JPS5921325B2 - Continuous manufacturing method for methyl methacrylate syrup - Google Patents

Continuous manufacturing method for methyl methacrylate syrup

Info

Publication number
JPS5921325B2
JPS5921325B2 JP12068377A JP12068377A JPS5921325B2 JP S5921325 B2 JPS5921325 B2 JP S5921325B2 JP 12068377 A JP12068377 A JP 12068377A JP 12068377 A JP12068377 A JP 12068377A JP S5921325 B2 JPS5921325 B2 JP S5921325B2
Authority
JP
Japan
Prior art keywords
polymerization
syrup
reaction zone
concentration
initiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12068377A
Other languages
Japanese (ja)
Other versions
JPS5454188A (en
Inventor
正宏 湯山
禎三 花村
朗 桜本
誠孝 柳瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP12068377A priority Critical patent/JPS5921325B2/en
Priority to DE19782843759 priority patent/DE2843759A1/en
Priority to CA312,893A priority patent/CA1107752A/en
Priority to AU40503/78A priority patent/AU520196B2/en
Priority to NLAANVRAGE7810090,A priority patent/NL187487C/en
Priority to GB7839660A priority patent/GB2005282B/en
Priority to IT69324/78A priority patent/IT1160698B/en
Priority to FR7828678A priority patent/FR2405269A1/en
Publication of JPS5454188A publication Critical patent/JPS5454188A/en
Publication of JPS5921325B2 publication Critical patent/JPS5921325B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】 本発明はメチルメタクリレート系樹脂板の品質を低下し
ないで作業性の良い適度な粘度を保有すると同時に製板
時間が短縮できる重合体含有率の高いシロツプを製造す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a syrup with a high polymer content that maintains a suitable viscosity for good workability without degrading the quality of methyl methacrylate resin plates, and at the same time shortens the plate making time. .

更に詳しくは、本発明はメチルメタクリレート系単量体
とラジカル重合開始剤とを規定された反応条件下を順次
通過させて、重合度分布が狭く、かつ残留開始剤濃度が
小さく、更に重合体含有率の高いシロツプを連続的に製
造する方法に関する。
More specifically, the present invention involves sequentially passing a methyl methacrylate monomer and a radical polymerization initiator under specified reaction conditions to achieve a narrow polymerization degree distribution, a small residual initiator concentration, and a polymer-containing polymer. This invention relates to a method for continuously producing syrup with high yield.

メチルメタクリレート系樹脂板は通常二枚のガラス板の
間に重合開始剤およびメチルメタクリレート系シロツプ
からなる重合性液状組成物を注入し、加熱下に重合する
ことにより得られている。この際重合性液状組成物の注
入の作業性を向上させると共に、生成樹脂板の品質を向
上させかつ製板時間を短縮させる目的で、適当量の重合
体が含まれるシロツプが注入液として使用されている。
このシロツプは、注入前に重合開始剤その他の必要な添
加剤が加えられると共に、その中に含まれている溶存空
気を除去するため減圧下で脱気された後、ガスケツトで
シールされた二枚のガラス板 =の間に注入される。注
入の際にシロツプの粘度が過度に低いときは液もれの原
因となり、過度に高いときは注入時間を長く要するなど
いずれも注入の作業性を低下させるので、注入されるシ
ロツプの粘度は適当な範囲に選ばれなければならない。
Jまたシロツプを使用することにより、重合時の発熱
量が小さくなると共に、重合時における重合体の収縮を
小さくすることができるので、得られる樹脂板の表面状
態が向上し、板厚のコントロールも容易となることが知
られており、このような目 こ的からはシロツフ沖の重
合体含有率は高いほど好ましいことになる。さらに、シ
ロツブ中の重合体含有率が高いほど製板時間は大巾k短
縮されるので、特にこの点からも重合体含有率はできる
だけ高いことが好ましい。なお、このような目的に使
4用されるシロツプは貯蔵安定性が大で、かつ、製板時
においては重合を阻害せず、また得られる樹脂板の品質
を低下させないものでなければならな(〜。メタクリル
樹脂板の製造は従来から二板のガラス板の間で重合させ
て製板する回分式のセルキヤスト法で行われてきたが、
近年、二つの連続した移動バンド間で連続重合させて製
板する連続キヤスト法への転換が進められている。
Methyl methacrylate resin plates are usually obtained by injecting a polymerizable liquid composition consisting of a polymerization initiator and methyl methacrylate syrup between two glass plates and polymerizing the composition under heating. At this time, a syrup containing an appropriate amount of polymer is used as the injection liquid in order to improve the workability of injecting the polymerizable liquid composition, improve the quality of the resulting resin board, and shorten the board making time. ing.
Before injection, a polymerization initiator and other necessary additives are added to the syrup, and the syrup is degassed under reduced pressure to remove dissolved air. glass plate = injected between. If the viscosity of the syrup is too low during injection, it may cause leakage, and if it is too high, the injection time will be longer, both of which will reduce the workability of injection, so the viscosity of the syrup to be injected should be appropriate. must be selected within a certain range.
In addition, by using syrup, the amount of heat generated during polymerization is reduced, and the shrinkage of the polymer during polymerization can be reduced, which improves the surface condition of the resulting resin board and makes it easier to control the board thickness. From this objective, the higher the polymer content in the waters off Shilotov, the better. Further, the higher the polymer content in the white stubble, the shorter the board making time, so from this point of view as well, it is preferable that the polymer content is as high as possible. Please note that this may not be used for such purposes.
4. The syrup used must have high storage stability, and must not inhibit polymerization during board manufacturing, nor reduce the quality of the resulting resin board (~. Manufacture of methacrylic resin board) Traditionally, this process has been carried out using the batch-type cell-casting method, which involves polymerization between two glass plates.
In recent years, there has been a shift to a continuous casting method in which plate production is performed by continuous polymerization between two consecutive moving bands.

