給空気の圧送力は
、たとえ、泡立て室2内に水が残留しても、隔壁6から
上部の気液分離室3に到る領域での泡立ちを周囲の残留
した水で妨げられないほどの強さを持つように設定され
大な空気量となるように設定される。
Note that in this embodiment, water was sprayed and diffused from the opening of the water supply pipe 11 toward the partition wall, but various considerations may be made as necessary to achieve sufficient generation of water bubbles. By the way. Furthermore, the feeding force of the supply air is such that even if water remains in the bubbling chamber 2, bubbling in the region from the partition wall 6 to the upper gas-liquid separation chamber 3 is impeded by the surrounding residual water. It is set to have such strength that it does not exist, and it is set to have a large amount of air.

また、この実施例では、貯水室4を泡立て室2、気液分
離室3と一体に構成したが、別体に構成し、溢流筒13
,13を介して連通されるようにしてもよい。また、こ
の実施例では溢流のために筒を使用したが、板状の溢流
壁を使用してもよいこと勿論である。また、水泡から水
と空気を分離するための気液分離手段は、気液分離室3
、溢流筒13内、貯水室4内など、水泡が破れて、水と
空気(既に炭酸ガスを担持している)とが分離される領
域全てにおいて機能するものとして、こ\では定義する
Further, in this embodiment, the water storage chamber 4 is configured integrally with the bubbling chamber 2 and the gas-liquid separation chamber 3, but they are configured separately, and the overflow tube 13
, 13. Further, although a cylinder is used for overflow in this embodiment, it goes without saying that a plate-shaped overflow wall may also be used. Further, the gas-liquid separation means for separating water and air from water bubbles is provided in the gas-liquid separation chamber 3.
It is defined here as functioning in all areas where water bubbles break and water and air (which already carries carbon dioxide gas) are separated, such as in the overflow tube 13 and the water storage chamber 4.

また、この実施例では、上水について説明したが下水の
処理にも適用できること勿論である。
Furthermore, although this embodiment has been described with respect to tap water, it goes without saying that it can also be applied to the treatment of sewage.

本発明は、以上詳述したようになシ、ポーラスな隔壁を
介して泡立て室に空気を圧送する手段と、上記泡立て室
内において上記隔壁面に水を分散供給する水供給手段と
、水の分散によって形成された水泡を上記泡立て室で成
長させた後で、気液公理する気液分離手段とを具備し、
上記空気の圧送力は少なくとも泡立て室内の、隔壁から
気液分離手段に到る領域での泡立ちを周囲の水によって
妨げられないだけの強さを持つように、水供給手段の水
供給量との関係で設定されているので、水中に空気を吹
き込む方式と異り、隔壁面に順次拡散供給される水は、
全て泡状となって成長し、上昇され、面積当り空気接触
量を厖大なものとし、その水に含まれている炭酸ガスは
空気中に取出され、空気と置換し、炭酸排出を著しくす
ることができるO また、本発明は、空気を加熱することで、上記の泡立て
効果を更に向」ニし、炭酸ガスと空気との置換をよくし
、炭酸を水から排除する効果をよくする。
As described in detail above, the present invention provides means for force-feeding air into a foaming chamber through a porous partition wall, a water supply means for dispersing and supplying water to the partition surface in the foaming chamber, and a dispersion of water. and gas-liquid separation means for separating the bubbles formed by the foaming chamber into a gas-liquid axiom after the bubbles are grown in the bubbling chamber,
The above-mentioned air pumping force is adjusted to the water supply amount of the water supply means so that it has at least enough strength to prevent foaming in the region from the partition wall to the gas-liquid separation means in the foaming chamber from being obstructed by surrounding water. Unlike the method of blowing air into the water, the water that is sequentially diffused and supplied to the partition wall is
All of the water grows in the form of bubbles and rises, increasing the amount of air contact per area, and the carbon dioxide contained in the water is taken out into the air and replaced with air, resulting in significant carbon dioxide emissions. In addition, in the present invention, by heating the air, the above-mentioned foaming effect is further improved, the replacement of carbon dioxide gas with air is improved, and the effect of removing carbonic acid from water is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す縦断側面図、第2図は
、同横断平面図である。 ■・・・装置本体、2・・・泡立て室、3・・・気液分
離室、4・・貯水室、5・・圧力空気供給宰、6・・隔
壁、9・・ブロア、11・・・水供給管、13・・・溢
流筒。 出願人     岡 崎 龍 夫 手続補正書(方式) 昭和58年9月13印 昭和58年特許願第86386号 2、発明の名称 輩のに敲電アg盃 3、補正をする者 事件との関係 特許出願人 4、補正命令の日付 昭和58年8月30日(発送日) 5、補正の対象 (1)図 面 編者 r気)
FIG. 1 is a longitudinal cross-sectional side view showing one embodiment of the present invention, and FIG. 2 is a cross-sectional plan view thereof. ■...Device body, 2...Bubbling chamber, 3...Gas-liquid separation chamber, 4...Water storage chamber, 5...Pressure air supply, 6...Partition wall, 9...Blower, 11...・Water supply pipe, 13... Overflow tube. Applicant: Tatsuo Okazaki Procedural amendment (method) Patent Application No. 86386, dated September 13, 1988 2. Name of the invention: 3. Relationship with the case of the person making the amendment Patent applicant 4. Date of amendment order: August 30, 1980 (shipping date) 5. Subject of amendment (1) Drawing editor

Claims (1)

