JPS5921326B2 - Continuous manufacturing method for methyl methacrylate syrup - Google Patents

Continuous manufacturing method for methyl methacrylate syrup

Info

Publication number
JPS5921326B2
JPS5921326B2 JP12068477A JP12068477A JPS5921326B2 JP S5921326 B2 JPS5921326 B2 JP S5921326B2 JP 12068477 A JP12068477 A JP 12068477A JP 12068477 A JP12068477 A JP 12068477A JP S5921326 B2 JPS5921326 B2 JP S5921326B2
Authority
JP
Japan
Prior art keywords
reaction zone
polymerization
syrup
initiator
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12068477A
Other languages
Japanese (ja)
Other versions
JPS5454189A (en
Inventor
正宏 湯山
禎三 花村
朗 桜本
誠孝 柳瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP12068477A priority Critical patent/JPS5921326B2/en
Priority to NLAANVRAGE7810090,A priority patent/NL187487C/en
Priority to CA312,893A priority patent/CA1107752A/en
Priority to FR7828678A priority patent/FR2405269A1/en
Priority to IT69324/78A priority patent/IT1160698B/en
Priority to GB7839660A priority patent/GB2005282B/en
Priority to AU40503/78A priority patent/AU520196B2/en
Priority to DE19782843759 priority patent/DE2843759A1/en
Publication of JPS5454189A publication Critical patent/JPS5454189A/en
Publication of JPS5921326B2 publication Critical patent/JPS5921326B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】 本発明は重合体含有率の高いメチルメタクリレート系シ
ロツプを連続的に安定に製造する方法に関し、特にメチ
ルメタクリレート系樹脂板の品質を低下しないで作業性
の良い適度な粘度を保有すると同時に製板時間が短縮で
きる重合体含有率の高いシロツプを連続的に安定に製造
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuously and stably producing methyl methacrylate syrup with a high polymer content, and in particular to a method for producing a methyl methacrylate resin plate with an appropriate viscosity that provides good workability without deteriorating the quality of the methyl methacrylate resin plate. The present invention relates to a method for continuously and stably producing syrup with a high polymer content, which can simultaneously reduce the time required for plate making.

更に詳しくは、本発明は、メチルメタクリレート系単量
体とラジカル重合開始剤とを規定された反応条件下を順
次通過させて、重合体含有率の高いシロツプを安定に製
造するシロツプの連続製造方法に関し、特に重合度分布
が狭く、かつ、残留開始剤濃度が小さく、かつ、重合体
含有率の高いシロツプを安定に製造するシロツプの連続
製造方法に関する。
More specifically, the present invention provides a continuous syrup production method in which a methyl methacrylate monomer and a radical polymerization initiator are sequentially passed through specified reaction conditions to stably produce syrup with a high polymer content. In particular, the present invention relates to a continuous syrup production method for stably producing syrup with a narrow polymerization degree distribution, a low residual initiator concentration, and a high polymer content.

メチルメタクリレート系樹脂板は通常二枚のガラス板の
間に重合開始剤およびメチルメタクリレート系シロツプ
からなる重合性液状組成物を注入し、加熱下に重合する
ことにより得られている。
Methyl methacrylate resin plates are usually obtained by injecting a polymerizable liquid composition consisting of a polymerization initiator and methyl methacrylate syrup between two glass plates and polymerizing the composition under heating.

この際重合性液状組成物の注入の作業性を向上させると
共に、生成樹脂板の品質を向上させかつ製板時間を短縮
させる目的で、適当量の重合体が含まれるシロツプが注
入液として使用されている。このシロツプは、注入前に
重合開始剤その他の必要な添加剤が加えられると共に、
その中に含まれている溶存空気を除去するため減圧下で
脱気された後、ガスケツトでシールされた二枚のガラス
板の間に注入される。注入の際にシロツプの粘度が過度
に低いときは液もれの原因となり、過度に高いときは注
入時間を長く要するなどいずれも注入の作業性を低下さ
せるので、注入されるシロツプの粘度は適当な範囲に選
ばれなければならない。またシロツプを使用することに
より、重合時の発熱量が小さくなると共に、重合時にお
ける重合体の収縮を小さくすることができるので、得ら
れる樹脂板の表面状態が向上し、板厚のコントロールも
容易となることが知られており、このような目的からは
シロツプ中の重合体含有率は高いほど好ましいことにな
る。さらに、シロツプ中の重合体含有率が高いほど製板
時間は大巾に短縮されるので、特にこの点からも重合体
含有率はできるだけ高いことが好ましい。なお、このよ
うな目的に使用されるシロツプは貯蔵安定性が大で、か
つ、製板時においては重合を阻害せず、また得られる樹
脂板の品質を低下させないものでなければならない〜 メタクリル樹脂板の製造は従来から二板のガラス板の間
で重合させて製板する回分式のセルキヤスト法で行われ
てきたが、近年、二つの連続した移動バンド間で連続重
合させて製板する連続ギア .・スト法への転換が進め
られている。
At this time, a syrup containing an appropriate amount of polymer is used as the injection liquid in order to improve the workability of injecting the polymerizable liquid composition, improve the quality of the resulting resin board, and shorten the board making time. ing. This syrup is added with a polymerization initiator and other necessary additives before injection, and
After being degassed under reduced pressure to remove any dissolved air contained therein, it is injected between two glass plates sealed with a gasket. If the viscosity of the syrup is too low during injection, it may cause leakage, and if it is too high, the injection time will be longer, both of which will reduce the workability of injection, so the viscosity of the syrup to be injected should be appropriate. must be selected within a certain range. In addition, by using syrup, the amount of heat generated during polymerization is reduced, and the shrinkage of the polymer during polymerization can be reduced, improving the surface condition of the resulting resin board and making it easier to control the board thickness. It is known that the content of the polymer in the syrup is higher for this purpose. Further, the higher the polymer content in the syrup, the greater the time required for plate making, so from this point of view as well, it is preferable that the polymer content is as high as possible. Note that the syrup used for this purpose must have high storage stability, and must not inhibit polymerization during board manufacturing nor reduce the quality of the resulting resin board.Methacrylic resin The production of plates has traditionally been carried out using the batch cell cast method, in which plates are produced by polymerizing between two glass plates, but in recent years, continuous gear casting has been used, in which plates are produced by continuous polymerization between two consecutive moving bands.・Conversion to strike law is underway.

この連続キャスト法は、例えば特公昭51−29916
号公報に示されているように、上下位置関係にある二つ
の連続した移動バンドを同一方向へ、同一速度で走行せ
しめ、該移動バンドの両辺にそれぞれ少く lとも1個
の連続したガスケツトを両移動バンドに接触した状態で
走行させて移動バンド間の空間をシールし、重合性液状
組成物を該移動バンド間の空間に供給し、該組成物が重
合する帯域を通過走行させて重合を完結せしめ、該移動
バンド間の他端より板状重合物を取り出す連続製板方法
である。しかしこの方法は製造コストに占める設備費の
割合が大きいので、セルキヤスト法と比較して特に製板
時間の短縮が要求される。製板時間の短縮は注入液とし
て用いるシロツプ中の重合体含有率を注入等の作業性の
確保できる粘度の範囲内で、できるだけ高くすることに
より達成されるが、一方このようなシロツプを使用した
ことにより得られる樹脂板の品質が低下することになれ
ばそれだけ樹脂板の商品としての価値が低下し、製板時
間短縮による製造コスト低減の効果はそれだけ相殺され
ることになるので、使用するシロツプは樹脂板の品質を
できるだけ低下させず、好ましくは品質を向上させるも
のでなければならない。製板時間を短縮するためシロツ
プの重合体含有率を高めると通常は得られる樹脂板の平
均重合度が低下して機械的強度が低下したり、シロツフ
沖の低重合度重合体のために樹脂板の加熱成形時に発泡
するなどの欠点が現われ易くなる。
This continuous casting method is used, for example, in Japanese Patent Publication No. 51-29916
As shown in the publication, two continuous moving bands in a vertical positional relationship are made to run in the same direction and at the same speed, and at least one continuous gasket is installed on each side of the moving bands. The space between the moving bands is sealed by running in contact with the moving band, the polymerizable liquid composition is supplied to the space between the moving bands, and the composition is run through the zone where the composition is polymerized to complete the polymerization. This is a continuous plate-making method in which a plate-shaped polymer is taken out from the other end between the moving bands. However, in this method, the equipment cost accounts for a large proportion of the manufacturing cost, so it is particularly required to shorten the plate manufacturing time compared to the cell casting method. Shortening the plate making time is achieved by increasing the polymer content in the syrup used as the injection liquid as high as possible within the viscosity range that ensures workability for injection. As a result, if the quality of the resulting resin board deteriorates, the value of the resin board as a product will decrease accordingly, and the effect of reducing manufacturing costs by shortening the board manufacturing time will be offset by that amount. should not reduce the quality of the resin plate as much as possible, but should preferably improve the quality. If the polymer content of the syrup is increased to shorten the board making time, the average degree of polymerization of the resulting resin board will usually decrease, resulting in a decrease in mechanical strength. Defects such as foaming during hot molding are more likely to occur.

定温度条件下におけるシロツプの粘度は重合体含有率と
重合体の重量平均重合度により決定され、そのいずれに
関しても高くなるほど粘度は高くなる関係にある。
The viscosity of syrup under constant temperature conditions is determined by the polymer content and the weight average degree of polymerization of the polymer, and the relationship is such that the higher the content in both of them, the higher the viscosity.

従つて注入等の作業性から限られた粘度の上限以下の範
囲内で重合体含有率をできるだけ高めるためには重量平
均重合度は低いほど好ましいが、一方得られる樹脂板の
平均重合度を低下させ、また樹脂板の加熱成形時におけ
る発泡を起し易くするのはシロツフ沖の低重合度重合体
も一因であり、その量はほぼ数平均重合度により決定さ
れ、数平均重合度が高いほど低分子量重合体の量は減少
する関係にあるので、数平均重合度は高いほど好ましい
と言える。重合度分布を有する重合体では一般に重量平
均重合度は数平均重合度より大きく、両者の比で表わさ
れる多分散度は重合度分布の広さの尺度として用いられ
るが、この表現を用いると多分散度の小さいシロツプほ
ど好ましいと言える。また、シロツプ中の残留開始剤濃
度が高いとシロツプ製造時の冷却中やシロツプの貯蔵中
にさらに重合が進行してシロツフ沖の重合体含有率およ
び粘度が上昇して一定品質のものが得られ難い欠点を有
する。
Therefore, in order to increase the polymer content as much as possible within the limited upper limit of viscosity from the viewpoint of workability such as injection, it is preferable that the weight average degree of polymerization is as low as possible. Also, the low degree of polymerization polymer produced by Shirozow is one of the reasons why foaming occurs easily during heat molding of resin plates, and its amount is determined by the number average degree of polymerization, and the higher the number average degree of polymerization, the higher the Since the amount of the low molecular weight polymer is in a decreasing relationship, it can be said that the higher the number average degree of polymerization is, the more preferable it is. In polymers with a degree of polymerization distribution, the weight average degree of polymerization is generally larger than the number average degree of polymerization, and the polydispersity expressed as the ratio of the two is used as a measure of the breadth of the distribution of degree of polymerization. It can be said that syrups with a smaller degree of dispersion are more preferable. In addition, if the concentration of residual initiator in the syrup is high, polymerization will proceed further during cooling during syrup production or during syrup storage, increasing the polymer content and viscosity of the syrup, making it difficult to obtain a product of constant quality. It has its drawbacks.

またこのような重合の進行が実質的に認められない程度
の微量の残留開始剤も貯蔵中のシロツプの変質の原因と
なり、このようなシロツプを用いて得られた樹脂板中の
残留単量体含有率を増加させたり、樹脂板の加熱成形時
に発泡し易くなるなど品質低下の原因にもなるので、残
留開始剤濃度はできるだけ小さくする必要がある。なお
、製板時間を短縮する方法としてシロツプの重合体含有
率を高める代りに製板時に使用する重合開始剤濃度を増
加させることもできるが、この場合は樹脂板の平均重合
度が必然的に低下して品質低下が大きいので有利な方法
とは言い難い。シロツプの製造方法としては従来から種
々の方法が提案がなされているが、いずれも上述の条件
を部分的には満しているが、すべてを満足しているもの
は知られておらず、製板時間を短縮すると得られる樹脂
板の機械的強度が低下したり、加熱成形時に発泡し易く
なるなど品質低下を招来し、製板時間の短縮が必ずしも
経済性の向上につながらない欠点を有していた。回分式
によりシロツプを製造する方法は通常攪拌槽型反応器を
使用し、単量体を高温に加熱した後所定量の重合開始剤
を添加するか、あるいは単量体と重合開始剤との混合物
を高温に加熱して、十分な時間重合させて重合開始剤濃
度が実質的に無視できる量になるまで減少させた後冷却
してシロツプを取り出している。
In addition, trace amounts of residual initiator such that the progress of polymerization is not substantially observed may cause deterioration of the syrup during storage, and residual monomers in resin plates obtained using such syrup may It is necessary to keep the residual initiator concentration as low as possible, since it may increase the content and cause quality deterioration, such as making the resin plate more likely to foam during heat molding. In addition, as a method of shortening the plate making time, it is possible to increase the concentration of the polymerization initiator used during plate making instead of increasing the polymer content of the syrup, but in this case, the average degree of polymerization of the resin plate will inevitably increase. It is difficult to say that this is an advantageous method because the quality decreases significantly. Various methods have been proposed for the production of syrup, but although all of them partially satisfy the above conditions, there is no known method that satisfies all of the above conditions. Shortening the board-making time leads to a decrease in quality, such as a decrease in the mechanical strength of the resulting resin board and the tendency to foam during heat forming, and shortening the board-making time does not necessarily lead to improved economic efficiency. Ta. Batch production of syrup usually involves using a stirred tank reactor, heating monomers to a high temperature and then adding a predetermined amount of polymerization initiator, or using a mixture of monomers and polymerization initiator. The syrup is heated to a high temperature, allowed to polymerize for a sufficient period of time to reduce the initiator concentration to a substantially negligible amount, and then cooled to remove the syrup.

この方法では開始剤濃度は反応初期には高く、反応の進
行につれて比較的急速に減少する経過をたどり、生成す
る重合体の重合度は初期の相当低重合度のものから最後
の極めて高重合度のものまで大巾に変化する。従つて得
られるシロツプ中の重合体の重合度分布は極めて広くな
り、重量平均重合度が高く、数平均重合度が低いことに
なる。重量平均重合度はシロツプの粘度と直接的に関係
があり、これが高いことは同じ重合体含有率で比較した
ときのシロツプの粘度が高いことを意味し、ガラスセル
または移動バンド間への注入作業に困難を来たすことに
なるので、これを容易にするためにはシロツフ沖の重合
体含有率を低い段階に抑えなければならないことになり
、製板時間の短縮はあまり期待できない。また数平均重
合度が低いことは品質低下の原因となる低重合度重合体
を比較的多く含有していることを意味し、このようなシ
ロツプを用いて得られる樹脂板の平均重合度の低下ある
いは樹脂板の加熱成形時の発泡の原因となるなど品質低
下を来たすことになり望ましくない。この方法で初めに
使用する重合開始剤の濃度を増加させると得られるシロ
ツプ中の重合体の重量平均重合度は低下し、注入作業の
容易な粘度の範囲内での重合体含有率の上限は上昇する
ので製板時間はより短縮されるが、一方数平均重合度も
これに対応して低下するので樹脂板の品質低下が助長さ
れる結果となり得策でない。なお、この方法で得られる
シロツプは通常残留開始剤濃度が十分低くなつており、
貯蔵安定性は比較的良好である。他方、この回分式製造
法において、十分な時間をかけて重合を行わないときは
重合度分布の比較的狭いシロツプが生成するが、残留開
始剤限度が高いので、冷却中および貯蔵中にさらに重合
が進行して粘度が上昇する不都合が生じる。
In this method, the initiator concentration is high at the beginning of the reaction and decreases relatively rapidly as the reaction progresses, and the degree of polymerization of the resulting polymer varies from a fairly low degree at the beginning to a very high degree at the end. Even things change drastically. Therefore, the polymerization degree distribution of the polymer in the obtained syrup becomes extremely wide, with a high weight average degree of polymerization and a low number average degree of polymerization. The weight average degree of polymerization is directly related to the viscosity of the syrup, which means that the syrup has a higher viscosity when compared with the same polymer content, making it easier to pour into glass cells or between moving bands. Therefore, in order to make this easier, the polymer content of Shirozow must be kept to a low level, and we cannot expect much reduction in plate-making time. In addition, a low number average degree of polymerization means that it contains a relatively large amount of low polymerization degree polymers, which can cause quality deterioration. Alternatively, it may cause foaming during heat molding of the resin plate, resulting in quality deterioration, which is undesirable. Increasing the concentration of the polymerization initiator initially used in this method lowers the weight average degree of polymerization of the polymer in the syrup obtained, and the upper limit of the polymer content within the range of viscosity that is easy to pour is Although this increases the plate making time, the number average degree of polymerization also decreases correspondingly, which is not a good idea as it promotes deterioration in the quality of the resin plate. Note that the syrup obtained by this method usually has a sufficiently low concentration of residual initiator,
Storage stability is relatively good. On the other hand, in this batch production method, if polymerization is not carried out for a sufficient period of time, a syrup with a relatively narrow degree of polymerization distribution is produced, but due to the high residual initiator limit, further polymerization occurs during cooling and storage. This leads to the problem that the viscosity increases.