この連続キャスト法は、例えば特公昭51−29916
号公報に示されているように、上下位置関係にある二つ
の連続した移動バンドを同一方向へ、同一速度で走行せ
しめ、該移動バンドの両辺にそれぞれ少くとも1個の連
続したガスケツトを両移動バンドに接触した状態で走行
させて移動バンド間の空間をシールし、重合性液状組成
物を該移動バンド間の空間に供給し、該組成物が重合す
る帯域を通過走行させて重合を完結せしめ、該移動バン
ド間の他端より板状重合物を取り出す連続製板方法であ
る。しかしこの方法は製造コストに占める設備費の割合
が大きいので、セルキヤスト法と比較して特に製板時間
の短縮が要求される。製板時間の短縮は注入液として用
いるシロツブ中の重合体含有率を注入等の作業性の確保
できる粘度の範囲内で、できるだけ高くすることにより
達成されるが、一方このようなシロツプを使用したこと
により得られる樹脂板の品質が低下することになればそ
れだけ樹脂板の商品としての価値が低下し、製板時間短
縮による製造コスト低減の効果はそれだけ相殺されるこ
とになるので、使用するシロツプは樹脂板の品質をでき
るだけ低下させず、好ましくは品質を向上させるもので
なければならない。製板時間を短縮するためシロツプの
重合体含有率を高めると通常は得られる樹脂板の平均重
合度が低下して機械的強度が低下したり、ジロツプ中の
低重合度重合体のために樹脂板の加熱成形時に発泡する
などの欠点が現われ易くなる。
This continuous casting method is used, for example, in Japanese Patent Publication No. 51-29916
As shown in the publication, two continuous moving bands in a vertical positional relationship are made to run in the same direction and at the same speed, and at least one continuous gasket is moved on each side of the moving bands on both sides. The composition is run in contact with the bands to seal the space between the moving bands, the polymerizable liquid composition is supplied to the space between the moving bands, and the composition is run through the zone where it polymerizes to complete the polymerization. , is a continuous plate manufacturing method in which a plate-shaped polymer is taken out from the other end between the moving bands. However, in this method, the equipment cost accounts for a large proportion of the manufacturing cost, so it is particularly required to shorten the plate manufacturing time compared to the cell casting method. Shortening the plate making time is achieved by increasing the polymer content of the syrup used as the injection liquid as high as possible within the viscosity range that ensures workability for injection, etc. As a result, if the quality of the resulting resin board deteriorates, the value of the resin board as a product will decrease accordingly, and the effect of reducing manufacturing costs by shortening the board manufacturing time will be offset by that amount. should not reduce the quality of the resin plate as much as possible, but should preferably improve the quality. If the polymer content of the syrup is increased to shorten the plate making time, the average degree of polymerization of the resulting resin plate will usually decrease, resulting in a decrease in mechanical strength. Defects such as foaming are more likely to occur during hot forming of the plate.