【特許請求の範囲】 面に水を分散供給する水供給手段と、水の分散によって
形成された水泡を上記泡立て室で成長させた後で、気液
分離させる気液分離手段とを具備し、上記空気の圧送力
は少なくとも泡立て室内の、隔壁から気液分離手段に到
る領域での泡立ちを周囲の水によって妨げられないだけ
の強さを持つように、水供給手段の水供給量との関係で
設定されていることを特徴とする水の炭酸除去装置。 (2)  ポーラスな隔壁を介して泡立て室に空気を圧
送する手段と、圧送空気を予め加熱する手段と、上記泡
立て室内において上記隔壁面に水を分散供給する水供給
手段と、水の分散によって形成された水泡を上記泡立て
室で成長させた後で、気液分離させる気液分離手段とを
具備し、上記空気の圧送力は少なくとも泡立て室内の、
隔壁から気液分離手段に到る領域での泡立ちを周囲の水
によって妨げられないだけの強さを持つように、水供給
手段の水供給量との関係で設定されていることを特徴と
する水の炭酸除去装置。 (3)上記泡立て室は、水の細泡が所望に成長するに足
る高さにおいて上記気液分離手段に連通され、上記隔壁
は泡立て室の下部にあり、水供給手段は泡立て室の下部
で隔壁の近傍に水供給口を開口し、上記気液分離手段は
、上記泡立て室上部で泡を溢流させる溢流部を具備して
いることを特徴とする特許請求の範囲、第1項所載の水
の炭酸除去装置。 (4)上記泡立て室は、水の細泡が所望に成長するに足
る高さにおいて上記気液分離手段に連通され、上記隔壁
は泡立て室の下部にあり、水供給手段は泡立て室の下部
で隔壁の近傍に水供給口を開【](7、上記気液分離手
段は、上記泡立て串上部で泡を溢流させる溢流部を具備
していることを特徴とする特許請求の範囲、第2項所載
の水の貯酸除去装置。
[Scope of Claims] A water supply means for dispersing and supplying water to the surface, and a gas-liquid separation means for separating the water bubbles formed by dispersing the water into the foaming chamber after the bubbles are grown in the foaming chamber, The above-mentioned air pumping force is adjusted to the water supply amount of the water supply means so that it has at least enough strength to prevent foaming in the region from the partition wall to the gas-liquid separation means in the foaming chamber from being obstructed by surrounding water. A water carbonation removal device characterized in that it is set in a relationship. (2) A means for pumping air into the whipping chamber through a porous partition wall, a means for preheating the pumped air, a water supply means for dispersing and supplying water to the partition wall surface in the whisking chamber, and and gas-liquid separation means for separating the formed water bubbles into gas and liquid after growing in the foaming chamber, and the air pressure is applied at least to the foaming chamber.
It is characterized by being set in relation to the water supply amount of the water supply means so that it has enough strength to not be hindered by surrounding water from bubbling in the region from the partition to the gas-liquid separation means. Water carbonation remover. (3) The whisking chamber communicates with the gas-liquid separation means at a height sufficient to allow the desired growth of fine water bubbles, the partition wall is located at the bottom of the whisking chamber, and the water supply means is located at the bottom of the whisking chamber. Claim 1, characterized in that a water supply port is opened in the vicinity of the partition wall, and the gas-liquid separation means is provided with an overflow part for overflowing foam at the upper part of the whisking chamber. Water carbonation removal device. (4) The whisking chamber communicates with the gas-liquid separation means at a height sufficient to allow the desired growth of water bubbles, the partition wall is located at the lower part of the whisking chamber, and the water supply means is located at the lower part of the whisking chamber. A water supply port is opened in the vicinity of the partition wall (7) The gas-liquid separation means is provided with an overflow portion for overflowing the foam at the upper part of the whisking skewer. Water storage acid removal device listed in Section 2.
JP8638683A 1983-05-17 1983-05-17 Apparatus for removing carbon dioxide in water Pending JPS59213410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8638683A JPS59213410A (en) 1983-05-17 1983-05-17 Apparatus for removing carbon dioxide in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8638683A JPS59213410A (en) 1983-05-17 1983-05-17 Apparatus for removing carbon dioxide in water

Publications (1)

Publication Number Publication Date
JPS59213410A true JPS59213410A (en) 1984-12-03

Family

ID=13885431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8638683A Pending JPS59213410A (en) 1983-05-17 1983-05-17 Apparatus for removing carbon dioxide in water

Country Status (1)

Country Link
JP (1) JPS59213410A (en)

Similar Documents

Publication Publication Date Title
KR100671104B1 (en) Method, device and system for controlling dissolved amount of gas
US5554280A (en) Filter system
US3985622A (en) Method and apparatus for conducting fermentation
JP2003220398A (en) Aerobic sludge digester
JP2007167856A (en) Air diffusion device
EP0430904B1 (en) Process for treating waste water with high concentration ozone water
JPS59213410A (en) Apparatus for removing carbon dioxide in water
JPS6323995Y2 (en)
JPH0244878Y2 (en)
JPH034394Y2 (en)
JP2000203811A (en) Packed column and purification of aqueous hydrogen peroxide using the same packed column
JPH06315696A (en) Defoaming device for activated sludge tank
JPH0331481B2 (en)
JP4252189B2 (en) Methane fermentation treatment equipment
JP2002292379A (en) Method and device for accelerated oxidation treatment
JPH07204682A (en) Anaerobic water treatment apparatus
JPS59213411A (en) Apparatus for removing carbon dioxide in water
JP2004243280A (en) Method and apparatus for aerobic digestion process of sludge
KR101619747B1 (en) Apparatus for Producing Carbonated Water
JPH11147098A (en) Anaerobic treatment apparatus
JPS60227896A (en) Aerobic sludge decomposition method and container
JPH09187785A (en) Recovery and purification device for drain
JP2001276881A (en) Anaerobic treatment device
JP5541557B2 (en) Water-cooled ozone generator
JPH0239955B2 (en) OZONYOKAISUISEIZOSOCHI