また、シロツプの貯蔵安定性を増大させる目的で重合禁
止剤を添加することも行われているが、製板時の重合時
間を遅延させたり、着色の原因となるなどの欠点を有す
る。シロツプの回分式製造時に連鎖移動剤を添加して高
重合度重合体の生成を抑制する方法は、連鎖移動剤がシ
ロツプ中に残存した場合 ,こは製板時に影響を及ぼし
、重合時間の遅延や得られる樹脂板の平均重合度の低下
あるいは着色の原因となるなど好ましい方法とは言い難
℃・oこれに対して連続式によりシロツプを製造する方
法も〜・くつか提案されている。管型反応器の−4端よ
り単量体と重合開始剤とを連続的に供給し、他端より生
成するシロツプを連続的に取り出す方法は先に述べた回
分式の欠点を本質的に全く克服することができない。す
なわち、反応液が細長いノ管型反応器を長手方向に向つ
て流れて行くときに生じる現象を、重合反応の時間的経
過の観点から捉えると、逆混合の影響を除けば回分式槽
型反応器内の重合反応の時間的経過と同等であり、開始
剤濃度は入口付近では高く、反応液の前進につれて比較
的急速に減少して出口付近では実質的に無視できる量に
なる経過をたどり、生成する重合体の重合度は入口付近
の相当低重合度のものから出口付近の極めて高重合度の
ものまで大巾に変化して、得られるシロツフ沖の重合体
の重合度分布は極めて広いものになる。
Additionally, polymerization inhibitors have been added for the purpose of increasing the storage stability of the syrup, but this has drawbacks such as delaying the polymerization time during plate manufacturing and causing discoloration. The method of adding a chain transfer agent during the batch production of syrup to suppress the formation of highly polymerized polymers has the disadvantage that if the chain transfer agent remains in the syrup, this will affect the plate making process and delay the polymerization time. It is difficult to say that this is a preferable method because it causes a decrease in the average degree of polymerization or coloration of the obtained resin plate.In contrast, several methods have been proposed in which syrup is produced by a continuous method. The method of continuously supplying monomers and polymerization initiator from the -4 end of the tubular reactor and continuously taking out the produced syrup from the other end essentially eliminates the disadvantages of the batch method mentioned above. cannot be overcome. In other words, if we look at the phenomenon that occurs when a reaction solution flows in the longitudinal direction through a long and narrow no-tube reactor from the perspective of the time course of the polymerization reaction, we can see that, excluding the influence of back mixing, it is a batch tank type reaction. It is equivalent to the time course of a polymerization reaction in the vessel, and the initiator concentration is high near the inlet, decreases relatively rapidly as the reaction liquid advances, and becomes a virtually negligible amount near the outlet. The degree of polymerization of the produced polymer varies widely from a fairly low degree of polymerization near the inlet to a very high degree of polymerization near the outlet, and the distribution of the degree of polymerization of the resulting polymer off the coast of Sirozov is extremely wide. Become.

一方、この方法で十分な温度あるいは滞留時間をかけて
重合を行わないときは重合度分布の比較的狭いシロツプ
が生成するが、シロツプの貯蔵安定性が乏しいことも回
分式槽型反応器で十分な時間をかけて行わないときと同
様である。
On the other hand, if this method does not carry out polymerization at a sufficient temperature or residence time, a syrup with a relatively narrow degree of polymerization distribution is produced, but the storage stability of the syrup is poor, so a batch tank reactor is sufficient. It is the same as when you do not spend a lot of time doing it.

すなわち、連続式管型反応器においても、得られる樹脂
板の品質を低下させない範囲内での製板時間の短縮はあ
まり期待できない。また、攪拌槽型反応器入口から単量
体と重合開始剤とを連続的に供給し、出口から生成する
シロツプを連続的に取り出す方法も提案されている。
That is, even in a continuous tubular reactor, it is not expected that the plate making time will be reduced so much without degrading the quality of the resin plate obtained. A method has also been proposed in which monomers and polymerization initiators are continuously supplied from the inlet of a stirred tank reactor, and the produced syrup is continuously taken out from the outlet.

特公昭38−4794号公報には所望の転化率に達した
際に丁度その重合開始剤が分解されているような温度お
よび条件下に重合を行う方法が述べられている。この方
法は回分式重合法において重合開始剤の分解温度に対し
て十分に高℃・反応温度を選べば、重合開始剤の急速な
分解が起り、この間にある転化率まで重合が進行するが
、一定時間が経過して重合開始剤が完全に分解されてし
まえば反応は熱的にしか進行しなくなるから非常に遅く
なる。また丁度その重合開始剤が分解されているような
温度および条件下に重合を行えば反応を調節することが
容易になり、転化率を所定の限界内にとどめることが容
易になること、すなわち、高温条件下においてはトロム
スドルフ効果が見かけ上著しく軽減されてデツドエンド
重合に近づくことに着目したもので、このような温度お
よび条件下に重合を行う方法は回分式および連続式のい
ずれでもメタアクリレートの部分重合調節法として全く
適していることを述べている。しかしながら回分式製造
方法あるいは連続式管型反応器による製造方法において
このような温度および条件下に重合を行う方法により得
られるシロツプは、既に詳述したように重合度分布が極
めて広く製板時間の短縮が必ずしも経済性の向上につな
がらない欠点を有している。
Japanese Patent Publication No. 38-4794 describes a method in which polymerization is carried out at a temperature and under conditions such that the polymerization initiator is just decomposed when the desired conversion is reached. In this method, in batch polymerization, if the reaction temperature is selected to be sufficiently high in °C and reaction temperature relative to the decomposition temperature of the polymerization initiator, the polymerization initiator will rapidly decompose and the polymerization will proceed to a certain conversion rate. If the polymerization initiator is completely decomposed after a certain period of time, the reaction will proceed only thermally and will be extremely slow. Also, carrying out the polymerization at temperatures and conditions just such that the polymerization initiator is decomposed makes it easier to control the reaction and keep the conversion within predetermined limits, i.e. This study focused on the fact that under high temperature conditions, the Tromsdorf effect appears to be significantly reduced, approaching dead-end polymerization. It states that it is perfectly suitable as a polymerization control method. However, the syrup obtained by polymerizing at such temperatures and conditions in a batch production method or a production method using a continuous tubular reactor has an extremely wide distribution of polymerization degree as described in detail above. It has the disadvantage that shortening does not necessarily lead to improved economic efficiency.

一方、連続式槽型反応器による製造方法において、この
ような温度および条件下に重合を行う方法は、トロムス
ドルフ効果に基づく重合速度の加速現象のために安定な
定常操作で重合体含有率の高いシロツプを得ることが困
難である欠点を有すると共に、得られるシロツプの品質
についても後述するような欠点を有している。
On the other hand, in the production method using a continuous tank reactor, a method in which polymerization is carried out at such temperatures and conditions allows stable steady operation and high polymer content due to the phenomenon of acceleration of polymerization rate based on the Tromsdorff effect. It has the disadvantage that it is difficult to obtain syrup, and the quality of the obtained syrup is also disadvantageous as will be described later.

即ちこの方法においては開始剤の急速な分解が起る温度
条件下においても新しい重合開始剤が常時反応器内に供
給されるのであり、重合開始剤濃度が反応時間の延長に
より急速に減少することはないのである。完全混合が達
成される条件下の連続式槽型反応器中の定常状態の開始
剤濃度はこの反応器出口の残留開始剤濃度に等しく−1
0/(1+Kθ)で表わされる。ここに、Iは残留開始
剤濃度(重量%)10は供給開始剤濃度(重量%)、K
は開始剤の分解速度定数(1/秒)、θは平均滞留時間
(秒)である。いま開始剤の急速な分解の起る温度条件
下について考えると、Kは十分に大きいのでKθ》1と
なりI+IO/Kθが成立する。すなわち残留開始剤濃
度は反応時間の延長によりせいぜい反応時間に逆比例す
る程度の減少を示すに過ぎず、丁度重合開始剤が分解さ
れているような反応時間条件は存在せず、従つてある反
応時間以上で反応の進行が非常に遅くなることは起り得
ないのであり、このような意味で重合を所望の水準で停
止させることは回分式製造方法あるいは連続式管型反応
器による製造方法の場合とは全く異なり必ずしも容易と
は言い難いのである。さらにメチルメタクリレート系単
量体の塊状重合においてはトロムスドルフ効果と呼ばれ
る重合速度の加速現象が知られているが、これは重合体
含有率が増加すると重合速度定数が増大する現象である
。いま連続式槽型反応器において反応時間を延長した場
合を考えると加速現象の見られない場合においても重合
体含有率は増加し重合を所望の水準で停止させるには反
応時間条件を厳密にコントロールする必要があることは
上述のとおりであるが、重合体含有率の高いシロツプを
得る条件下においてはこの加速現象が上述の関係を助長
することになり、反応時間の延長で重合体含有率が飛躍
的に増加し、重合体含有率がある限界を超えると等温条
件下においても安定な定常操作が不可能となる、いわゆ
る濃度的に不安定の状態となるので、重合体含有率の高
いシロツプを得ることが困難または不可能となる欠点を
有している。また、連続式槽型反応器においては、残留
開始剤濃度は上述した如く、回分式反応において開始剤
の急速な分解が起る温度においてもなお反応時間に対し
て緩慢な減少を示すに過ぎないのであり、得られるシロ
ツフ沖の残留開始剤濃度は回分式反応の場合に比べて高
く、冷却中あるいは貯蔵中にさらに重合が進行して、シ
ロツプの粘度が上昇することは避けられない。このよう
な重合の進行を起さない熱安定性の良好なシロツプを得
るためには残留開始剤濃度をより低水準にまで減少させ
る必要があり、このためには回分式反応において急速な
分解が起る温度よりもなお一層高い温度において反応を
行う必要があるが、このような条件下では別の欠点が生
じる。すなわち、反応器内の反応混合物中に新たに供給
される単量体および重合開始剤が均一に混合されるには
一定の時間を要するが、このような温度条件下において
は、十分な混合が達成されないうちに不均一状態のまま
で重合開始剤の分解が進行してしまい、その結果として
生成するシロツフ沖の重合体は非常に低重合度のものか
ら非常に高重合度のものまで巾広い重合度分布を持つよ
うになる。このようなシロツプを使用して得られる樹脂
板は低重合度重合体を含有するため低品質であり、また
シロツフ沖の重合体の重合度分布が広いため重合体含有
率の割合に高粘度であつて重合体含有率を上げるうえで
制約となり、製板時間の短縮もあまり期待できない欠点
を有している。また、特公昭47−35307号公報に
は前記の方法の欠点を改良するため2個以上の連続式槽
型反応器を直列に配して重合を行う方法が記載されてい
る。
That is, in this method, new polymerization initiator is constantly supplied into the reactor even under temperature conditions where rapid decomposition of the initiator occurs, and the concentration of polymerization initiator rapidly decreases as the reaction time increases. There is no such thing. The steady-state initiator concentration in a continuous tank reactor under conditions where complete mixing is achieved is equal to the residual initiator concentration at the outlet of this reactor -1
It is expressed as 0/(1+Kθ). Here, I is the residual initiator concentration (wt%), 10 is the supplied initiator concentration (wt%), and K
is the decomposition rate constant of the initiator (1/sec), and θ is the average residence time (sec). Now considering the temperature conditions under which rapid decomposition of the initiator occurs, K is sufficiently large, so Kθ>>1, and I+IO/Kθ holds true. In other words, as the reaction time increases, the residual initiator concentration shows a decrease that is at most inversely proportional to the reaction time, and there is no reaction time condition under which the polymerization initiator is just decomposed. It is impossible for the reaction to proceed very slowly over a period of time, and in this sense it is difficult to stop the polymerization at a desired level in the case of batch production methods or production methods using continuous tubular reactors. It is quite different from that, and it cannot necessarily be said that it is easy. Furthermore, in the bulk polymerization of methyl methacrylate monomers, a polymerization rate acceleration phenomenon called the Tromsdorff effect is known, and this is a phenomenon in which the polymerization rate constant increases as the polymer content increases. Now, if we consider the case of extending the reaction time in a continuous tank reactor, the polymer content will increase even if no acceleration phenomenon is observed, and the reaction time conditions must be strictly controlled to stop the polymerization at the desired level. As mentioned above, under conditions to obtain a syrup with a high polymer content, this acceleration phenomenon will promote the above relationship, and as the reaction time increases, the polymer content will increase. If the polymer content increases dramatically and exceeds a certain limit, stable operation becomes impossible even under isothermal conditions, resulting in a so-called concentration-unstable state. It has drawbacks that make it difficult or impossible to obtain. Furthermore, in a continuous tank reactor, as mentioned above, the residual initiator concentration only shows a slow decrease with reaction time even at temperatures at which rapid decomposition of the initiator occurs in batch reactions. Therefore, the concentration of residual initiator in the resulting syrup is higher than in the case of a batch reaction, and it is inevitable that polymerization will proceed further during cooling or storage, increasing the viscosity of the syrup. In order to obtain a syrup with good thermal stability that does not cause such polymerization to occur, it is necessary to reduce the residual initiator concentration to a lower level, which requires rapid decomposition in batch reactions. Although it is necessary to carry out the reaction at a temperature even higher than that at which it occurs, other disadvantages arise under such conditions. In other words, it takes a certain amount of time to uniformly mix the newly supplied monomer and polymerization initiator into the reaction mixture in the reactor, but under such temperature conditions, sufficient mixing is difficult. Before the polymerization is achieved, the decomposition of the polymerization initiator proceeds in a non-uniform state, and the resulting polymers produced in Shilotzhu have a wide range of polymerization levels, from very low polymerization degrees to very high polymerization degrees. It will have a degree distribution. Resin plates obtained using such syrups are of low quality because they contain low polymerization degree polymers, and also have high viscosity and high viscosity in relation to the polymer content ratio because the polymers produced in Syrup have a wide distribution of polymerization degrees. This is a drawback in that it is a constraint in increasing the polymer content, and it cannot be expected to shorten the plate making time very much. Further, Japanese Patent Publication No. 47-35307 describes a method in which two or more continuous tank reactors are arranged in series to carry out polymerization in order to improve the drawbacks of the above-mentioned method.

この方法はシロツプ中の重合体の40〜95重量%を第
一の反応器で生成させ、次いで残りの重合体を第二以降
の反応器で生成させるもので、シロツプ中の重合体は少
くとも2種の濃度の重合開始剤の存在下においてつくら
れるから、重合体は少くとも2種の分子量部分を持ち、
高分子量部分の重量平均分子量は低分子量部分の重量平
均分子量の少くとも2倍であり、低分子量部分はシロツ
フ沖の重合体の40〜95重量%であつて、この範囲内
で低分子量部分を高率で含む場合には、シロツプは比較
的低い有用な粘度で固体分含量の高いものが得られると
述べている。この方法はシロツプ中の重合体に占める低
重合度部分の割合を高率にすることによりシロツプの粘
度を直接的に関係する重量平均重合度を低く抑えて、比
較的低粘度で重合体含有率の高いシロツプを得ることを
意図したものと読み取れる。しかしながら、低重合度重
合体は得られる樹脂板の平均重合度を低下させ、樹脂板
の加熱成形時に発泡を起し易くする原因となるので、低
重合度部分の割合を大きくすることにより重合体含有率
の高いシロツプを得る方法は製板時間を短縮することは
できるが得られる樹脂板の品質を低下させる欠点を有し
ている。
In this method, 40 to 95% by weight of the polymer in the syrup is produced in a first reactor, and then the remaining polymer is produced in second and subsequent reactors, and the polymer in the syrup is at least Because it is made in the presence of two concentrations of polymerization initiator, the polymer has at least two molecular weight moieties;
The weight average molecular weight of the high molecular weight fraction is at least twice the weight average molecular weight of the low molecular weight fraction, and the low molecular weight fraction is 40 to 95% by weight of the polymer in Silozow, and within this range, the low molecular weight fraction is It is stated that when containing at a high solids content, a syrup with a relatively low useful viscosity and a high solids content is obtained. This method reduces the weight average degree of polymerization, which is directly related to the viscosity of the syrup, by increasing the proportion of the low polymerization degree portion of the polymer in the syrup, thereby increasing the polymer content with a relatively low viscosity. It can be interpreted that the intention was to obtain a high syrup. However, a low polymerization degree polymer lowers the average degree of polymerization of the obtained resin plate and causes foaming to occur easily during heat molding of the resin plate, so by increasing the proportion of the low polymerization degree part, the polymer Although the method of obtaining syrup with a high content rate can shorten the board making time, it has the disadvantage that the quality of the resulting resin board is degraded.