一定温度条件下におけるシロツプの粘度は重合体含有率
と重合体の重量平均重合度により決定され、そのいずれ
に関しても高くなるほど粘度は高くなる関係にある。従
つて注入等の作業性から限られた粘度の上限以下の範囲
内で重合体含有率をできるだけ高めるためには重量平均
重合度は低いほど好ましいが、一方得られる樹脂板の平
均重合度を低下させ、また樹脂板の加熱成形時における
発泡を起し易くするのはシロツプ中の低重合度重合体も
一因であり、その量はほぼ数平均重合度により決定され
、数平均重合度が高いほど低分子量重合体の量は減少す
る関係にあるので、数平均重合度は高いほど好ましいと
言える。重合度分布を有する重合体では一般に重量平均
重合度は数平均重合度より大きく、両者の比で表わされ
る多分散度は重合度分布の広さの尺度として用いられる
が、この表現を用いると多分散度の小さいシロツプほど
好ましいと言える。また、シロツプ中の残留開始剤濃度
が高いとシロツプ製造時の冷却中やシロツプの貯蔵中に
さらに重合が進行してシロツプ中の重合体含有率および
粘度が上昇して一定品質のものが得られ難い欠点を有す
る。
The viscosity of syrup under constant temperature conditions is determined by the polymer content and the weight average degree of polymerization of the polymer, and the relationship is such that the higher the content in both of them, the higher the viscosity. Therefore, in order to increase the polymer content as much as possible within the limited upper limit of viscosity from the viewpoint of workability such as injection, it is preferable that the weight average degree of polymerization is as low as possible. The low degree of polymerization in the syrup also contributes to the tendency of foaming during thermoforming of the resin plate, and its amount is approximately determined by the number average degree of polymerization. Since the amount of low molecular weight polymer decreases as the number average degree of polymerization increases, it can be said that the higher the number average degree of polymerization, the more preferable it is. In polymers with a degree of polymerization distribution, the weight average degree of polymerization is generally larger than the number average degree of polymerization, and the polydispersity expressed as the ratio of the two is used as a measure of the breadth of the distribution of degree of polymerization. It can be said that syrups with a smaller degree of dispersion are more preferable. Additionally, if the concentration of residual initiator in the syrup is high, polymerization will proceed further during cooling during syrup production and during syrup storage, increasing the polymer content and viscosity of the syrup, making it difficult to obtain a constant quality product. It has some serious drawbacks.

またこのような重合の進行が実質的に認められない程度
の微量の残留開始剤も貯蔵中のシロツプの変質の原因と
なり、このようなシロツプを用いて得られた樹脂板中の
残留単量体含有率を増加させたり、樹脂板の加熱成形時
に発泡し易くなるなど品質低下の原因にもなるので、残
留開始剤濃度はできるだけ小さくする必要がある。なお
、製板時間を短縮する方法としてシロツプの重合体含有
率を高める代りに製板時に使用する重合開始剤濃度を増
加させることもできるが、この場合は樹脂板の平均重合
度が必然的に低下して品質低下が大きいので有利な方法
とは言い難い。シロツプの製造方法としては従来から種
々の方法が提案がなされているが、いずれも上述の条件
を部分的には満しているが、すべてを満足1−ているも
のは知られておらず、製板時間を短縮すると得られる樹
脂板の機械的強度が低下したり、加熱成形時に発泡し易
くなるなど品質低下を招来し、製板時間の短縮が必ずし
も経済性の向上につながらない欠点を有していた。回分
式によりシロツプを製造する方法は通常攪拌槽型反応器
を使用し、単量体を高温に加熱した後所定量の重合開始
剤を添加するか、あるいは単量体と重合開始剤との混合
物を高温に加熱して、十分な時間重合させて重合開始剤
濃度が実質的に無視できる量になるまで減少させた後冷
却してシロツプを取り出している。
In addition, trace amounts of residual initiator such that the progress of polymerization is not substantially observed may cause deterioration of the syrup during storage, and residual monomers in resin plates obtained using such syrup may It is necessary to keep the residual initiator concentration as low as possible, since it may increase the content and cause quality deterioration, such as making the resin plate more likely to foam during heat molding. In addition, as a method of shortening the plate making time, it is possible to increase the concentration of the polymerization initiator used during plate making instead of increasing the polymer content of the syrup, but in this case, the average degree of polymerization of the resin plate will inevitably increase. It is difficult to say that this is an advantageous method because the quality decreases significantly. Various methods have been proposed for the production of syrup, and although all of them partially satisfy the above conditions, no method is known that satisfies all of them. Reducing the plate making time leads to quality deterioration, such as a decrease in the mechanical strength of the resulting resin plate and the tendency to foam during heat forming, which has the disadvantage that shortening the plate making time does not necessarily lead to improved economic efficiency. was. Batch production of syrup usually involves using a stirred tank reactor, heating monomers to a high temperature and then adding a predetermined amount of polymerization initiator, or using a mixture of monomers and polymerization initiator. The syrup is heated to a high temperature, allowed to polymerize for a sufficient period of time to reduce the initiator concentration to a substantially negligible amount, and then cooled to remove the syrup.

この方法では開始剤濃度は反応初期には高く、反応の進
行につれて比較的急速に減少する経過をたどり、生成す
る重合体の重合度は初期の相当低重合度のものから最後
の極めて高重合度のものまで大巾に変化する。従つて得
られるシロツフ沖の重合体の重合度分布は極めて広くな
り、重量平均重合度が高く、数平均重合度が低いことに
なる。重量平均重合度はシロツプの粘度と直接的に関係
があり、これが高いことは同じ重合体含有率で比較した
ときのシロツプの粘度が高いことを意味し、ガラスセル
または移動バンド間への注入作業に困難を来たすことに
なるので、これを容易にするためにはシロツプ中の重合
体含有率を低い段階に抑えなければならないことになり
、製板時間の短縮はあまり期待できない。また数平均重
合度が低いことは品質低下の原因となる低重合度重合体
を比較的多く含有していることを意味し、このようなシ
ロツブを用いて得られる樹脂板の平均重合度の低下ある
いは樹脂板の加熱成形時の発泡の原因となるなど品質低
下を来たすことになり望ましくない。この方法で初めに
使用する重合開始剤の濃度を増加させると得られるシロ
ツプ中の重合体の重量平均重合度は低下し、注入作業の
容易な粘度の範囲内での重合体含有率の上限は上昇する
ので製板時間はより短縮されるが、一方数平均重合度も
これに対応して低下するので樹脂板の品質低下が助長さ
れる結果となり得策でない。なお、この方法で得られる
シロツプは通常残留開始剤濃度が十分低くなつており、
貯蔵安定性は比較的良好である。他方、この回分式製造
法において、十分な時間をかけて重合を行わないときは
重合度分布の比較的狭いシロツプが生成するが、残留開
始剤限度が高いので、冷却中および貯蔵中にさらに重合
が進行して粘度が上昇する不都合が生じる。
In this method, the initiator concentration is high at the beginning of the reaction and decreases relatively rapidly as the reaction progresses, and the degree of polymerization of the resulting polymer varies from a fairly low degree at the beginning to a very high degree at the end. Even things change drastically. Therefore, the polymerization degree distribution of the obtained Silozov polymer is extremely wide, with a high weight average degree of polymerization and a low number average degree of polymerization. The weight average degree of polymerization is directly related to the viscosity of the syrup, which means that the syrup has a higher viscosity when compared with the same polymer content, making it easier to pour into glass cells or between moving bands. Therefore, in order to facilitate this, it is necessary to suppress the polymer content in the syrup to a low level, and it is not expected that the plate making time will be reduced much. In addition, a low number average degree of polymerization means that it contains a relatively large amount of low polymerization degree polymers that cause quality deterioration, and the average degree of polymerization of resin plates obtained using such white stubbles may decrease. Alternatively, it may cause foaming during heat molding of the resin plate, resulting in quality deterioration, which is undesirable. Increasing the concentration of the polymerization initiator initially used in this method lowers the weight average degree of polymerization of the polymer in the syrup obtained, and the upper limit of the polymer content within the range of viscosity that is easy to pour is Although this increases the plate making time, the number average degree of polymerization also decreases correspondingly, which is not a good idea as it promotes deterioration in the quality of the resin plate. Note that the syrup obtained by this method usually has a sufficiently low concentration of residual initiator,
Storage stability is relatively good. On the other hand, in this batch production method, if polymerization is not carried out for a sufficient period of time, a syrup with a relatively narrow degree of polymerization distribution is produced, but due to the high residual initiator limit, further polymerization occurs during cooling and storage. This leads to the problem that the viscosity increases.