またこの方法を得られるシロツプ中の重合体の重合度分
布と、残留開始剤濃度の関係から見ると、この範囲内の
比較的低率の低重合度重合体が第一の反応器で生成する
のは開始剤半減期に対して第一の反応器における平均滞
留時間が比較的短かい場合であり、最終シロツプ中の残
留開始剤濃度を十分に減少させるためには反応器の数を
増加する必要があるが、このとき各反応器において生成
する重合体の平均重合度は連続式管型反応器の場合と同
様に後段の反応器に進行するに従つて急速に増大し、最
終シロツプ中の重合体は高重合度部分を多量に含有する
ことになり、重合度分布が広くなつて、重合体含有率の
割合に高粘度となつてしまう欠点を有している。一方、
この範囲内で高率の低重合度重合体が第一の反応器で生
成するのは開始剤の半減期に対して第一の反応器におけ
る反応時間が十分に長い場合であり、このとき残留開始
剤濃度は2個以上の反応器を用いれば比較的容易に減少
させることができるが、第一の反応器と第二の反応器の
残留開始剤濃度は極度に異なるために、高重合度部分の
重量平均重合度は低重合度部分の重量平均重合度の2倍
以上の非常に大きい値をとることになる。従つて高重合
度部分の含有率が小さいとは言えこの場合も得られるシ
ロツプ中の重合体の重合度分布は比較的広くなつてしま
うのである。すなわち、この方法においても残留開始剤
濃度を十分に減少させようとすると重合度分布が広化し
てしまう結果となり、得られる樹脂板の品質を低下しな
いで製板時間を短縮する目的からはなお満足すべきもの
とは言い難い。また、特公昭48−35357号公報に
は前段に少くとも1つ以上の連続攪拌槽型反応器、後段
に管型反応器をそれぞれ直列に配置した反応器を使用し
、前段の出口における反応混合物の転換率を9〜12%
にすることを特徴とするメタクリル酸エステル系化合物
の予備重合物の連続製造法が記載されている。
Furthermore, from the relationship between the polymerization degree distribution of the polymer in the syrup obtained by this method and the residual initiator concentration, a relatively low proportion of low polymerization degree polymer within this range is produced in the first reactor. If the average residence time in the first reactor is relatively short relative to the initiator half-life, the number of reactors may be increased to sufficiently reduce the residual initiator concentration in the final syrup. At this time, the average degree of polymerization of the polymer produced in each reactor increases rapidly as it progresses to subsequent reactors, as in the case of continuous tubular reactors, and the average degree of polymerization in the final syrup increases. The polymer contains a large amount of a portion with a high degree of polymerization, resulting in a wide distribution of degree of polymerization and a disadvantage that the viscosity becomes high in proportion to the polymer content. on the other hand,
Within this range, a high percentage of low polymerization degree polymer is produced in the first reactor when the reaction time in the first reactor is sufficiently long compared to the half-life of the initiator; Although the initiator concentration can be reduced relatively easily by using two or more reactors, the residual initiator concentration in the first and second reactors is extremely different, resulting in a high degree of polymerization. The weight average degree of polymerization of the portion takes a very large value, more than twice the weight average degree of polymerization of the low polymerization degree portion. Therefore, even though the content of the high degree of polymerization portion is small, the distribution of the degree of polymerization of the polymer in the resulting syrup is relatively wide. In other words, even in this method, if the residual initiator concentration is sufficiently reduced, the polymerization degree distribution ends up becoming broader, which is still unsatisfactory from the point of view of shortening the plate-making time without degrading the quality of the resulting resin plate. It's hard to say it's something that should be done. In addition, Japanese Patent Publication No. 48-35357 uses a reactor in which at least one continuous stirred tank type reactor is arranged in series in the first stage and a tubular reactor in the second stage, so that the reaction mixture at the outlet of the first stage is conversion rate of 9-12%
A method for continuously producing a prepolymerized product of a methacrylic acid ester compound is described.

この方法は槽型反応器で連続的に製造する際に問題とな
る発生する熱量の除去に関するものであり、発熱反応を
安定に制御するための条件から一つの槽での転換率は最
大2.5%にすぎないことを見出し、より転換率の高い
予備重合物を得る方法として複数個の槽型反応器を直列
に配夕1几て使用し、さらに管型反応器との結合により
品質を変化させずに生産量の調節を容易にし、また管型
反応器の欠点である管内の閉塞を防止することを主旨と
するものである。この方法では前段の槽型反応器での転
換率は反応を安定に制御するうえから、9〜12%の範
囲内であるから樹脂板の製板時間を短縮するに適する重
合体含有率の高いシロツプを製造する目的を達し得ない
欠点を有している。
This method is related to the removal of the amount of heat generated during continuous production in a tank reactor, and due to the conditions for stably controlling the exothermic reaction, the conversion rate in one tank is at most 2. As a method of obtaining a prepolymer with a higher conversion rate, they used multiple tank reactors in series, and further improved the quality by combining them with a tubular reactor. The main purpose of this is to make it easy to adjust the production amount without changing it, and to prevent clogging in the tube, which is a drawback of tubular reactors. In this method, the conversion rate in the tank-type reactor in the first stage is within the range of 9 to 12% in order to stably control the reaction, so it is suitable for shortening the manufacturing time of resin plates. It has drawbacks that make it impossible to achieve the purpose of producing syrup.

また、重合は50〜100℃の温度で行われるから得ら
れるシロツプ中の残留開始剤濃度は比較的高い段階にと
どまり、この点からも満足すべき方法とは言い難い。本
発明者らはこれらの欠点を克服する方法について鋭意検
討した結果、メチルメタクリレート系単量体とラジカル
重合開始剤とを反応帯域に連続的に供給して部分的に重
合せしめ生成するシロツプを連続的に取り出すシロツプ
の連続製造方法において、2個以上の連続攪拌槽型反応
器を直列に配列してなる反応帯域を用い、第一の槽型反
応器に単量体を連続的に供給し、かつ、第一の槽型反応
器を含む少くとも2個の槽型反応器に重合開始剤を連続
的に供給し、かつ、各槽型反応器の温度および平均滞留
時間の条件を規定することにより、重合体含有率の高い
シロツプを連続的に安定に製造し得ることを見出し、更
に特に、各槽型反応器に供給される開始剤量を相互にバ
ランスさせて該反応帯域全体において生成する重合体の
重合度分布を狭くコントロールし、かつ、該反応帯域の
後に管型反応器を直列に配列して該反応器の温度および
平均滞留時間の条件を規定することにより、重合度分布
を狭いままに維持し、かつ、残留開始剤濃度を極めて効
果的に減少させることができることを見出し本発明を完
成した。即ち、本発明はメチルメタクリレート系単量体
を実質的に完全混合が達成される反応区域を2個以上直
列に配列してなる反応帯域の第一の反応区域に連続的に
供給し、かつ、ラジカル重合開始剤を第一の反応区域を
含む少くとも2個の反応区域に連続的に供給し、少くと
も重合開始剤の供給される各反応区域における残留開始
剤濃度が供給開始剤濃度の1/2〜1/1000倍量、
好ましくは1/5〜1/1000倍量、特に好ましくは
1/10〜1/500倍量となるよう各反応区域の条件
を維持して、反応混合物が各反応区域を順次通過する間
に重合体を生ぜしめてシロツプを得るメチルメタクリレ
ート系シロツプの連続製造方法である。
Furthermore, since the polymerization is carried out at a temperature of 50 DEG to 100 DEG C., the concentration of residual initiator in the resulting syrup remains at a relatively high level, and from this point of view as well, it cannot be said that the method is satisfactory. The inventors of the present invention conducted intensive studies on methods to overcome these drawbacks, and found that a syrup produced by continuously supplying a methyl methacrylate monomer and a radical polymerization initiator to a reaction zone and partially polymerizing it was developed. In a method for continuous production of syrup to be taken out at a time, a reaction zone formed by arranging two or more continuous stirred tank reactors in series is used, and a monomer is continuously supplied to the first tank reactor, and continuously supplying the polymerization initiator to at least two tank reactors including the first tank reactor, and specifying the temperature and average residence time conditions for each tank reactor. It has been found that syrup with a high polymer content can be continuously and stably produced by the method, and more particularly, by mutually balancing the amount of initiator supplied to each tank reactor to produce syrup in the entire reaction zone. By controlling the polymerization degree distribution narrowly, and by arranging a tubular reactor in series after the reaction zone and regulating the temperature and average residence time conditions of the reactor, the polymerization degree distribution can be narrowed. The present invention was completed based on the discovery that the concentration of the residual initiator can be extremely effectively reduced while maintaining the concentration of the residual initiator. That is, the present invention continuously supplies a methyl methacrylate monomer to a first reaction zone of a reaction zone formed by arranging two or more reaction zones in series in which substantially complete mixing is achieved, and A radical polymerization initiator is continuously supplied to at least two reaction zones including the first reaction zone, and the residual initiator concentration in each reaction zone to which the polymerization initiator is supplied is at least 1 of the supplied initiator concentration. /2 to 1/1000 times the amount,
The conditions in each reaction zone are maintained so that the amount is preferably 1/5 to 1/1000 times, particularly preferably 1/10 to 1/500 times, and the reaction mixture is not overweight while passing through each reaction zone in turn. This is a continuous production method for methyl methacrylate syrup that causes coalescence to obtain syrup.

更にメチルメタクリレート系単量体を実質的に完全混合
が達成される反応区域を2個以上直列に配列してなる第
一の反応帯域の第一の反応区域に連続的に供給し、かつ
ラジカル重合開始剤を第一の反応区域を含む少くとも2
個の反応区域に連続的に供給し、少くとも重合開始剤の
供給される各反応区域における残留開始剤濃度が供給開
始剤濃度の1/2〜1/1000倍量、好ましくは1/
5〜1/1000倍量、特に好ましくは1/10〜1/
500倍量となるよう各反応区域の条件を維持して、該
反応帯域において最終シロツプ中の重合体の大部分を生
ぜしめ、次いで得られる反応混合物を実質的に押し出し
流れが達成される第二の反応帯域に導いて、該反応帯域
を通過する間に残量の重合体が生じ、かつ、残留開始剤
濃度が実質的に無視できる量になるよう該反応帯域の温
度および平均滞留時間の条件を維持して最終シロツプ中
の重合体の重量平均重合度と数平均重合度の比で表わし
た重合度分布の多分散度が3.0以下、好ましくは2.
5以下、特に好ましくは2.2以下であるシロツプを得
ることからなるメチルメタクリレート系シロツプの連続
製造方法である。
Further, the methyl methacrylate monomer is continuously supplied to a first reaction zone of a first reaction zone formed by arranging two or more reaction zones in series in which substantially complete mixing is achieved, and radical polymerization is carried out. At least two initiators containing the first reaction zone
The residual initiator concentration in each reaction zone to which the polymerization initiator is supplied is at least 1/2 to 1/1000 times, preferably 1/1/2, the concentration of the supplied initiator.
5 to 1/1000 times the amount, particularly preferably 1/10 to 1/
The conditions in each reaction zone are maintained to be 500 times the volume to produce the majority of the polymer in the final syrup in the reaction zone, and the resulting reaction mixture is then transferred to a second stage where substantially extrusion flow is achieved. temperature and average residence time conditions in the reaction zone such that a residual amount of polymer is produced during passage through the reaction zone and the residual initiator concentration is substantially negligible. The polydispersity of the degree of polymerization distribution expressed as the ratio of the weight average degree of polymerization to the number average degree of polymerization of the polymer in the final syrup is 3.0 or less, preferably 2.
5 or less, particularly preferably 2.2 or less.

本発明の方法によるシロツプの製造に用いられるメチル
メタクリレート系単量体としてはこの種のシロツプの製
造に通常用いられている単量体または単量体混合物がそ
のまま用いられるが、メチルメタクリレートを主成分と
する単量体が特に好ましく、メチルメタクリレートが単
独で用いられるか、あるいは単量体混合物の全量に対し
て20重量%以下の範囲内においてメチルアクリレート
、エチルアクリレート、ブチルアクリレート等のアルキ
ルアクリレート類、エチルメタクリレート、ラウリルメ
タクリレート等のアルキルメタクリレート類、アクリロ
ニトリル、メタクリロニトリル等の不飽和二トリル類、
スチレン、α−メチルスチレン等のビニル化合物の1種
または2種以上を含有するメチルメタクリレート単量体
を主成物とするメチルメタクリレート系単量体混合物が
用いられる。
As the methyl methacrylate monomer used in the production of syrup according to the method of the present invention, monomers or monomer mixtures normally used in the production of this type of syrup can be used as they are, but methyl methacrylate is the main component. Particularly preferred are monomers such as methyl methacrylate used alone, or alkyl acrylates such as methyl acrylate, ethyl acrylate, butyl acrylate, etc. within a range of 20% by weight or less based on the total amount of the monomer mixture; Alkyl methacrylates such as ethyl methacrylate and lauryl methacrylate; unsaturated nitrites such as acrylonitrile and methacrylonitrile;
A methyl methacrylate monomer mixture whose main constituent is a methyl methacrylate monomer containing one or more vinyl compounds such as styrene and α-methylstyrene is used.

これらの不飽和ビニル化合物は得られる樹脂板がメチル
メタクリレート系樹脂板としての特徴を損なわない範囲
内で種々の品質上の改良のために通常この範囲内の量が
用いられる。本発明の方法によるシロツプの製造に用い
られるラジカル重合開始剤としては、90〜200℃、
好ましくは110〜180℃において比較的急速にラジ
カルを発生するものが用いられ、半減期が5秒以下とな
る温度が180℃以下、好ましくは140℃以下である
ラジカル重合開始剤が適し、例えば、アゾビスイソブチ
ロニトリル、アソピスジメチルバレロニトリル、アゾビ
スシクロヘキサンニトリルなどのアゾ化合物、ベンゾイ
ルパーオキサイド、ラウロイルパーオキサイド、アセチ
ルパーオキサイド、カブリルパーオキサイド、2・4−
ジクロルベンゾイルパーオキサイド、イソブチルパーオ
キサイド、アセチルシクロヘキシルスルホニルパーオキ
サイド、ターシヤリーブチルパーオキシビバレート、タ
ーシャリーブチルパーオキシ一2−エチルヘキサノエー
ト、イソプロピルパーオキシジカーボネート、イソブチ
ルパーオキシジカーボネート、セカンダリーブチルパー
オキシジカーボネート、ノルマルブチルパーオキシジカ
ーボネート、2−エチルヘキシルパーオキシジカーボネ
ート、ビス(4−ターシャリーブチルシクロヘキシル)
パーオキシジカーボネートなどの過酸化物をあげること
ができ、これらの重合開始剤の1種または2種以上が用
いられる。
These unsaturated vinyl compounds are generally used in amounts within this range for various quality improvements within the range that does not impair the characteristics of the resulting resin board as a methyl methacrylate resin board. The radical polymerization initiator used in the production of syrup by the method of the present invention is 90 to 200°C;
Preferably, an initiator that generates radicals relatively rapidly at 110 to 180°C is used, and a radical polymerization initiator whose half-life is 5 seconds or less at a temperature of 180°C or lower, preferably 140°C or lower is suitable, for example, Azo compounds such as azobisisobutyronitrile, asopisdimethylvaleronitrile, azobiscyclohexanenitrile, benzoyl peroxide, lauroyl peroxide, acetyl peroxide, cabryl peroxide, 2,4-
Dichlorobenzoyl peroxide, isobutyl peroxide, acetyl cyclohexyl sulfonyl peroxide, tert-butyl peroxy bivalate, tert-butyl peroxy-2-ethylhexanoate, isopropyl peroxy dicarbonate, isobutyl peroxy dicarbonate, secondary Butyl peroxydicarbonate, normal butyl peroxydicarbonate, 2-ethylhexyl peroxydicarbonate, bis(4-tert-butylcyclohexyl)
Examples include peroxides such as peroxydicarbonate, and one or more of these polymerization initiators are used.

特に半減期が5秒以下となる温度が140℃以下の重合
開始剤を用いた場合には反応温度が90〜160℃の低
温側で好適に実施され、単量体の予熱およびシロツプの
冷却の負荷が軽減されるほか、圧力条件も緩和されるの
で好ましい。重合開始剤の量はメチルメタクリレート系
単量体に対し通常0.001〜1重量%、好ましくは0
.01〜0.5重量%であり高い重合体含有率を所望の
ときには供給開始剤濃度を高く、また高い数平均重合度
を所望の場合には供給開始剤濃度が低く調節される。
In particular, when using a polymerization initiator whose half-life is 5 seconds or less and whose temperature is 140°C or lower, the reaction temperature is preferably carried out at a low temperature of 90 to 160°C, and the preheating of the monomers and the cooling of the syrup are preferably carried out. This is preferable because not only the load is reduced but also the pressure conditions are relaxed. The amount of polymerization initiator is usually 0.001 to 1% by weight, preferably 0.001 to 1% by weight based on the methyl methacrylate monomer.
.. When a high polymer content of 0.01 to 0.5% by weight is desired, the concentration of the initiator fed is adjusted to be high, and when a high number average degree of polymerization is desired, the concentration of the fed initiator is adjusted to be low.