また、シロツプの貯蔵安定性を増大させる目的で重合禁
止剤を添加することも行われているが、製板時の重合時
間を遅延させたり、着色の原因となるなどの欠点を有す
る。シロツプの回分式製造時に連鎖移動剤を添加して高
重合度重合体の生成を抑制する方法は、連鎖移動剤がシ
ロツプ中に残存した場合は製板時に影響を及ぼし、重合
時間の遅延や得られる樹脂板の平均重合度の低下あるい
は着色の原因となるなど好ましい方法とは言い難い。こ
れに対して連続式によりシロツプを製造する方法もいく
つか提案されている。
Additionally, polymerization inhibitors have been added for the purpose of increasing the storage stability of the syrup, but this has drawbacks such as delaying the polymerization time during plate manufacturing and causing discoloration. The method of adding a chain transfer agent during the batch production of syrup to suppress the formation of highly polymerized polymers is difficult because if the chain transfer agent remains in the syrup, it will affect the plate manufacturing process, delaying the polymerization time and reducing the yield. This is not a preferable method as it causes a decrease in the average degree of polymerization or coloring of the resin plate. On the other hand, several continuous methods of producing syrup have been proposed.

管型反応器の一端より単量体と重合開始剤とを連続的に
供給し、他端より生成するシロツプを連続的に取り出す
方法は先に述べた回分式の欠へを本質的に全く克服する
ことができない。すなわち、反応液が細長い管型反応器
を長手方向に向つて流れて行くときに生じる現象を、重
合反応の時間的経過の観点から捉えると、逆混合の影響
を除けば回分式槽型反応器内の重合反応の時間的経過と
同等であり、開始剤濃度は入口付近では高く、反応液の
前進につれて比較的急速に減少して出口付近では実質的
に無視できる量になる経過をたどり、生成する重合体の
重合度は入口付近の相当低重合度のものから出口付近の
極めて高重合度のものまで大巾に変化して、得られるシ
ロツプ中の重合体の重合度分布は極めて広いものになる
。一方、この方法で十分な温度あるいは滞留時間をかけ
て重合を行わないときは重合度分布の比較的狭いシロツ
プが生成するが、シロツプの貯蔵安定性が乏しいことも
回分式槽型反応器で十分な時間をかけて行わないときと
同様である。
The method of continuously supplying monomers and polymerization initiator from one end of a tubular reactor and continuously taking out the produced syrup from the other end essentially completely overcomes the drawbacks of the batch method mentioned above. Can not do it. In other words, from the perspective of the time course of the polymerization reaction, the phenomenon that occurs when a reaction solution flows in the longitudinal direction of a long and narrow tubular reactor shows that, excluding the influence of back mixing, a batch tank reactor The time course of the polymerization reaction in The degree of polymerization of the polymer produced varies widely, from a fairly low degree of polymerization near the inlet to a very high degree of polymerization near the outlet, and the distribution of the degree of polymerization of the polymer in the resulting syrup is extremely wide. Become. On the other hand, if this method does not carry out polymerization at a sufficient temperature or residence time, a syrup with a relatively narrow degree of polymerization distribution is produced, but the storage stability of the syrup is poor, so a batch tank reactor is sufficient. It is the same as when you do not spend a lot of time doing it.

すなわち、連続式管型反応器においても、得られる樹脂
板の品質を低下させない範囲内での製板時間の短縮はあ
まり期待できない。また、攪拌槽型反応器入口から単量
体と重合開始剤とを連続的に供給し、出口から生成する
シロツプを連続的に取り出す方法も提案されている。
That is, even in a continuous tubular reactor, it is not expected that the plate making time will be reduced so much without degrading the quality of the resin plate obtained. A method has also been proposed in which monomers and polymerization initiators are continuously supplied from the inlet of a stirred tank reactor, and the produced syrup is continuously taken out from the outlet.

特公昭38−4794号公報には所望の転化率に達した
際に丁度その重合開始剤が分解されているような温度お
よび条件下に重合を行う方法が述べられている。この方
法は回分式重合法において重合開始剤の分解温度に対し
て十分に高い反応温度を選べば、重合開始剤の急速な分
解が起り、この間にある転化率まで重合が進行するが、
一定時間が経過して重合開始剤が完全に分解されてしま
えば反応は熱的にしか進行しなくなるから非常に遅くな
る。また丁度その重合開始剤が分解されているような温
度および条件下に重合を行えば反応を調節することが容
易になり、転化率を所定の限界内にとどめることが容易
になること、すなわち、高温条件下においてはトロムス
ドルフ効果が見かけ上著しく軽減されてデツドエンド重
合に近づくことに着目したもので、このような温度およ
び条件下に重合を行う方法は回分式および連続式のいず
れでもメタアクリレートの部分重合調節法として全く適
していることを述べている。しかしながら回分式製造方
法あるいは連続式管型反応器による製造方法においてこ
のような温度および条件下に重合を行う方法により得ら
れるシロツプは、既に詳述したように重合度分布が極め
て広く製板時間の短縮が必ずしも経済性の向上につなが
らない欠点を有している。
Japanese Patent Publication No. 38-4794 describes a method in which polymerization is carried out at a temperature and under conditions such that the polymerization initiator is just decomposed when the desired conversion is reached. In this method, if the reaction temperature is selected to be sufficiently higher than the decomposition temperature of the polymerization initiator in the batch polymerization method, rapid decomposition of the polymerization initiator will occur, and polymerization will proceed to a certain conversion rate during this time.
If the polymerization initiator is completely decomposed after a certain period of time, the reaction will proceed only thermally and will be extremely slow. Also, carrying out the polymerization at temperatures and conditions just such that the polymerization initiator is decomposed makes it easier to control the reaction and keep the conversion within predetermined limits, i.e. This study focused on the fact that under high temperature conditions, the Tromsdorf effect appears to be significantly reduced, approaching dead-end polymerization. It states that it is perfectly suitable as a polymerization control method. However, the syrup obtained by polymerizing at such temperatures and conditions in a batch production method or a production method using a continuous tubular reactor has an extremely wide distribution of polymerization degree as described in detail above. It has the disadvantage that shortening does not necessarily lead to improved economic efficiency.

一方、連続式槽型反応器による製造方法において、この
ような温度および条件下に重合を行う方法は、得られる
シロツプの品質について後述するような欠点を有してい
る。
On the other hand, in the production method using a continuous tank reactor, the method in which polymerization is carried out at such temperatures and conditions has drawbacks regarding the quality of the obtained syrup, which will be described later.

即ちこの方法においては開始剤の急速な分解が起る温度
条件下においても新しい重合開始剤が常時反応器内に供
給されるのであり、重合開始剤濃度が反応時間の延長に
より急速に減少することはないのである。完全混合が達
成される条件下の連続式槽型反応器中の定常状態の開始
剤濃度はこの反応器出口の残留開始剤濃度に等しくI=
IO/(1+Kθ)で表わされる。ここに、Iは残留開
始剤濃度(重量%)、10は供給開始剤濃度(重量%)
、Kは開始剤の分解速度定数(1/秒)、θは平均滞留
時間(秒)である。いま開始剤の急速な分解の起る温度
条件下について考えると、Kは十分に大きいのでKθ》
1となりI−IO/Kθが成立する。すなわち残留開始
剤濃度は反応時間の延長によりせいぜい反応時間に逆比
例する程度の減少を示すに過ぎず、丁度重合開始剤が分
解されているような反応時間条件は存在せず、従つてあ
る反応時間以上で反応の進行が非常に遅くなることは起
り得ないのであり、このような意味で重合を所望の水準
で停止させることは回分式製造方法あるいは連続式管型
反応器による製造方法の場合とは全く異なり必ずしも容
易とは言い難いのである。従つて連続式槽型反応器にお
いては、残留開始剤濃度は上述した如く、回分式反応に
おいて開始剤の急速な分解が起る温度においてもなお反
応時間に対して緩慢な減少を示すに過ぎないのであり、
得られるシロツフ沖の残留開始剤濃度は回分式反応の場
合に比べて高く、冷却中あるいは貯蔵中にさらに重合が
進行して、シロツプの粘度が上昇することは避けられな
い。このような重合の進行を起さない熱安定性の良好な
シロツプを得るためには残留開始剤濃度をより低水準に
まで減少させる必要があり、このためには回分式反応に
おいて急速な分解が起る温度よりもなお一層高い温度に
おいて反応を行う必要があるが、このような条件下では
別の欠点が生じる。
That is, in this method, new polymerization initiator is constantly supplied into the reactor even under temperature conditions where rapid decomposition of the initiator occurs, and the concentration of polymerization initiator rapidly decreases as the reaction time increases. There is no such thing. The steady-state initiator concentration in a continuous tank reactor under conditions where complete mixing is achieved is equal to the residual initiator concentration at the outlet of this reactor, I=
It is expressed as IO/(1+Kθ). where I is the residual initiator concentration (wt%) and 10 is the fed initiator concentration (wt%)
, K is the decomposition rate constant of the initiator (1/sec), and θ is the average residence time (sec). Now considering the temperature conditions under which rapid decomposition of the initiator occurs, K is sufficiently large, so Kθ》
1, and I-IO/Kθ is established. In other words, as the reaction time increases, the residual initiator concentration shows a decrease that is at most inversely proportional to the reaction time, and there is no reaction time condition under which the polymerization initiator is just decomposed. It is impossible for the reaction to proceed very slowly over a period of time, and in this sense it is difficult to stop the polymerization at a desired level in the case of batch production methods or production methods using continuous tubular reactors. It is quite different from that, and it cannot necessarily be said that it is easy. Therefore, in a continuous tank reactor, as mentioned above, the residual initiator concentration only shows a slow decrease with reaction time even at temperatures where rapid decomposition of the initiator occurs in batch reactions. It is,
The concentration of residual initiator in the resulting syrup is higher than in the case of a batch reaction, and it is inevitable that polymerization will proceed further during cooling or storage, increasing the viscosity of the syrup. In order to obtain a syrup with good thermal stability that does not cause such polymerization to occur, it is necessary to reduce the residual initiator concentration to a lower level, which requires rapid decomposition in batch reactions. Although it is necessary to carry out the reaction at a temperature even higher than that at which it occurs, other disadvantages arise under such conditions.