本発明の方法によるシロツプの製造においては連鎖移動
剤を用いなくとも、反応温度、供給開始剤濃度および反
応混合物の平均滞留時間を相互に調節することにより、
シロツフ沖の重合体の数平均重合度、重量平均重合度ま
たは粘度を所望の値に容易に調節できる利点を有するか
ら、連鎖移動剤は通常用いられないが、得られるシロツ
プまたは樹脂板の品質を低下させない範囲内において連
鎖移動剤を用いても良い。
In the production of syrup according to the method of the invention, without the use of chain transfer agents, by mutually adjusting the reaction temperature, the concentration of the initiator fed and the average residence time of the reaction mixture,
Chain transfer agents are not normally used because they have the advantage of easily adjusting the number-average degree of polymerization, weight-average degree of polymerization, or viscosity of the Silotov polymer to desired values, but they do not reduce the quality of the resulting syrup or resin plate. A chain transfer agent may be used as long as it does not interfere with the chain transfer.

メチルメタクリレート系単量体とラジカル重合開始剤と
は、先ず実質的に完全混合が達成される反応区域を直列
に配夕1ルてなる第一の反応帯域の第一の反応区域に連
続的に供給される。
The methyl methacrylate monomer and the radical polymerization initiator are first continuously introduced into a first reaction zone of a first reaction zone having one reaction zone arranged in series where substantially complete mixing is achieved. Supplied.

実質的に完全混合が達成される条件下においては生成す
る重合体の重合度分布は極めて狭く、重合体の重量平均
重合度と数平均重合度の比で表わされる重合度分布の多
分散度は重合連鎖の停止がすべて不均化停止によると仮
定した場合の最確分布における多分散度2.0に極めて
近く実質的に2.2以下である。次に該反応帯域の第二
以降の反応区域のうち、少くとも1個の反応区域に重合
開始剤が追加供給される。
Under conditions where substantially complete mixing is achieved, the polymerization degree distribution of the resulting polymer is extremely narrow, and the polydispersity of the polymerization degree distribution expressed as the ratio of the weight average degree of polymerization to the number average degree of polymerization of the polymer is The polydispersity is extremely close to 2.0 in the most probable distribution, assuming that all polymerization chain terminations are due to disproportionation termination, and is substantially 2.2 or less. Next, a polymerization initiator is additionally supplied to at least one reaction zone among the second and subsequent reaction zones of the reaction zone.

重合開始剤が追加供給される各々の反応区域においては
該前の反応区域から得られる反応混合物と新たに追加さ
れる重合開始剤とが連続的に供給され、各々の反応区域
は実質的に完全混合が達成される条件下に維持されるか
ら、各々の反応区域において新たに生成する重合体の重
合度分布はそれぞれ極めて狭く、それぞれの多分散度は
実質的に2,2以下となる。該反応帯域には重合開始剤
が追加供給されない反応区域を存在させることもでき、
該反応区域において新たに生成する重合体の数平均重合
度は重合開始剤が供給される反応区域に比ベー般に高値
となるが、重合度分布の多分散度は実質的に2,2以下
である。
In each reaction zone where additional polymerization initiator is fed, the reaction mixture obtained from the previous reaction zone and the newly added polymerization initiator are continuously fed, and each reaction zone is substantially completely fed. Since the conditions are maintained under which mixing is achieved, the degree of polymerization distribution of the newly formed polymer in each reaction zone is very narrow, with a respective polydispersity of substantially less than 2.2. The reaction zone can also include a reaction zone to which no additional polymerization initiator is supplied,
The number average degree of polymerization of the newly produced polymer in the reaction zone is generally higher than that in the reaction zone where the polymerization initiator is supplied, but the polydispersity of the polymerization degree distribution is substantially 2.2 or less. It is.

特に該前の反応区域から供給される反応混合物中の残留
開始剤濃度が比較的高い場合には該反応帯域全体におい
て生成する重合体の重合度分布を殆んど広化させること
なく重合体含有率を高めるのに寄与することができるが
、一般的には最終シロツプ中の重合体の重合度分布を狭
く維持するためには、好ましくはすべての反応区域に重
合開始剤が供給される。第一の反応区域および重合開始
剤が追加供給される各々の反応区域における残留開始剤
濃度は該反応区域への供給開始剤濃度の1/2〜1/1
000倍量、好ましくは1/5〜 1/1000倍量、特に好ましくは1/10〜1/50
0倍量となるよう該反応区域の反応温度と反応混合物の
平均滞留時間の条件が維持される。
Particularly when the concentration of residual initiator in the reaction mixture fed from the previous reaction zone is relatively high, the polymer content can be increased without substantially broadening the degree of polymerization distribution of the polymer formed throughout the reaction zone. Polymerization initiator is preferably supplied to all reaction zones, which can contribute to increasing the yield, but generally to maintain a narrow degree of polymerization distribution of the polymer in the final syrup. The residual initiator concentration in the first reaction zone and each reaction zone to which polymerization initiator is additionally supplied is 1/2 to 1/1 of the initiator concentration supplied to the reaction zone.
000 times the amount, preferably 1/5 to 1/1000 times, particularly preferably 1/10 to 1/50
The conditions of reaction temperature and average residence time of the reaction mixture in the reaction zone are maintained so that the volume is 0 times.

この範囲で残留開始剤濃度の割合が小さいとき該反応区
域は特に安定に定常操作を行うことができる。該反応区
域における残留開始剤濃度がこの範囲より大きいときは
該反応区域は熱的に操作不安定になり易く、安定な定常
操作を行うためには該反応区域において生成する重合体
の量を極めて低く抑える必要があるので、重合体含有率
の高い最終シロツプを得るために要する反応区域の数が
極めて大きくなつて不利であり、一方、残留開始剤濃度
がこの範囲より小さいときには該反応区域にお(・て供
給開始剤が反応混合物に十分混合されないうちに不均一
状態のままで分解してしまい実質的に完全混合を達成す
ることが不可能となつて該反応区域において新たに生成
する重合体が既にそれ自体で広い重合度分布を持つ結果
となり得策でない。なお、重合開始剤が追加供給されな
い反応区域においては該反応区域への供給開始剤濃度の
絶対値が小さく、従つて該反応区域において新たに生成
する重合体の量も小さく、比較的容易に安定な定常操作
を行うことができるので、該反応区域における残留開始
剤濃度の供給開始剤濃度に対する割合に関して特に制限
はないが、好ましくは前記の範囲内に選ばれる。
In this range, when the proportion of the residual initiator concentration is small, the reaction zone can be operated in a particularly stable manner. When the concentration of residual initiator in the reaction zone is greater than this range, the reaction zone tends to become thermally unstable, and in order to achieve stable steady-state operation, the amount of polymer formed in the reaction zone must be minimized. This has the disadvantage of significantly increasing the number of reaction zones required to obtain a final syrup with a high polymer content, while residual initiator concentrations below this range have the disadvantage of (・The supplied initiator decomposes in a non-uniform state before it is sufficiently mixed with the reaction mixture, making it impossible to achieve substantially complete mixing, resulting in new polymer formation in the reaction zone. However, in the reaction zone where no additional polymerization initiator is supplied, the absolute value of the concentration of the initiator supplied to the reaction zone is small, so that Since the amount of newly produced polymer is small and stable steady operation can be performed relatively easily, there is no particular restriction on the ratio of the residual initiator concentration to the supplied initiator concentration in the reaction zone, but preferably selected within the above range.

本発明の方法においては第一の反応帯域の反応温度は特
に限定されるものではないが、該反応帯域の各々の反応
区域の反応温度は残留開始剤濃度の供給開始剤濃度に対
する割合が前記の範囲になるよう開始剤の分解温度に応
じて調節され、通常90〜200℃、好ましくは110
〜180℃である。
In the method of the present invention, the reaction temperature of the first reaction zone is not particularly limited, but the reaction temperature of each reaction zone of the reaction zone is such that the ratio of the residual initiator concentration to the supplied initiator concentration is It is adjusted according to the decomposition temperature of the initiator so that it falls within the range of 90 to 200°C, preferably 110°C.
~180°C.

該反応帯域の各々の反応区域における反応混合物の平均
滞留時間の総和は供給開始剤濃度の場合と同様に、所望
の最終シロツプ中の重合体含有率および数平均重合度に
応じて調節されるが通常1〜30分、好ましくは2〜1
5分である。槽型反応器の温度条件を維持するには通常
該反応器の外部にジャケツトを設け、該ジャケツトに熱
媒体を循環し、該熱媒体の温度を制御する方法が行われ
るが、本発明の方法においては反応速度が極めて速いか
ら、このような方法では反応温度を所望の条件に維持す
ることは困難であり、特にスケールアツプした場合には
熱的に不安定となり、安定な定常操作が不可能となる。
本発明の方法においては重合による発熱量と、反応混合
物の温度を反応温度まで上昇するのに要する顕熱量とは
ほぼ同程度であり、所望の重合体含有率と反応温度に応
じて反応混合物は加熱または冷却されて反応温度が維持
されるが、第一の反応帯域の温度の制御は該反応帯域の
第一の反応区域に供給される単量体の予熱温度を変化さ
せることにより好適に実施せられる。なお該反応帯域の
各々の反応区域の外部にジヤケツトを設け、熱媒体を循
環させる方法を併用することはより効果的である。供給
される単量体の予熱は実質的に滞留部分を有せず、予熱
温度の調節が可能な方法であればいかなる方法を用いて
も良いが、例えばジャケツトを備えた単管を用い、レイ
ノルズ数5000以上、好ましくは20000以上で単
量体を通過させ、ジャケツトに熱媒体を循環させ、かつ
、該熱媒体の温度を調節することにより好適に実施せら
れる。単量体と重合開始剤とは予め混合し予熱して供給
されても良いが、単量体のみを予熱し、重合開始剤溶液
は冷却して供給されるのが好ましい。
The sum of the average residence times of the reaction mixture in each reaction section of the reaction zone, as well as the feed initiator concentration, is adjusted depending on the desired polymer content and number average degree of polymerization in the final syrup. Usually 1 to 30 minutes, preferably 2 to 1 minute
It's 5 minutes. To maintain the temperature conditions of a tank reactor, a jacket is usually provided outside the reactor and a heat medium is circulated through the jacket to control the temperature of the heat medium, but the method of the present invention Because the reaction rate is extremely fast, it is difficult to maintain the reaction temperature at the desired conditions with this method, and it becomes thermally unstable, especially when scaled up, making stable steady operation impossible. becomes.
In the method of the present invention, the amount of heat generated by polymerization and the amount of sensible heat required to raise the temperature of the reaction mixture to the reaction temperature are approximately the same, and the amount of heat generated by the polymerization is approximately the same as the amount of sensible heat required to raise the temperature of the reaction mixture to the reaction temperature. The reaction temperature is maintained by heating or cooling, and the temperature of the first reaction zone is preferably controlled by varying the preheating temperature of the monomers fed to the first reaction zone of the reaction zone. be given It is more effective to use a method in which a jacket is provided outside each reaction zone of the reaction zone to circulate the heat medium. Any method may be used to preheat the supplied monomer as long as there is no substantial stagnation and the preheating temperature can be adjusted. This is suitably carried out by passing the monomer at a rate of several 5,000 or more, preferably 20,000 or more, circulating a heat medium through the jacket, and adjusting the temperature of the heat medium. Although the monomer and the polymerization initiator may be mixed in advance and supplied after being preheated, it is preferable that only the monomer is preheated and the polymerization initiator solution is supplied after being cooled.

供給されるメチルメタクリレート系単量体または重合開
始剤溶液には紫外線吸収剤、酸化防止剤、顔料、染料そ
の他樹脂板の製造に用いられる添加剤の1種または2種
以上が場合により予め添加されても良い。第一の反応帯
域の各々の反応区域は供給される単量体および重合開始
剤を反応混合物中に速やかに混合して、濃度および温度
が実質的に均一に維持される必要があるが、実質的に完
全混合が達成される方法であれ、いかなる反応装置およ
び攪拌方法を用いても良く、攪拌レイノルズ数が200
0以上、好ましくは5000以上となる撹拌方法が好適
に用いられ、例えばリボン状攪拌機を備えた連続撹拌槽
型反応器がこの目的に使用される。
The supplied methyl methacrylate monomer or polymerization initiator solution may optionally be pre-added with one or more of ultraviolet absorbers, antioxidants, pigments, dyes, and other additives used in the production of resin plates. It's okay. Each reaction zone of the first reaction zone must rapidly mix the supplied monomers and polymerization initiator into the reaction mixture so that concentration and temperature are maintained substantially uniform, but not substantially Any reactor and stirring method may be used as long as the method achieves complete mixing, and the stirring Reynolds number is 200.
A stirring method with a stirring rate of 0 or more, preferably 5000 or more is preferably used, for example a continuous stirred tank reactor equipped with a ribbon stirrer is used for this purpose.

該反応帯域における実質的に完全混合が達成される反応
区域の数は操作の安定性を高める上からは多いほど好ま
しいが、いたずらに数を増すことは操作が煩雑になり、
コスト的にも高価となるので得策でなく通常2〜10個
、好ましくは2〜5個である。各々の反応区域において
生成すべき重合体の量は最終シロツフ沖の重合体含有率
と反応区域の数により調節されるが、その割合はいずれ
かの反応区域において極端に大となつたり、小となつた
りすることは該反応区域における操作の安定性を悪くす
るか、あるいは該反応区域を設置する意味が減殺される
ので、通常ほぼ均等に、好ましくは第一の反応区域から
最後の反応区域に向つて次第に小となるよう配分される
Although it is preferable that the number of reaction zones in which substantially complete mixing is achieved in the reaction zone be as large as possible from the viewpoint of improving operational stability, unnecessarily increasing the number will complicate the operation.
Since it is expensive, it is not advisable to use 2 to 10 pieces, preferably 2 to 5 pieces. The amount of polymer to be produced in each reaction zone is controlled by the polymer content in the final batch and the number of reaction zones, but the proportion may be too large or too small in any reaction zone. Since it will impair the stability of operation in the reaction zone or reduce the meaning of installing the reaction zone, it is generally uniform, preferably from the first reaction zone to the last reaction zone. It is distributed in such a way that it becomes smaller and smaller.

従つて各々の反応区域における反応混合物の平均滞留時
間は通常ほぼ均等に、好ましくは第一の反応区域から最
後の反応区域に向つて順次小となるように選ばれる。ま
た重合開始剤力槌伽供給されない反応区域における反応
混合物の滞留時間は重合開始剤が追加供給される反応区
域における場合に比べて通常短かく選ばれ、従つて生成
する重合体の量も比較的小さい。各々の反応区域に供給
される開始剤の量は該反応区域において、新たに生成す
べき重合体の量、数平均重合度、反応温度および該前の
反応区域の残留開始剤濃度などにより決定されるが、該
残留開始剤濃度が十分小さくなるよう十分高い反応温度
が選ばれた場合にはその割合は、各々の反応区域におい
て新たに生成すべき重合体の量の割合あるいは反応混合
物の平均滞留時間の割合に対応して調節され、通常ほぼ
均等に好ましくは第一の反応区域から最終の反応区域に
向つて順次小となるよう配合される。最終シロツフ沖の
重合体の重合度分布が狭く、かつ、残留開始剤濃度を小
さくするためには、第二の反応帯域において該前の反応
帯域より供給される重合体の狭い重合度分布を維持し、
かつ残留開始剤濃度を効果的に減少させることができる
よう第一の反応帯域を出る残留開始剤濃度の条件を維持
しておく必要があり、該反応帯域の最後の反応区域にお
ける残留開始剤濃度は該反応区域への供給開始剤濃度の
1/2〜1/1000倍量、好ましくは1/5〜1/1
000倍量、特に好ましくは1/10〜1/500倍量
となるよう維持される。
The average residence time of the reaction mixture in each reaction zone is therefore usually selected to be approximately equal, preferably decreasing successively from the first reaction zone to the last reaction zone. Additionally, the residence time of the reaction mixture in the reaction zone where no initiator is supplied is usually selected to be shorter than in the reaction zone where additional initiator is supplied, and therefore the amount of polymer formed is relatively short. small. The amount of initiator supplied to each reaction zone is determined by the amount of polymer to be newly produced in that reaction zone, the number average degree of polymerization, the reaction temperature, and the concentration of residual initiator in the previous reaction zone. However, if a sufficiently high reaction temperature is chosen so that the residual initiator concentration is sufficiently small, the proportion will be equal to the proportion of the amount of new polymer to be produced in each reaction zone or the average retention of the reaction mixture. The proportions are adjusted in accordance with the time ratio, and are generally proportioned approximately equally, preferably gradually decreasing from the first reaction zone to the final reaction zone. In order to maintain a narrow polymerization degree distribution of the polymer at the end of Siroczów and to reduce the residual initiator concentration, it is necessary to maintain a narrow polymerization degree distribution of the polymer supplied from the previous reaction zone in the second reaction zone. ,
And it is necessary to maintain the condition of the residual initiator concentration leaving the first reaction zone so that the residual initiator concentration can be effectively reduced, and the residual initiator concentration in the last reaction zone of the reaction zone must be maintained. is 1/2 to 1/1000 times the concentration of initiator supplied to the reaction zone, preferably 1/5 to 1/1.
000 times the amount, particularly preferably 1/10 to 1/500 times the amount.

この範囲内において残留開始剤濃度の割合力(」\さい
とき日盪終シロツプ中の重合体の重合度分布を特に狭く
、かつ残留開始剤濃度を特に小さくすることができる。
該反応区域における残留開始剤濃度がこの範囲より大き
いときには、最終シロツフ沖の残留開始剤濃度が大きく
なるか、あるいは残留開始剤濃度を十分に小さくするた
めには第二の反応帯域における平均滞留時間を長くする
必要があり、この間に高重合度重合体が多量に生成して
、最終シロツフ沖の重合体の重合度分布が広化する結果
となり得策でない。第一の反応帯域の最後の反応区域に
おける残留開始剤濃度に関して上記の条件が達成される
とき該反応帯域全体において生成する重合体の最終シロ
ツプ中の重合体に占める割合は通常60〜99.5重量
%、好ましくは90〜99.5重量%、特に好ましくは
95〜99.5重量%である。
Within this range, it is possible to obtain a particularly narrow distribution of the degree of polymerization of the polymer in the dried syrup and a particularly low residual initiator concentration.
If the residual initiator concentration in the reaction zone is larger than this range, the residual initiator concentration off the final slope will be high, or the average residence time in the second reaction zone will be required to make the residual initiator concentration sufficiently small. During this time, a large amount of high polymerization degree polymer is generated, which results in a wide distribution of polymerization degree of the polymer at the final stage, which is not a good idea. When the above conditions regarding the residual initiator concentration in the last reaction zone of the first reaction zone are achieved, the proportion of polymer formed in the entire reaction zone to the polymer in the final syrup is usually between 60 and 99.5. % by weight, preferably 90-99.5% by weight, particularly preferably 95-99.5% by weight.

第一の反応帯域において生成する重合体の量および数平
均重合度は該反応帯域の各々の反応区域における供給開
始剤の種類と濃度、反応温度および反応混合物の平均滞
留時間により決定されるが、所望の最終シロツフ沖の重
合体含有率、数平均重合度および使用する反応区域の数
に応じて、好ましい供給開始剤濃度、反応温度および反
応混合物の平均滞留時間が選択される。該反応区域の各
々の反応区域において新たに生成する重合体の数平均重
合度は相互に異なる値を有するが、該反応帯域全体にお
いて生成する重合体の重合度分布を狭くするためには、
これらをできるだけ相互に一致させることが望ましく、
各々の反応区域に追加供給される重合開始剤の量が相互
に調節される。各各の反応区域において生成する重合体
の数平均重合度の最大値と最小値の比は通常3以下、好
ましくは2以下に維持されこのとき該反応帯域を出る重
合体の重合度分布の多分散度は通常2.5以下、好まし
くは2.2以下である。本発明の方法において第一の反
応帯域の各々の反応区域において生成する重合体の量は
通常3〜35重量%、好ましくは5〜25重量%と比較
的小さく選ばれるから各々の反応区域における発熱量は
比較的小さく、また各々の反応区域の温度は開始剤が急
速に分解されるよう通常90〜200℃、好ましくは1
10〜180℃に選ばれる。
The amount of polymer produced in the first reaction zone and the number average degree of polymerization are determined by the type and concentration of the feed initiator, the reaction temperature and the average residence time of the reaction mixture in each reaction zone of the reaction zone; Depending on the desired final polymer content, number average degree of polymerization and number of reaction zones used, the preferred feed initiator concentration, reaction temperature and average residence time of the reaction mixture are selected. Although the number average degree of polymerization of the newly produced polymer in each of the reaction zones has different values, in order to narrow the distribution of the degree of polymerization of the polymer newly produced in the entire reaction zone,
It is desirable to match these with each other as much as possible;
The amount of polymerization initiator added to each reaction zone is mutually adjusted. The ratio of the maximum to minimum number average degree of polymerization of the polymer produced in each reaction zone is usually maintained at less than 3, preferably less than 2, so that the degree of polymerization distribution of the polymer exiting the reaction zone is The degree of dispersion is usually 2.5 or less, preferably 2.2 or less. In the method of the present invention, the amount of polymer produced in each reaction zone of the first reaction zone is selected to be relatively small, usually 3 to 35% by weight, preferably 5 to 25% by weight, so that the heat generation in each reaction zone is selected to be relatively small. The amounts are relatively small, and the temperature in each reaction zone is usually between 90 and 200°C, preferably between 1
The temperature is selected between 10 and 180°C.

各各の反応区域における反応混合物の平均滞留時間は通
常0.1〜20分、好ましくは0.2〜5分と極めて短
かいので、第一の反応帯域の第一の反応区域へ供給され
る単量体の予熱温度を変化させることにより該反応帯域
全体の温度を制御することが意外にも効果的に実施せら
れる。特に第一の反応帯域の第一の反応区域において生
成する重合体の量をこの範囲内で比較的高く選び、該後
の各々の反応区域において生成する重合体の量をこの範
囲内で比較的低く選ぶときは、第一の反応区域の反応温
度を制御すれば該後の各々の反応区域は実質的に断熱条
件下においても熱的に安定な定常操作を行うことができ
る。また、第一の反応帯域の各各の反応区域における重
合体の生成量が比較的小さく選ばれるから該反応区域に
供給される反応混合物中における重合速度定数と該反応
区域から排出される反応混合物中における重合速度定数
の差を小さく選ぶことができて、トロムスドルフ効果に
基づく重合速度の加速現象は見かけ上著しく軽減される
ことになり、重合体含有率の極めて高いシロツプを安定
な定常操作で得ることが好適に実施せられる。第一の反
応帯域を出た反応混合物は次いで実質的に押し出し流れ
が達成される第二の反応帯域に導かれ、該反応帯域を通
過する間に残量の重合体が生成し、かつ、残留開始剤濃
度が減少させられる。
Since the average residence time of the reaction mixture in each reaction zone is very short, usually 0.1 to 20 minutes, preferably 0.2 to 5 minutes, the reaction mixture is fed to the first reaction zone of the first reaction zone. Controlling the temperature throughout the reaction zone by varying the preheating temperature of the monomers can be carried out surprisingly effectively. In particular, the amount of polymer formed in the first reaction zone of the first reaction zone is selected to be relatively high within this range, and the amount of polymer formed in each subsequent reaction zone is selected to be relatively high within this range. When the temperature is selected to be low, controlling the reaction temperature in the first reaction zone allows each subsequent reaction zone to perform thermally stable steady-state operation even under substantially adiabatic conditions. In addition, since the amount of polymer produced in each reaction zone of the first reaction zone is selected to be relatively small, the polymerization rate constant in the reaction mixture supplied to the reaction zone and the reaction mixture discharged from the reaction zone are The difference in polymerization rate constants between the two components can be selected to be small, and the apparent acceleration of polymerization rate due to the Tromsdorff effect is significantly reduced, allowing syrup with extremely high polymer content to be obtained through stable steady operation. This is preferably carried out. The reaction mixture leaving the first reaction zone is then conducted to a second reaction zone where a substantially extrusion flow is achieved, and during passage through said reaction zone residual amounts of polymer are formed and residual Initiator concentration is reduced.

第二の反応帯域に導かれた反応混合物には該反応帯域を
通過する間に重合開始剤が供給されることはもはやあり
得ないから、重合開始剤が常時供給され実質的に完全混
合が達成される第一の反応帯域における場合とは全く異
なり、第二の反応帯域においては極めて容易に残留開始
剤濃度を減少させることができ、また、この間に生成す
る重合体の量が小さいので、比較的高重合度重合体が生
成するにもかかわらず、最終シロツフ沖の重合体の重合
度分布は意外にも小さく維持される。第二の反応帯域の
温度は残留開始剤が十分急速に分解する温度であれば良
く、通常半減期が20秒以下となる温度、好ましくは5
秒以下となる温度が選ばれるが、該前の反応帯域より低
くない温度であることが好ましく、特に反応混合物の温
度が第二の反応帯域を通過する間に重合熱などにより実
質的に断熱的に上昇するよう条件が維持されるのが好ま
しい。第二の反応帯域に供給される反応混合物には新た
に供給される成分がないので濃度的には本質的に混合を
必要とせず、また温度的にも該反応帯域において生成す
る重合体の量が小さく、断熱的に反応させても暴走は起
らず容易に制御できるので、実質的に押し出し流れが達
成される方法であればいかなる反応装置および攪拌方法
を用いても良いが、攪拌を全く行わない場合には反応器
壁への重合体の付着が起り実質的に押し出し流れを達成
することが困難となり、さらに進行すると閉塞を起すこ
とになるので、攪拌を行うことが望ましく、逆混合係数
が0.2以下、好ましくは0.1以下となるよう工夫さ
れた攪拌機を用いて攪拌レイノルズ数2000以上、好
ましくは5000以上で攪拌を行う方法または逆混合係
数が0.2以下、好ましくは0.1以下となるセルフワ
イピング型攪拌機を用いる攪拌方法が好適に用いられ、
例えば二軸スクリュ一型押出機に類似の構造を有する管
型反応器がこの目的に使用せられる。
Since the reaction mixture led to the second reaction zone can no longer be supplied with a polymerization initiator while passing through the reaction zone, the polymerization initiator is constantly supplied and substantially complete mixing is achieved. The residual initiator concentration can be reduced very easily in the second reaction zone, unlike in the first reaction zone, and the amount of polymer formed during this time is small, making it relatively Despite the fact that a high polymerization degree polymer is produced, the distribution of polymerization degree of the polymer at the final stage remains surprisingly small. The temperature of the second reaction zone may be any temperature at which the residual initiator decomposes sufficiently rapidly, and is usually at a temperature at which the half-life is 20 seconds or less, preferably 5.
The temperature is selected such that the temperature is less than 2 seconds, but is preferably not lower than that of the previous reaction zone, especially when the temperature of the reaction mixture is substantially adiabatic due to the heat of polymerization etc. while passing through the second reaction zone. Preferably, conditions are maintained such that the temperature rises to . The reaction mixture supplied to the second reaction zone essentially does not require mixing in terms of concentration since there are no newly supplied components, and also in terms of temperature the amount of polymer produced in the reaction zone. is small and can be easily controlled without causing runaway even if the reaction is carried out adiabatically, so any reaction device and stirring method may be used as long as it achieves substantially extrusion flow; If this is not done, the polymer will adhere to the reactor wall, making it difficult to achieve a substantial extrusion flow, and if it progresses further, clogging will occur. Therefore, it is desirable to perform stirring, and the back mixing coefficient 0.2 or less, preferably 0.1 or less, using a stirring Reynolds number of 2000 or more, preferably 5000 or more, or a back mixing coefficient of 0.2 or less, preferably 0. A stirring method using a self-wiping type stirrer that achieves .1 or less is preferably used,
For example, a tubular reactor having a construction similar to a twin-screw extruder can be used for this purpose.

流体の流れ方向に混合が起ることを逆混合があるという
が、ここでいう逆混合係数とは、管型反応装置内での反
応流体の流れの状態がどの程度理想的な押し出し流れと
隔たりがあるかを表わす尺度であり、流体の通過速度と
逆混合速度との関係を規定する無次元項である修正ペク
レ一数をMとしたとき1/Mで表わされ、この値が小さ
いほど理想的な押し出し流れに近づくことを示す。なお
本発明で適用する修正ペクレ一数Mは、1968年10
月20日、化学同人発行、化学増刊36「反応工学」第
191ページ最下行のM=UL/2E式に基づく。該反
応帯域には外部にジヤケツトを設けて熱媒体により温度
を調節しても良いが、実質的に断熱条件下に維持するこ
とにより残留開始剤がより急速に減少して好ましい。第
一および第二の反応帯域のいずれにおいても反応混合物
の蒸気圧は通常大気圧より高いので、両反応帯域におけ
る滞留時間、温度等の制御を容易にし、従つて最終シロ
ツフ沖の重合体含有率、粘度および残留開始剤濃度など
の品質を実質的に一定に維持するためには反応混合物が
実質的に液相を維持するよう蒸気圧以上の圧力を加える
ことが望ましく、通常1〜20気圧好ましくは2〜10
気圧に加圧される。
Mixing that occurs in the flow direction of the fluid is called back-mixing, and the back-mixing coefficient here refers to the degree to which the flow state of the reaction fluid in the tubular reactor differs from the ideal extrusion flow. It is expressed as 1/M, where M is the modified Péclet number, which is a dimensionless term that defines the relationship between the fluid passage speed and the back-mixing speed. This indicates that the extrusion flow approaches the ideal extrusion flow. Note that the modified Péclet number M applied in the present invention is 1968 10
Based on the M=UL/2E formula on the bottom line of page 191 of Kagaku Special Issue 36, "Reaction Engineering," published by Kagaku Doujin on May 20th. Although the reaction zone may be provided with an external jacket to control the temperature with a heat medium, it is preferable to maintain the reaction zone under substantially adiabatic conditions because the residual initiator is more rapidly reduced. Since the vapor pressure of the reaction mixture in both the first and second reaction zones is usually higher than atmospheric pressure, it is easy to control the residence time, temperature, etc. in both reaction zones, and therefore the polymer content in the final reactor, In order to maintain properties such as viscosity and residual initiator concentration substantially constant, it is desirable to apply a pressure equal to or higher than the vapor pressure so that the reaction mixture maintains a substantially liquid phase, and is usually 1 to 20 atmospheres, preferably. 2-10
Pressurized to atmospheric pressure.

第二の反応帯域における反応混合物の平均滞留時間は第
一の反応帯域における平均滞留時間の0,05〜5倍、
好ましくは0.1〜2倍が選ばれる。
the average residence time of the reaction mixture in the second reaction zone is 0.05 to 5 times the average residence time in the first reaction zone;
Preferably, 0.1 to 2 times is selected.

平均滞留時間は残留開始剤濃度が実質的に無視できる量
になるよう十分長ければ良く、平均滞留時間が長過ぎて
も残留開始剤濃度がもはや実質的に無視できる量しか存
在しないから、重合は熱的に極めて徐々に進行するのみ
であり、従つて重合体含有率や粘度の伸びは実質的に無
視できる量であるから何ら差支えないが、不必要に長く
するのは大きな反応帯域を必要とするなど無駄であり、
また平均滞留時間が0.05倍以下に短かい場合には、
残留開始剤濃度が高くなるので好ましくない。該反応帯
域を通過した反応混合物中の残留開始剤濃度は実質的に
無視できる量であり、かつ残留開始剤濃度は該反応帯域
の入口から出口に向つて急速に減少するので、これに対
応して該反応帯域において新たに生成する重合体の数平
均重合度は入口から出口へ向つて急速に増大するが、一
方、その生成量は該反応帯域の入口から出口へ向つて急
速に減少するので、該反応帯域において生成する重合体
は意外にも、第一の反応帯域において生成する重合体の
数平均重合度と比較してそれほど大きくない数平均重合
度を有することになり、最終シロツプ中の残留開始剤濃
度を実質的に無視できる量に減少させると同時に、該シ
ロツプ中の重合体の重合度分布を極めて狭く維持するこ
とが実現され、該重合体の重量平均重合度と数平均重合
度の比で表わした重合度分布の多分散度は3以下、好ま
しくは2.5以下、特に好ましくは2.2以下である。
第二の反応帯域を出た反応混合物中の残留開始剤濃度は
1ppm以下の実質的に無視できる量、好ましくは0.
1ppm以下、特に好ましくは0.01ppm以下であ
る。
The average residence time only needs to be long enough so that the residual initiator concentration is essentially negligible; even if the average residence time is too long, the residual initiator concentration is no longer present in an essentially negligible amount, so that polymerization will not occur. There is no problem since the reaction progresses only thermally very slowly and therefore the increase in polymer content and viscosity is virtually negligible, but making it unnecessarily long would require a large reaction zone. There is no point in doing so;
Also, if the average residence time is shorter than 0.05 times,
This is not preferred because the concentration of residual initiator becomes high. Correspondingly, the residual initiator concentration in the reaction mixture passing through the reaction zone is essentially negligible, and the residual initiator concentration decreases rapidly from the inlet to the outlet of the reaction zone. The number average degree of polymerization of the newly produced polymer in the reaction zone increases rapidly from the inlet to the outlet, but the amount produced rapidly decreases from the inlet to the outlet of the reaction zone. , the polymer formed in the reaction zone will surprisingly have a number average degree of polymerization that is not very large compared to the number average degree of polymerization of the polymer formed in the first reaction zone, resulting in a lower number average degree of polymerization in the final syrup. It has been achieved to reduce the residual initiator concentration to a virtually negligible amount while at the same time maintaining a very narrow degree of polymerization distribution of the polymers in the syrup, with the weight-average and number-average degrees of polymerization of the polymers being kept very narrow. The polydispersity of the degree of polymerization distribution expressed as the ratio of is 3 or less, preferably 2.5 or less, particularly preferably 2.2 or less.
The residual initiator concentration in the reaction mixture leaving the second reaction zone is substantially negligible, below 1 ppm, preferably 0.
It is 1 ppm or less, particularly preferably 0.01 ppm or less.