すなわち、反応器内の反応混合物中に新たに供給される
単量体および重合開始剤が均一に混合されるには一定の
時間を要するが、このような温度条件下においては、十
分な混合が達成されないうちに不均一状態のままで重合
開始剤の分解が進行してしまい、その結果として生成す
るシロツフ沖の重合体は非常に低重合度のものから非常
に高重合度のものまで巾広い重合度分布を持つようにな
る。このようなシロツプを使用して得られる樹脂板は低
重合度重合体を含有するため低品質であり、またシロツ
プ中の重合体の重合度分布が広いため重合体含有率の割
合に高粘度であつて重合体含有率を上げるうえで制約と
なり、製板時間の短縮もあまり期待できない欠点を有し
ている。また、特公昭47−35307号公報には前記
の方法の欠点を改良するため2個以上の連続式槽型反応
器を直列に配して重合を行う方法が記載されている。
In other words, it takes a certain amount of time to uniformly mix the newly supplied monomer and polymerization initiator into the reaction mixture in the reactor, but under such temperature conditions, sufficient mixing is difficult. Before the polymerization is achieved, the decomposition of the polymerization initiator proceeds in a non-uniform state, and the resulting polymers produced in Shilotzhu have a wide range of polymerization levels, from very low polymerization degrees to very high polymerization degrees. It will have a degree distribution. Resin plates obtained using such syrups are of low quality because they contain low polymerization degree polymers, and because the polymerization degree distribution of the polymers in the syrup is wide, the viscosity is high in proportion to the polymer content. However, it has the drawback that it is a constraint in increasing the polymer content, and it is difficult to expect much reduction in plate manufacturing time. Further, Japanese Patent Publication No. 47-35307 describes a method in which two or more continuous tank reactors are arranged in series to carry out polymerization in order to improve the drawbacks of the above-mentioned method.

この方法はシロツプ中の重合体の40〜95重量%を第
一の反応器で生成させ、次いで残りの重合体を第二以降
の反応器で生成させるもので、シロツプ中の重合体は少
くとも2種の濃度の重合開始剤の存在下においてつくら
れるから、重合体は少くとも2種の分子量部分を持ち、
高分子量部分の重量平均分子量は低分子量部分の重量平
均分子量の少くとも2倍であり、低分子量部分はシロツ
プ中の重合体の40〜95重量%であつて、この範囲内
で低分子量部分を高率で含む場合には、シロツプは比較
的低い有用な粘度で固体分含量の高いものが得られると
述べている。この方法はシロツプ中の重合体に占める低
重合度部分の割合を高率にすることによりシロツプの粘
度と直接的に関係する重量平均重合度を低く抑えて、比
較的低粘度で重合体含有率の高いシロツプを得ることを
意図したものと読み取れる。しかしながら、低重合度重
合体は得られる樹脂板の平均重合度を低下させ、樹脂板
の加熱成形時に発泡を起し易くする原因となるので、低
重合度部分の割合を大きくすることにより重合体含有率
の高いシロツプを得る方法は製板時間を短縮することは
できるが得られる樹脂板の品質を低下させる欠点を有し
ている。
In this method, 40 to 95% by weight of the polymer in the syrup is produced in a first reactor, and then the remaining polymer is produced in second and subsequent reactors, and the polymer in the syrup is at least Because it is made in the presence of two concentrations of polymerization initiator, the polymer has at least two molecular weight moieties;
The weight average molecular weight of the high molecular weight portion is at least twice that of the low molecular weight portion, and the low molecular weight portion is 40% to 95% by weight of the polymer in the syrup; It is stated that when included in high proportions, syrups with relatively low useful viscosities and high solids contents are obtained. This method reduces the weight average degree of polymerization, which is directly related to the viscosity of the syrup, by increasing the proportion of the low polymerization degree portion of the polymer in the syrup, thereby increasing the polymer content at a relatively low viscosity. It can be interpreted that the intention was to obtain a high syrup. However, a low polymerization degree polymer lowers the average degree of polymerization of the obtained resin plate and causes foaming to occur easily during heat molding of the resin plate, so by increasing the proportion of the low polymerization degree part, the polymer Although the method of obtaining syrup with a high content rate can shorten the board making time, it has the disadvantage that the quality of the resulting resin board is degraded.