上記方法で得られた最終シロツプは得られたままの温度
条件下に放置しても重合体含有率および粘度の上昇はほ
とんど認められないが、最終シロツプを樹脂板の製造に
使用するまでの間貯蔵されるのが普通であり、この間の
シロツプの変質をできるだけ少なくし、また樹脂板の製
造にあたり重合開始剤その他の添加剤の添加やシロツプ
の注入などの作業の間に重合体含有率や粘度の上昇が起
つて作業性を低下させたり、得られる樹脂板の品質を低
下させたりすることのないよう通常100℃以下、好ま
しくは80℃以下の適度な温度まで冷却される。本発明
の方法により得られるシロツプは残留開始剤濃度が1p
pm以下の実質的に無視できる量、好ましくは0.1p
pm以下、特に好ましくは0.01ppm以下であるか
ら、第二の反応帯域を出た後、急速な冷却を行わなくと
ももはや重合体含有率および粘度の上昇は無視し得る程
度であるから一定品質のものが得られ易い利点を有し、
貯蔵中においても重合体含有率および粘度の上昇は認め
られず、さらに貯蔵中のシロツプの変質により得られる
樹脂板中の残留単量体含有率が増加したり、樹脂板の加
熱成形時に発泡し易くなるなどの品質低下も認められな
いなどすぐれた貯蔵安定性を有している。
Even when the final syrup obtained by the above method is left under the same temperature conditions, there is almost no increase in polymer content or viscosity, but until the final syrup is used for manufacturing resin plates, During this period, the syrup should be stored to minimize deterioration in quality, and during operations such as adding polymerization initiators and other additives and pouring syrup during the production of resin plates, the polymer content and viscosity should be controlled. The resin is cooled to an appropriate temperature, usually below 100°C, preferably below 80°C, in order to prevent the workability from decreasing due to an increase in temperature and the quality of the resulting resin plate. The syrup obtained by the method of the invention has a residual initiator concentration of 1 p.
a substantially negligible amount below pm, preferably 0.1 p
pm or less, particularly preferably 0.01 ppm or less, the increase in polymer content and viscosity is negligible even without rapid cooling after exiting the second reaction zone, so that the quality is constant. It has the advantage of being easy to obtain,
No increase in the polymer content or viscosity was observed during storage, and furthermore, the residual monomer content in the resin plates increased due to deterioration of the syrup during storage, and foaming occurred during heat molding of the resin plates. It has excellent storage stability, with no deterioration in quality such as oxidation.

また本発明の方法により得られるシロツプ中の重合体の
重合度分布は極めて狭く、重量平均重合度と数平均重合
度の比で表わした重合度分布の多分散度は3以下、好ま
しくは2.5以下、特に好ましくは2.2以下であるか
ら、樹脂板の平均重合度に影響する数平均重合度を比較
的高く、かつ、シロツプの粘度に影響する重量平均重合
度を比較的低く選ぶことができるので、比較的低粘度で
、かつ、重合体含有率の高いシロツプが得られ樹脂板の
品質を低下させることなく製板時間を短縮できる極めて
好ましい利点を有している。またこのシロツプを用いて
製板時間を短縮しない条件下で重合を行うときは、樹脂
板の平均重合度を向上させることができ、特に品質のす
ぐれた樹脂板が得られる利点を有している。さらにまた
、本発明の方法により得られる重合体含有率の比較的低
いシロツプを用いて樹脂板を製造するにあたり、使用す
る重合開始剤濃度を増加させることにより製板時間を短
縮することも可能であり、この場合にも得られる樹脂板
の品質低下は比較的小さい利点も有している。本発明の
方法により製造される最終シロツプ中の重合体含有率は
15〜80重量%であり、この範囲より低いときは製板
時間を短縮する効果は比較的小さく、この範囲より高い
ときは極めて高い反応温度条件下においても高粘度とな
り、実質的に完全混合を達成することができずいずれも
得策でない。
Further, the polymerization degree distribution of the polymer in the syrup obtained by the method of the present invention is extremely narrow, and the polydispersity of the polymerization degree distribution expressed as the ratio of the weight average degree of polymerization to the number average degree of polymerization is 3 or less, preferably 2. 5 or less, particularly preferably 2.2 or less, the number average degree of polymerization, which affects the average degree of polymerization of the resin plate, should be relatively high, and the weight average degree of polymerization, which affects the viscosity of the syrup, should be selected to be relatively low. As a result, a syrup having a relatively low viscosity and a high polymer content can be obtained, and it has the extremely favorable advantage of shortening the board making time without degrading the quality of the resin board. Furthermore, when polymerization is carried out using this syrup under conditions that do not shorten the board-making time, the average degree of polymerization of the resin board can be improved, which has the advantage that resin boards of particularly excellent quality can be obtained. . Furthermore, when producing resin plates using syrup with a relatively low polymer content obtained by the method of the present invention, it is also possible to shorten the plate making time by increasing the concentration of the polymerization initiator used. This method also has the advantage that the quality of the resin plate obtained is relatively small. The polymer content in the final syrup produced by the method of the present invention is 15 to 80% by weight, and when it is lower than this range, the effect of shortening the plate making time is relatively small, and when it is higher than this range, it is extremely effective. Even under high reaction temperature conditions, the viscosity becomes high, making it impossible to achieve substantially complete mixing, which is not a good idea.

一方、最終シロツプの25℃における粘度は0.5〜1
0000ポイズであり、この範囲より低いときは樹脂板
の製造時における注入の際に液もれの原因となり、この
範囲の高粘度側である1000ポイズ以上のときは注入
等の作業が困難となるので、いずれも得策でなく、この
範囲のうち0.5〜1000ポイズのものが得られたま
まで樹脂板の製造に用いられる。本発明の方法により製
造される最終シロツプのうち重合体含有率が20〜40
重量%で、かつ、25℃における粘度が5〜500ポイ
ズのものは樹脂板の製造時における注入等に際し好適な
作業性を有し、得られる樹脂板の品質を低下しないで製
板時間が大巾に短縮されるので、特に連続製板方法にお
いて使用するのに適している。最終シロツプ中の重合体
の数平均重合度は300〜6000に選ばれ、特に連続
製板方法に使用するに適する重合体含有率の高いシロツ
プの場合には300〜2000に選ばれるが、所望の重
合体含有率に対して粘度が過度に高すぎない範囲内にお
いてできるだけ高い数平均重合度を選ぶことが得られる
樹脂板の品質を高める上で好ましい。本発明の方法によ
り製造されるシロツプは樹脂板の製造にあたり、得られ
たままの重合体含有率および粘度を有するシロツプとし
て使用しても良いが、重合体含有率が15〜50重量%
、好ましくは20〜40重量%で、かつ25℃における
粘度が0.5〜1000ポイズ、好ましくは5〜500
ポイズの範囲内の所望の値となるよう濃縮するかあるい
は単量体または同種のシロツプによつて希釈を行つても
良い。
On the other hand, the viscosity of the final syrup at 25°C is 0.5-1
If the viscosity is lower than this range, it will cause liquid leakage during injection during the production of resin plates, and if the viscosity is 1000 poise or higher, which is on the high side of this range, it will be difficult to perform operations such as injection. Therefore, neither of these is a good idea, and within this range, those with 0.5 to 1000 poise are used as they are in the production of resin plates. The final syrup produced by the method of the invention has a polymer content of 20 to 40%.
% by weight and with a viscosity of 5 to 500 poise at 25°C, it has suitable workability for injection etc. during the production of resin plates, and the plate manufacturing time can be increased without deteriorating the quality of the resin plates obtained. This makes it particularly suitable for use in continuous sheet-making processes. The number average degree of polymerization of the polymers in the final syrup is selected to be between 300 and 6000, particularly in the case of syrups with high polymer content suitable for use in continuous plate making processes, but not limited to 300 to 2000, depending on the desired In order to improve the quality of the resulting resin plate, it is preferable to select a number average degree of polymerization as high as possible within a range where the viscosity is not too high relative to the polymer content. The syrup produced by the method of the present invention may be used in the production of resin plates as a syrup having the same polymer content and viscosity as obtained, but the syrup has a polymer content of 15 to 50% by weight.
, preferably 20 to 40% by weight, and the viscosity at 25°C is 0.5 to 1000 poise, preferably 5 to 500 poise.
It may be concentrated to the desired value within the poise range or diluted with monomeric or similar syrups.

場合によりこれによつて樹脂板の製造に供するシロツプ
の均質性または生産性を高めることが好適に実施せられ
る。本発明の方法により製造されるシロツプぱ重合\体
含有率の高い割合に低粘度であり馨かつ貯蔵安定性が良
好であるから、その用謙は面脂板の製造のみに限定され
るものではなく、成形材料の製造、接着剤、塗料、樹脂
コンクリート組成物その他この種のシロツプの用いられ
る用途一般に好適に使用せられる。
Depending on the case, this can be used to advantageously improve the homogeneity or productivity of the syrup used in the production of resin plates. Since the syrup produced by the method of the present invention has a high polymer content, low viscosity, good strength and storage stability, its use is not limited only to the production of face oil plates. It is suitable for use in the production of molding materials, adhesives, paints, resin concrete compositions, and other applications in which syrups of this type are generally used.

つぎに本発明を実施例によつて具体的に説明するが、本
発明はこれらによつて限定されるものではない。
EXAMPLES Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.

なお実施例中の%は重量%である。なお実施例中におけ
るシロツプの粘度はB型粘度計を用いて25℃で測定し
、シロツプ中の重合体の数平均重合度および重合度分布
の多分散度はポリスチレンゲルを充填剤とし、テトラヒ
ドロフランを溶離液とするゲル浸透クロマトグラフイ一
により測定した。また樹脂板の重合発泡は得られた樹脂
板を肉眼観察によつて泡の有無を半定し、加熱発泡は得
られた樹脂板を循環式熱風炉に入れて180℃で30分
間加熱したのち肉眼観察によつて泡の有無を判定した。
Note that % in the examples is % by weight. In addition, the viscosity of the syrup in the examples was measured at 25°C using a B-type viscometer, and the number average degree of polymerization and polydispersity of the polymerization degree distribution of the polymer in the syrup were measured using polystyrene gel as a filler and tetrahydrofuran. It was measured by gel permeation chromatography using an eluent. In addition, for polymerization foaming of the resin plate, the presence or absence of bubbles is semi-determined by visually observing the obtained resin plate, and for heating foaming, the obtained resin plate is placed in a circulating hot air oven and heated at 180°C for 30 minutes. The presence or absence of bubbles was determined by visual observation.

また還元粘度は得られた樹脂板の0.1%クロロホルム
溶液を25℃で測定し、残留単量体濃度は得られた樹脂
板を塩化メチレンに溶解してガスクロマトグラフイ一に
よつて測定した。
The reduced viscosity was determined by measuring a 0.1% chloroform solution of the obtained resin plate at 25°C, and the residual monomer concentration was measured by dissolving the obtained resin plate in methylene chloride and using gas chromatography. .

実施例 1 前段にリボン状攪拌翼を設置した攪拌槽型反応器を2個
直列に配列し、後段に攪拌軸を有し、該攪拌軸上に軸と
垂直方向に設置したピンが管壁に垂直に軸に向つて設置
した固定ピンと互いに拭い合うように配置してなる管型
反応器を配列してなる三段式連続反応装置を使用してシ
ロツプを製造した。
Example 1 Two stirred tank reactors each having a ribbon-shaped stirring blade installed at the front stage were arranged in series, and a stirring shaft was installed at the rear stage, and a pin installed on the stirring shaft in a direction perpendicular to the shaft was attached to the tube wall. The syrup was produced using a three-stage continuous reactor consisting of an array of tubular reactors arranged to wipe each other with fixing pins installed vertically toward the axis.

第一の槽型反応器、第二の槽型反応器および管型反応器
の容積比は1:0.33:0.25であつた。重合開始
剤であるアゾビスイソブチロニトリルを0.047%含
有するメチルメタクリレート単量体を第一の槽型反応器
における平均滞留時間が147秒となるよう連続的に供
給し、重合を行い、さらに反応混合物の量に対して0.
017%となるようアゾビスイソブチロニトリルの2%
メチルメタクリレート単量体溶液を第二の槽型反応器に
連続的に追加供給し、重合を行つたのち、最後に管型反
応器を通過させて重合を完了させた。
The volume ratio of the first tank reactor, second tank reactor, and tube reactor was 1:0.33:0.25. Methyl methacrylate monomer containing 0.047% of azobisisobutyronitrile as a polymerization initiator was continuously supplied so that the average residence time in the first tank reactor was 147 seconds, and polymerization was carried out. , plus 0.0% relative to the amount of reaction mixture.
2% of azobisisobutyronitrile to give 0.17%
The methyl methacrylate monomer solution was continuously added to the second tank reactor for polymerization, and then finally passed through the tubular reactor to complete the polymerization.

管型反応器を含む各反応器の温度は160℃、圧力は6
.0気圧に維持した。第一の槽型反応器への供給液はジ
ャケツト付きの単管を用いて80℃に予熱し、一方、第
二の槽型反応器に追加供給される開始剤溶液の温度は2
5℃であつた。管型反応器を出たシロツプの重合体含有
率は33.5%、25℃における粘度は176ポイズで
あり、各反応器において生成した重合体の割合は70:
25:5であつた。
The temperature of each reactor, including the tubular reactor, was 160°C, and the pressure was 6.
.. The pressure was maintained at 0 atmospheres. The feed liquid to the first tank reactor was preheated to 80°C using a jacketed single tube, while the temperature of the initiator solution additionally fed to the second tank reactor was 2°C.
It was 5℃. The polymer content of the syrup leaving the tubular reactor was 33.5%, the viscosity at 25°C was 176 poise, and the proportion of polymer produced in each reactor was 70:
It was 25:5.

また第一および第二の槽型反応器における残留開始剤濃
度の供給開始剤濃度に対する割合はそれぞれ1/32お
よび1/11倍量であつた。最終シロツフ沖の残留開始
剤濃度は0.01ppm以下であり、60℃にお℃・て
5時間静置加熱しても重合体含有率および粘度には全く
変化を認めなかつた。また、シロツフ沖重合度分布の多
分散度は2.02であつたが、残留開始剤濃度が15.
2ppmと多く、また60℃において静置加熱したとこ
ろ重合が急速に進行して1時間で全く流動性を失ない、
長時間の貯蔵に耐え得ない性状であつた。次に、このシ
ロツプにアゾビスジメチルバレロニトリル0.04%を
添加して、実施例1の連続重合装置を用い、加熱重合区
域を24分間で通過させる他は実施例1と同一条件で重
合を完結させて樹脂板を得た。
Further, the ratios of the residual initiator concentration to the supplied initiator concentration in the first and second tank reactors were 1/32 and 1/11 times the amount, respectively. The residual initiator concentration in the final batch was 0.01 ppm or less, and no change was observed in the polymer content or viscosity even after heating at 60°C for 5 hours. Furthermore, the polydispersity of the polymerization degree distribution off the coast of Shilotov was 2.02, but the residual initiator concentration was 15.
The amount was as high as 2 ppm, and when heated at 60°C, polymerization proceeded rapidly and did not lose fluidity at all within 1 hour.
The condition was such that it could not withstand long-term storage. Next, 0.04% of azobisdimethylvaleronitrile was added to this syrup, and polymerization was carried out using the continuous polymerization apparatus of Example 1 under the same conditions as in Example 1, except that the syrup was passed through the heated polymerization zone for 24 minutes. The process was completed to obtain a resin board.

この製品の還元粘度は2.69d1/7で、重合発泡も
生じなかつたが、残留単量体濃度が4.2%と高く、加
熱発泡が生じた。なお、加熱重合区域を21分間で通過
させる他は上記と同一条件で重合させたところ著しい重
合発泡が生じ、得られた樹脂板は商品としての価値を全
く有しないものであつた。比較例 2 リボン状攪拌翼を設置した攪拌槽型反応器を2個直列に
配列してなり、第一段と第二段の反応器の容積比が1:
0.25である二段式連続反応装置を使用し、アゾビス
イソブチロニトリルを0.047%含有するメチルメタ
クリレート単量体を第一段の反応器における平均滞留時
間が147秒となるよう連続的に供給し、各反応器の温
度は160℃、各反応器の圧力は6.0気圧に維持して
重合を行つた。
The reduced viscosity of this product was 2.69 d1/7, and no polymerization foaming occurred, but the residual monomer concentration was as high as 4.2%, and thermal foaming occurred. When polymerization was carried out under the same conditions as above except that the resin was passed through the heating polymerization zone for 21 minutes, significant polymerization and foaming occurred, and the resulting resin plate had no value as a commercial product. Comparative Example 2 Two stirred tank reactors equipped with ribbon-shaped stirring blades were arranged in series, and the volume ratio of the first and second stage reactors was 1:
Using a two-stage continuous reactor with an azobisisobutyronitrile concentration of 0.25%, methyl methacrylate monomer containing 0.047% azobisisobutyronitrile was heated so that the average residence time in the first stage reactor was 147 seconds. Polymerization was carried out by continuously supplying the polymer while maintaining the temperature of each reactor at 160° C. and the pressure of each reactor at 6.0 atm.

第二段の反応器を出たシロツプの重合体含有率は28.
3%、粘度は80.9ポイズであり、全重合体の88%
が第一の反応器にお(・て生成した。シロツフ沖の残留
開始剤濃度は2.53ppmであり、60℃において3
時間加熱したところ、重合体含有率は28.7%、粘度
は780ポイズに増加した。また、シロツプ中の重合体
の数平均重合度は795、重合度分布の多分散度は2.
55であつた。このシロツプにアゾビスジメチルバレロ
ニトリル0.04%を添加して、実施例1の連続重合装
置を用い、加熱重合区域を20分間で通過させる他は実
施例1と同一条件で重合を完結させて樹脂板を得た。こ
の製品の還元粘度は2.65d1/tで重合発泡も生じ
なかつたが、残留単量体濃度が2.7%と高く、加熱発
泡が生じた。比較例 3 第一段と第二段の反応器の容積比が1:2である他は比
較例2と同じ反応装置を使用し、比較例2と全く同一条
件で反応を行つて、重合体含有率が31.4%で、粘度
が1100ポイズのシロツプを得た。
The polymer content of the syrup leaving the second stage reactor is 28.
3%, viscosity is 80.9 poise, 88% of the total polymer
was produced in the first reactor. The residual initiator concentration off the coast of Shilotzow was 2.53 ppm, and at 60 °C
After heating for an hour, the polymer content increased to 28.7% and the viscosity increased to 780 poise. The number average degree of polymerization of the polymer in the syrup is 795, and the polydispersity of the degree of polymerization distribution is 2.
It was 55. 0.04% of azobisdimethylvaleronitrile was added to this syrup, and the polymerization was completed using the continuous polymerization apparatus of Example 1 under the same conditions as Example 1, except that the syrup was passed through the heated polymerization zone for 20 minutes. A resin plate was obtained. The reduced viscosity of this product was 2.65 d1/t, and no polymerization foaming occurred, but the residual monomer concentration was as high as 2.7%, and thermal foaming occurred. Comparative Example 3 The same reactor as Comparative Example 2 was used except that the volume ratio of the first and second reactors was 1:2, and the reaction was carried out under exactly the same conditions as Comparative Example 2. A syrup with a viscosity of 31.4% and a viscosity of 1100 poise was obtained.

シロツフ沖の重合体の80%が第一の反応器において生
成した。シロツプ中の残留開始剤濃度は0.23ppm
であり、60℃において3時間静置加熱したところ、重
合体含有率は31.6%、粘度は2500ポイズに増加
した。またシロツプ中の重合体の数平均重合度は870
、重合度分布の多分散度は3.32であつた。このシロ
ツプにアゾビスジメチルバレロニトリル0.04%を添
加して、実施例1の連続重合装置を用い、加熱重合区域
を17分間で通過させる他は実施例1と同一条件で重合
を完結させて樹脂板を得た。
80% of the polymer off Shilotzow was produced in the first reactor. Residual initiator concentration in syrup is 0.23 ppm
When the mixture was heated at 60° C. for 3 hours, the polymer content increased to 31.6% and the viscosity increased to 2500 poise. The number average degree of polymerization of the polymer in the syrup is 870.
The polydispersity of the polymerization degree distribution was 3.32. 0.04% of azobisdimethylvaleronitrile was added to this syrup, and the polymerization was completed using the continuous polymerization apparatus of Example 1 under the same conditions as Example 1, except that the syrup was passed through the heated polymerization zone for 17 minutes. A resin plate was obtained.

このシロツプは高粘度であるため移動バンド間への注入
が困難であり、この製品には重合発泡が見られた。なお
、このシロツプを比較例2と同じ粘度80.9ポイズに
なるまで単量体で希釈して得た重合体含有率25.0%
のシロツプにアゾビスジメチルバレロニトリル0.04
%を添加して、加熱重合区域を23分間で通過させる他
は上と同じ条件で重合を完結させたところ、製品の還元
粘度は2.91d1/Vで残留単量体濃度は2.1%で
あり、重合発泡は生じなかつたが、加熱発泡が生じた。
また、同じ希釈後のシロツプにアゾビスジメチルバレロ
ニトリル0.07%を添加して、加熱重合区域を18分
間で通過させる他は上と同じ条件で重合を完結させたと
ころ、製品の還元粘度は2.20d1/7で、残留単量
体濃度は1.8%であり、重合発泡は生じなかつたが、
著しい加熱発泡が生じた。なお、この方法で得られたシ
ロツプを比較例2と同じ重合体含有率28.3%になる
まで単量体で希釈したところ、粘度は280ポイズとな
つた。
The high viscosity of this syrup made it difficult to inject between the moving bands, and the product exhibited polymeric foaming. In addition, this syrup was diluted with a monomer until the same viscosity as Comparative Example 2, 80.9 poise, and the polymer content was 25.0%.
syrup with azobisdimethylvaleronitrile 0.04
% was added and the polymerization was completed under the same conditions as above except that it passed through the heated polymerization zone for 23 minutes. The reduced viscosity of the product was 2.91 d1/V and the residual monomer concentration was 2.1%. Although polymerization foaming did not occur, heating foaming did occur.
In addition, when 0.07% of azobisdimethylvaleronitrile was added to the same diluted syrup and the polymerization was completed under the same conditions as above except that the syrup was passed through the heating polymerization zone for 18 minutes, the reduced viscosity of the product was At 2.20d1/7, the residual monomer concentration was 1.8% and no polymerization foaming occurred, but
Significant heat foaming occurred. When the syrup obtained by this method was diluted with a monomer until the polymer content reached 28.3%, the same as in Comparative Example 2, the viscosity was 280 poise.

比較例 4比較例1の一般式連続反応装置を使用した。Comparative Example 4 The general type continuous reaction apparatus of Comparative Example 1 was used.

アゾビスイソブチロニトリルを0.45%含有するメチ
ルメタクリレート単量体を平均滞留時間が14.6分と
なるよう連続的に供給し、反応器の圧力は常圧、温度は
85℃で重合を行つた。また、反応槽出口における残留
開始剤濃度は供給開始剤濃度の約90/100倍量であ
つた。はじめ重合体含有率約25%、粘度約12ポイズ
のシロツプが得られたが反応温度を一定に維持すること
は困難となり、約1時間後に温度が急上昇し、重合反応
が暴走して内容物は固化し、反応を続行することは不可
能であつた。実施例 2 第一の槽型反応器、第二の槽型反応器および管型反応器
の容積をいずれも51にした以外は実施例1と同様の装
置を用いて重合を行つた。
Methyl methacrylate monomer containing 0.45% azobisisobutyronitrile was continuously fed so that the average residence time was 14.6 minutes, and the reactor pressure was normal pressure and the temperature was 85°C. I went to Further, the concentration of the residual initiator at the outlet of the reaction tank was about 90/100 times the concentration of the supplied initiator. At first, a syrup with a polymer content of about 25% and a viscosity of about 12 poise was obtained, but it became difficult to maintain a constant reaction temperature, and after about an hour, the temperature rose rapidly, and the polymerization reaction went out of control, causing the contents to drop. It solidified and it was impossible to continue the reaction. Example 2 Polymerization was carried out using the same apparatus as in Example 1, except that the volumes of the first tank reactor, second tank reactor, and tube reactor were all 51.

メチルメタクリレート単量体を130℃に予熱して3.
271/分で第一の槽型反応器に連続的に供給し、かつ
、重合開始剤であるアゾビスイソブチロニトリルを0.
29%含有する20℃のエチルアクリレート単量体溶液
を0.361/分で第一の槽型反応器に連続的に供給し
、さらにアゾビスイソプチロニトリルを3%含有する2
0℃のメチルメタクリレート単量体溶液を0.0351
/分で第二の槽型反応器に連続的に追加供給し重合を行
つた。各槽型反応器の温度は160℃に維持し、管型反
応器の温度は断熱的に昇温させた結果162℃となつた
。また各反応器の圧力は6.0気圧に維持した。また槽
型反応器における残留開始剤濃度は供給開始剤濃度の1
/32倍量であつた。管型反応器を出たシロツプの重合
体含有率は32.0%、25℃における粘度は159ポ
イズであつた。
3. Preheat the methyl methacrylate monomer to 130°C.
The polymerization initiator, azobisisobutyronitrile, was continuously fed to the first tank reactor at a rate of 271/min.
An ethyl acrylate monomer solution at 20° C. containing 29% was continuously fed at 0.361/min to the first tank reactor, and a solution of ethyl acrylate monomer containing 3%
0.0351 methyl methacrylate monomer solution at 0°C
Polymerization was carried out by continuously adding the polymer to the second tank reactor at a rate of 1/min. The temperature of each tank reactor was maintained at 160°C, and the temperature of the tube reactor was raised adiabatically to 162°C. Further, the pressure in each reactor was maintained at 6.0 atmospheres. In addition, the residual initiator concentration in a tank reactor is 1 of the supplied initiator concentration.
/32 times the amount. The syrup leaving the tubular reactor had a polymer content of 32.0% and a viscosity of 159 poise at 25°C.

またシロツプ中の重合体の数平均重合度は790であり
、重合度分布の多分散度は2.18であつた。実施例
3 第一の槽型反応器、第二の槽型反応器および管型反応器
の容積比を1:0.5:0.5にした以外は実施例1と
同様の装置で行つた。
The number average degree of polymerization of the polymer in the syrup was 790, and the polydispersity of the degree of polymerization distribution was 2.18. Example
3 The same apparatus as in Example 1 was used except that the volume ratio of the first tank reactor, second tank reactor, and tube reactor was 1:0.5:0.5.

アゾビスイソブチロニトリルを0.046%含有するメ
チルメタクリレート単量体を第一の槽型反応器における
平均滞留時間が97.8秒となるよう連続的に供給し重
合を行つたのち、反応混合物の量に対して0.024%
となるようアゾビスイソブチロニトリルの2%メチルメ
タクリレート単量体溶液を第二の槽型反応器に追加供給
し、各反応器の温度を160℃、圧力を6。0気圧に維
持しながら重合を行つた。
Methyl methacrylate monomer containing 0.046% azobisisobutyronitrile was continuously supplied to the first tank reactor so that the average residence time was 97.8 seconds, and the polymerization was carried out. 0.024% relative to the amount of mixture
A 2% methyl methacrylate monomer solution of azobisisobutyronitrile was additionally supplied to the second tank reactor so that the temperature of each reactor was maintained at 160°C and the pressure at 6.0 atm. Polymerization was carried out.

管型反応器を出たシロツプの重合体含有率は29.8%
、25℃における粘度は23.0ポイズであり、各反応
器において生成した重合体の割合は62:32:6であ
つた。また第一および第二の槽型反応器における残留開
始剤濃度の供給開始剤濃度に対する割合はそれぞれ1/
21および1/11倍量であつた。最終シロツプ中の残
留開始剤濃度は0.01ppm以下であり、シロツフ沖
の重合体の数平均重合度は605、重合度分布の多分散
度は2.15であつた。実施例 4 前段にリボン状攪拌翼を設置した攪拌槽型反応器を3個
直列に配列し、後段に攪拌軸を有し、該攪拌軸上に軸と
垂直方向に設置したピンが管壁に垂直に軸に向つて設置
した固定ピンと互いに拭い合うように配置してなる管型
反応器を配クIルてなる四段式連続反応装置を使用した
The polymer content of the syrup leaving the tubular reactor is 29.8%.
The viscosity at 25° C. was 23.0 poise, and the ratio of polymers produced in each reactor was 62:32:6. In addition, the ratio of the residual initiator concentration to the supplied initiator concentration in the first and second tank reactors is 1/1, respectively.
The amount was 21 and 1/11 times larger. The concentration of residual initiator in the final syrup was 0.01 ppm or less, the number average degree of polymerization of the polymer produced in Syropf was 605, and the polydispersity of the degree of polymerization distribution was 2.15. Example 4 Three stirred tank reactors each having a ribbon-shaped stirring blade installed at the front stage were arranged in series, and a stirring shaft was installed at the rear stage, and a pin installed on the stirring shaft in a direction perpendicular to the shaft was attached to the tube wall. A four-stage continuous reaction apparatus was used, which consisted of fixed pins installed vertically toward the axis and tubular reactors arranged so as to wipe each other.

各々の反応器の容積比は1:0.5:0.5:0.1で
あつた。アゾビスイソプチロニトリルを0.046%含
有するメチルメタクリレート単量体を第一の槽型反応器
における平均滞留時間が97,8秒となるよう連続的に
供給し重合を行い、さらに反応混合物の量に対してそれ
ぞれ0.024%、0,032%となるようアゾビスイ
ソブチロニトリルの2%メチルメタクリレート単量体溶
液を第二および第三の槽型反応器に追加供給し重合を行
つた。各反応器の温度は1601162、164および
165℃であり、圧力は各反応器とも6.3気圧であつ
た。管型反応器を出たシロツプの重合体含有率は45.
3%、25℃における粘度は1680ポイズであり、各
反応器において生成した重合体の割合は43:22:3
2:3であつた。
The volume ratio of each reactor was 1:0.5:0.5:0.1. Polymerization was carried out by continuously feeding methyl methacrylate monomer containing 0.046% azobisisobutylonitrile so that the average residence time in the first tank reactor was 97.8 seconds. A 2% methyl methacrylate monomer solution of azobisisobutyronitrile was additionally supplied to the second and third tank reactors so that the amounts were 0.024% and 0.032% based on the amount, respectively, and polymerization was carried out. Ivy. The temperature in each reactor was 1601162, 164 and 165°C, and the pressure in each reactor was 6.3 atmospheres. The polymer content of the syrup leaving the tubular reactor is 45.
3%, the viscosity at 25°C is 1680 poise, and the ratio of polymer produced in each reactor is 43:22:3.
The ratio was 2:3.

また第一、第二および第三の槽型反応器における残留開
始剤濃度の供給開始剤濃度に対する割合はそれぞれ1/
21、1/13および1/15倍量であつた。最終シロ
ツフ沖の残留開始剤濃度は0.01ppm以下であり、
シロツフ沖の重合体の数平均重合度は615、重合度分
布の多分散度は2。12であつた。
In addition, the ratio of the residual initiator concentration to the supplied initiator concentration in the first, second, and third tank reactors is 1/1, respectively.
21, 1/13 and 1/15 times the amount. The concentration of residual initiator off the coast of the final Shilotov is less than 0.01 ppm,
The number average degree of polymerization of the polymer produced off the coast of Shilotzow was 615, and the polydispersity of the polymerization degree distribution was 2.12.

このシロツプを重合体含有率が35.0%になるまで単
量体で希釈したところ25℃における粘度が95.5ポ
イズであるシロツプが得られた。実施例 5各々の反応
器の容積比を1:0.5:0.33:0.2にした以外
は実施例4と同様の方法で行つた。
When this syrup was diluted with a monomer until the polymer content was 35.0%, a syrup with a viscosity of 95.5 poise at 25°C was obtained. Example 5 The same method as Example 4 was carried out except that the volume ratio of each reactor was changed to 1:0.5:0.33:0.2.

第一の反応器における平均滞留時間が106秒となるよ
うメチルメタクリレート単量体を連続的に供給し、各々
の槽型反応器には反応混合物の量に対してそれぞれ0.
104、0.054および0,054%のアゾビスイソ
ブチロニトリルを連続的に供給した。各反応器の温度は
1601163、165および166℃であり圧力は各
反応器とも6.3気圧であつた。管型反応器を出たシロ
ツプの重合体含有率は62.5%、25℃における粘度
は8700ポイズであつた。
Methyl methacrylate monomer was continuously fed so that the average residence time in the first reactor was 106 seconds, and each tank reactor was supplied with 0.000 ml of methyl methacrylate monomer based on the amount of reaction mixture.
104, 0.054 and 0.054% azobisisobutyronitrile were fed continuously. The temperatures in each reactor were 1601163, 165 and 166°C, and the pressure in each reactor was 6.3 atm. The syrup leaving the tubular reactor had a polymer content of 62.5% and a viscosity of 8700 poise at 25°C.

また第一、第二および第三の槽型反応器における残留開
始剤濃度の供給開始剤濃度に対する害1拾はそれぞれ1
/24、1/15および1/12倍量であつた。最終シ
ロツフ沖の残留開始剤濃度は0.01ppm以下であり
、シロツプ中の重合体の数平均重合度は415、重合度
分布の多分散度は2.10であつた。このシロツプを重
合体含有率が40.3%になるまで単量体で希釈したと
ころ、25℃における粘度は55.0ポイズとなつた。
実施例 6〜14 第一の槽型反応器と第二の槽型反応器の容積比を第1表
に示す値にし、管型反応器の容積を第一の槽型反応器の
0.5倍にした以外は実施例1と同様の方法で行つた。
In addition, the influence of the residual initiator concentration on the feed initiator concentration in the first, second, and third tank reactors is 1 and 1, respectively.
The amounts were 1/24, 1/15 and 1/12. The residual initiator concentration in the final syrup was 0.01 ppm or less, the number average degree of polymerization of the polymer in the syrup was 415, and the polydispersity of the polymerization degree distribution was 2.10. When this syrup was diluted with monomer until the polymer content was 40.3%, the viscosity at 25°C was 55.0 poise.
Examples 6 to 14 The volume ratio of the first tank reactor and the second tank reactor is set to the value shown in Table 1, and the volume of the tubular reactor is 0.5 of that of the first tank reactor. The same method as in Example 1 was carried out except that the amount was doubled.

重合開始剤として第1表に示した種々のラジカル重合開
始剤を使用し、反応混合物の量に対する重合開始剤の量
の割合がそれぞれ第1表の値となるよう第一および第二
の槽型反応器に分割して連続的に供給し、単量体として
メチルメタクリレート単量体を使用して、第1表に示し
た種々の温度および平均滞留時間で反応させて、第2表
に示す重合体含有率、粘度および数平均重合度のシロツ
プを得た。また第一および第二の槽型反応器における残
留開始剤濃度の供給開始剤濃度に対する割合はそれぞれ
第1表に示す値であつた。いずれの場合もシロツプ中の
残留開始剤濃度は0.01ppm以下であり、60℃に
おいて3時間静置加熱しても重合体含有率および粘度に
は全く変化を認めなかつた。また、シロツフ沖の重合体
の重合度分布の多分散度は2.2以下であつた。実施例
15 リボン状攪拌翼を設置した攪拌槽型反応器を2個直列に
配列してなる二段式連続反応装置を使用してシロツプを
製造した。
Various radical polymerization initiators shown in Table 1 are used as polymerization initiators, and the first and second tank types are set so that the ratio of the amount of polymerization initiator to the amount of the reaction mixture becomes the value shown in Table 1. Using methyl methacrylate monomer as the monomer, the reaction was carried out at various temperatures and average residence times shown in Table 1 to produce the weights shown in Table 2. A syrup with coalesced content, viscosity and number average degree of polymerization was obtained. Furthermore, the ratios of the residual initiator concentration to the supplied initiator concentration in the first and second tank reactors were the values shown in Table 1, respectively. In all cases, the concentration of residual initiator in the syrup was 0.01 ppm or less, and no change was observed in the polymer content or viscosity even after heating at 60° C. for 3 hours. Furthermore, the polydispersity of the polymerization degree distribution of the polymer off the coast of Shilotzow was 2.2 or less. Example 15 Syrup was produced using a two-stage continuous reaction apparatus consisting of two stirred tank reactors equipped with ribbon-shaped stirring blades arranged in series.

第一の槽型反応器と第二の槽型反応器の容積比は3:1
であつた。重合開始剤であるアゾビスイソブチロニトリ
ルを0.047%含有するメチルメタクリレート単量体
を第一の槽型反応器における平均滞留時間が147秒と
なるよう連続的に供給し、さらに反応混合物の量に対し
て0.017%となるようアゾビスイソブチロニトリル
の2%メチルメタクリレート単量体溶液を第二の槽型反
応器に連続的に追加供給し、各反応器の温度は160℃
、圧力は6,0気圧に維持した。第一の槽型反応器への
供給液はジャケツト付きの単管を用いて80℃に予熱し
、一方第二の槽型反応器に追加供給される開始剤溶液の
温度は25℃であつた。第二の反応器を出たシロツプの
重合体含有率は31.8%、25℃における粘度は90
.8ポイズであり、各反応器において生成した重合体の
割合は73:27であつた。
The volume ratio of the first tank reactor and the second tank reactor is 3:1
It was hot. Methyl methacrylate monomer containing 0.047% of azobisisobutyronitrile as a polymerization initiator was continuously fed so that the average residence time in the first tank reactor was 147 seconds, and the reaction mixture A 2% methyl methacrylate monomer solution of azobisisobutyronitrile was continuously added to the second tank reactor so that the amount was 0.017% based on the amount of ℃
, the pressure was maintained at 6,0 atm. The feed liquid to the first tank reactor was preheated to 80°C using a single jacketed tube, while the temperature of the initiator solution additionally fed to the second tank reactor was 25°C. . The syrup leaving the second reactor has a polymer content of 31.8% and a viscosity of 90% at 25°C.
.. 8 poise, and the ratio of polymers produced in each reactor was 73:27.

Claims (1)

【特許請求の範囲】 1 メチルメタクリレートを主成分とする単量体を実質
的に完全混合が達成される反応区域を2個以上直列に配
列してなる反応帯域の第一の反応区域に連続的に供給し
、かつ、ラジカル重合開始剤を第一の反応区域を含む少
くとも2個の反応区域に連続的に供給し、少くとも重合
開始剤の供給される各反応区域における残留開始剤濃度
が供給開始剤濃度の1/2〜1/1000倍量となるよ
う各反応区域の条件を維持し、反応混合物が各反応区域
を順次通過する間に重合体を生ぜしめてシロツプを得る
ことを特徴とするメチルメタクリレート系シロツプの連
続製造方法。 2 ラジカル重合開始剤として半減期が5秒以下となる
温度が180℃以下であるラジカル重合開始剤を用いる
特許請求の範囲第1項に記載の方法。 3 実質的に完全混合の達成される反応区域の数が2〜
10個である特許請求の範囲第1項に記載の方法。 4 各反応区域における攪拌レイノルズ数が2000以
上である特許請求の範囲第1項に記載の方法。 5 残留開始剤濃度が供給開始剤濃度の1/5〜1/1
000倍量である特許請求の範囲第1項に記載の方法。 6 残留開始剤濃度が供給開始剤濃度の1/10〜1/
500倍量である特許請求の範囲第1項に記載の方法。 7 シロツプ中の重合体含有率が15〜80重量%であ
り、かつ、25℃における粘度が0.5〜10000ポ
イズである特許請求の範囲第1項に記載の方法。 8 メチルメタクリレートを主成分とする単量体を実質
的に完全混合が達成される反応区域を2個以上直列に配
列してなる第一の反応帯域の第一の反応区域に連続的に
供給し、かつ、ラジカル重合開始剤を第一の反応区域を
含む少くとも2個の反応区域に連続的に供給し、少くと
も重合開始剤の供給される各反応区域における残留開始
剤濃度が供給開始剤濃度の1/2〜1/1000倍量と
なるよう各反応区域の条件を維持して、該反応帯域にお
いて最終シロツプ中の重合体の大部分を生ぜしめ、次い
で得られる反応混合物を実質的に押し出し流れが達成さ
れる第二の反応帯域に導いて、該反応帯域を通過する間
に残量の重合体が生じ、かつ、残留開始剤濃度が実質的
に無視できる量になるよう該反応帯域の温度および平均
滞留時間の条件を維持して最終シロツプ中の重合体の重
量平均重合度と数平均重合度の比で表わした重合度分布
の多分散度が3.0以下であるシロツプを得ることを特
徴とするメチルメタクリレート系シロツプの連続製造法
。 9 ラジカル重合開始剤として半減期が5秒以下となる
温度が180℃以下であるラジカル重合開始剤を用いる
特許請求の範囲第8項に記載の方法。 10 実質的に完全混合が達成される反応区域の数が2
〜10個である特許請求の範囲第8項に記載の方法。 11 第一の反応帯域の各反応区域における攪拌レイノ
ルズ数が2000以上である特許請求の範囲第8項に記
載の方法。 12 第一の反応帯域において生成する重合体の最終シ
ロツプ中の重合体に占める割合が60〜99.5重量%
である特許請求の範囲第8項に記載の方法。 13 少くとも重合開始剤の供給される各反応区域にお
ける残留開始剤濃度が供給開始剤濃度の1/5〜1/1
000倍量でかつ最終シロツプ中の重合度分布の多分散
度が2.5以下である特許請求の範囲第8項に記載の方
法。 14 少くとも重合開始剤の供給される各反応区域にお
ける残留開始剤濃度が供給開始剤濃度の1/10〜1/
500倍量でかつ最終シロツプ中の重合度分布の多分散
度が2.2以下である特許請求の範囲第8項に記載の方
法。 15 第二の反応帯域の温度が第一の反応帯域の温度よ
り低くない温度である特許請求の範囲第8項に記載の方
法。 16 第二の反応帯域における反応混合物の平均滞留時
間が第一の反応帯域における平均滞留時間の0.1〜2
倍である特許請求の範囲第8項に記載の方法。 17 第二の反応帯域において逆混合係数が0.2以下
である攪拌方法を用いる特許請求の範囲第8項に記載の
方法。 18 最終シロツプ中の残留開始剤濃度が1ppm以下
である特許請求の範囲第8項に記載の方法。 19 最終シロツプ中の残留開始剤濃度が0.01pp
m以下である特許請求の範囲第8項に記載の方法。 20 最終シロツプ中の重合体含有率が15〜80重量
%であり、かつ25℃における粘度が0.5〜1000
0ポイズである特許請求の範囲第8項に記載の方法。 21 最終シロツプ中の重合体含有率が20〜40重量
%であり、かつ25℃における粘度が5〜500ポイズ
である特許請求の範囲第8項に記載の方法。
[Scope of Claims] 1. A monomer containing methyl methacrylate as a main component is continuously connected to the first reaction zone of a reaction zone formed by arranging two or more reaction zones in series in which substantially complete mixing is achieved. and continuously supplying the radical polymerization initiator to at least two reaction zones including the first reaction zone, such that at least the residual initiator concentration in each reaction zone to which the polymerization initiator is supplied is The method is characterized in that the conditions in each reaction zone are maintained so that the concentration of the initiator supplied is 1/2 to 1/1000 times, and a syrup is obtained by producing a polymer while the reaction mixture sequentially passes through each reaction zone. A continuous production method for methyl methacrylate syrup. 2. The method according to claim 1, which uses a radical polymerization initiator whose temperature at which its half-life is 5 seconds or less is 180° C. or less. 3 The number of reaction zones in which substantially complete mixing is achieved is from 2 to
10. The method according to claim 1, wherein the number is 10. 4. The method according to claim 1, wherein the stirring Reynolds number in each reaction zone is 2000 or more. 5 Residual initiator concentration is 1/5 to 1/1 of the supplied initiator concentration
The method according to claim 1, wherein the amount is 0.000 times. 6 The residual initiator concentration is 1/10 to 1/1/1 of the supplied initiator concentration.
500 times the amount. The method according to claim 1. 7. The method according to claim 1, wherein the syrup has a polymer content of 15 to 80% by weight and a viscosity of 0.5 to 10,000 poise at 25°C. 8. Continuously feeding a monomer mainly composed of methyl methacrylate to a first reaction zone of a first reaction zone formed by arranging two or more reaction zones in series in which substantially complete mixing is achieved. , and the radical polymerization initiator is continuously supplied to at least two reaction zones including the first reaction zone, and at least the residual initiator concentration in each reaction zone to which the polymerization initiator is supplied is equal to or less than the supplied initiator. Conditions in each reaction zone are maintained at 1/2 to 1/1000 times the concentration to produce the majority of the polymer in the final syrup in the reaction zone, and the resulting reaction mixture is then substantially The extrusion flow is directed to a second reaction zone in which a residual amount of polymer is produced during passage through the reaction zone, and the reaction zone is such that a residual initiator concentration is substantially negligible. Maintaining the temperature and average residence time conditions to obtain a syrup in which the polydispersity of the polymerization degree distribution expressed as the ratio of the weight average degree of polymerization to the number average degree of polymerization of the polymer in the final syrup is 3.0 or less. A continuous production method for methyl methacrylate syrup characterized by: 9. The method according to claim 8, which uses a radical polymerization initiator whose temperature at which its half-life is 5 seconds or less is 180° C. or less. 10 The number of reaction zones where substantially complete mixing is achieved is 2.
9. The method of claim 8, wherein the number is 10. 11. The method according to claim 8, wherein the stirring Reynolds number in each reaction zone of the first reaction zone is 2000 or more. 12 The proportion of the polymer produced in the first reaction zone in the final syrup is 60 to 99.5% by weight.
The method according to claim 8. 13 At least the residual initiator concentration in each reaction zone where the polymerization initiator is supplied is 1/5 to 1/1 of the supplied initiator concentration.
9. The method according to claim 8, wherein the polydispersity of the degree of polymerization distribution in the final syrup is 2.5 or less. 14 The residual initiator concentration in each reaction zone where the polymerization initiator is supplied is at least 1/10 to 1/1/1 of the supplied initiator concentration.
9. The method according to claim 8, wherein the polydispersity of the degree of polymerization distribution in the final syrup is 2.2 or less at 500 times the amount. 15. The method of claim 8, wherein the temperature of the second reaction zone is no lower than the temperature of the first reaction zone. 16 The average residence time of the reaction mixture in the second reaction zone is 0.1 to 2 of the average residence time in the first reaction zone.
9. The method according to claim 8, wherein the method is: 17. The method according to claim 8, which uses a stirring method in which the back mixing coefficient is 0.2 or less in the second reaction zone. 18. The method of claim 8, wherein the residual initiator concentration in the final syrup is 1 ppm or less. 19 Residual initiator concentration in final syrup is 0.01pp
9. The method according to claim 8, which is less than or equal to m. 20 The polymer content in the final syrup is 15-80% by weight, and the viscosity at 25°C is 0.5-1000.
9. The method according to claim 8, which has 0 poise. 21. The method according to claim 8, wherein the polymer content in the final syrup is 20-40% by weight and the viscosity at 25°C is 5-500 poise.
JP12068477A 1977-10-06 1977-10-06 Continuous manufacturing method for methyl methacrylate syrup Expired JPS5921326B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP12068477A JPS5921326B2 (en) 1977-10-06 1977-10-06 Continuous manufacturing method for methyl methacrylate syrup
NLAANVRAGE7810090,A NL187487C (en) 1977-10-06 1978-10-06 PROCESS FOR CONTINUOUS PRODUCTION OF A PRE-POLYMER SYRUP.
CA312,893A CA1107752A (en) 1977-10-06 1978-10-06 Process for continuous production of prepolymer syrups
FR7828678A FR2405269A1 (en) 1977-10-06 1978-10-06 PROCESS FOR THE CONTINUOUS PRODUCTION OF SYRUP OF METHYL METHACRYLATE PREPOLYMERS AND NEW PRODUCTS THUS OBTAINED
IT69324/78A IT1160698B (en) 1977-10-06 1978-10-06 PROCEDURE FOR THE CONTINUOUS PRODUCTION OF METHYL METHACRYLATE PREPOLYMER SYRUP
GB7839660A GB2005282B (en) 1977-10-06 1978-10-06 Process for continuous production of prepolymer syrups
AU40503/78A AU520196B2 (en) 1977-10-06 1978-10-06 Continuous production of prepolymer syrups
DE19782843759 DE2843759A1 (en) 1977-10-06 1978-10-06 METHOD FOR THE CONTINUOUS PRODUCTION OF A PREPOLYMER SYRUP AND THE USE THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12068477A JPS5921326B2 (en) 1977-10-06 1977-10-06 Continuous manufacturing method for methyl methacrylate syrup

Publications (2)

Publication Number Publication Date
JPS5454189A JPS5454189A (en) 1979-04-28
JPS5921326B2 true JPS5921326B2 (en) 1984-05-19

Family

ID=14792381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12068477A Expired JPS5921326B2 (en) 1977-10-06 1977-10-06 Continuous manufacturing method for methyl methacrylate syrup

Country Status (1)

Country Link
JP (1) JPS5921326B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213710A (en) * 1983-05-17 1984-12-03 Sumitomo Chem Co Ltd Continuous cooling of methyl methacrylate syrup
JPS59210911A (en) * 1983-05-17 1984-11-29 Sumitomo Chem Co Ltd Continuous production of methyl methacrylate syrup

Also Published As

Publication number Publication date
JPS5454189A (en) 1979-04-28

Similar Documents

Publication Publication Date Title
US4287317A (en) Continuous process for producing rubber-modified methyl methacrylate syrups
KR100319421B1 (en) Method for preparing methacrylate polymer
JP3628518B2 (en) Methacrylic polymer and process for producing the same
US4209599A (en) Continuous mass preparation of polymers
US5728793A (en) Process for production of methacrylate polymers
US4042768A (en) Continuous solvent-free polymerization of vinyl derivatives
US3474081A (en) Methyl methacrylate polymer and process for making same
JPS5921325B2 (en) Continuous manufacturing method for methyl methacrylate syrup
JPS5921326B2 (en) Continuous manufacturing method for methyl methacrylate syrup
JP3013951B2 (en) Acrylic resin manufacturing method
JP3906848B2 (en) Method for producing methacrylic resin
JP3565229B2 (en) Method for producing methacrylic resin
CA1107752A (en) Process for continuous production of prepolymer syrups
JP2003096105A (en) Process for manufacturing methacrylic polymer
KR830001196B1 (en) Continuous preparation method of propolymer syrup
US3479312A (en) Continuous solution-polymerization of acrylonitrile
KR100763951B1 (en) Process for Methacrylic Resin Having Good Optical Properties
JP4325475B2 (en) Methacrylic polymer and process for producing the same
JP3319485B2 (en) Method for producing methacrylic resin having thermal decomposition resistance
WO2013099670A1 (en) Method for manufacturing methacrylic polymer
JP3319484B2 (en) Method for producing methacrylic resin having thermal decomposition resistance
JPS58132002A (en) Continuous production of methacrylate copolymer
JPH09268202A (en) Syrup and production of the same
JP3319483B2 (en) Methacrylic resin having thermal decomposition resistance and method for producing the same
JP3901700B2 (en) Method for producing methacrylic resin