またこの方法を得られるシロツプ中の重合体の重合度分
布と、残留開始剤濃度の関係から見ると、この範囲内の
比較的低率の低重合度重合体が第一の反応器で生成する
のは開始剤半減期に対して第一の反応器における平均滞
留時間が比較的短かい場合であり、最終シロツプ中の残
留開始剤濃度を十分に減少させるためには反応器の数を
増加する必要があるが、このとき各反応器において生成
する重合体の平均重合度は連続式管型反応器の場合と同
様に後段の反応器に進行するに従つて急速に増大し、最
終シロツプ中の重合体は高重合度部分を多量に含有する
ことになり、重合度分布が広くなつて、重合体含有率の
割合に高粘度となつてしまう欠点を有している。一方、
この範囲内で高率の低重合度重合体が第一の反応器で生
成するのは開始剤の半減期に対して第一の反応器におけ
る反応時間が十分に長い場合であり、このとき残留開始
剤濃度は2個以上の反応器を用いれば比較的容易に減少
させることができるが、第一の反応器と第二の反応器の
残留開始剤濃度は極度に異なるために、高重合度部分の
重量平均重合度は低重合度部分の重量平均重合度の2倍
以上の非常に大きい値をとることになる。従つて高重合
度部分の含有率が小さいとは言えこの場合も得られるシ
ロツプ中の重合体の重合度分布は比較的広くなつてしま
うのである。すなわち、この方法においても残留開始剤
濃度を十分に減少させようとすると重合度分布が広化し
てしまう結果となり、得られる樹脂板の品質を低下しな
いで製板時間を短縮する目的からはなお満足すべきもの
とは言い難い。また、特公昭48−35357号公報に
は前段に少くとも1つ以上の連続攪拌槽型反応器、後段
に管型反応器をそれぞれ直列に配置した反応器を使用し
、前段の出口における反応混合物の転換率を9〜12%
にすることを特徴とするメタクリル酸エステル系化合物
の予備重合物の連続製造法が記載されている。
Furthermore, from the relationship between the polymerization degree distribution of the polymer in the syrup obtained by this method and the residual initiator concentration, a relatively low proportion of low polymerization degree polymer within this range is produced in the first reactor. If the average residence time in the first reactor is relatively short relative to the initiator half-life, the number of reactors may be increased to sufficiently reduce the residual initiator concentration in the final syrup. At this time, the average degree of polymerization of the polymer produced in each reactor increases rapidly as it progresses to subsequent reactors, as in the case of continuous tubular reactors, and the average degree of polymerization in the final syrup increases. The polymer contains a large amount of a portion with a high degree of polymerization, resulting in a wide distribution of degree of polymerization and a disadvantage that the viscosity becomes high in proportion to the polymer content. on the other hand,
Within this range, a high percentage of low polymerization degree polymer is produced in the first reactor when the reaction time in the first reactor is sufficiently long compared to the half-life of the initiator; Although the initiator concentration can be reduced relatively easily by using two or more reactors, the residual initiator concentration in the first and second reactors is extremely different, resulting in a high degree of polymerization. The weight average degree of polymerization of the portion takes a very large value, more than twice the weight average degree of polymerization of the low polymerization degree portion. Therefore, even though the content of the high degree of polymerization portion is small, the distribution of the degree of polymerization of the polymer in the resulting syrup is relatively wide. In other words, even in this method, if the residual initiator concentration is sufficiently reduced, the polymerization degree distribution ends up becoming broader, which is still unsatisfactory from the point of view of shortening the plate-making time without degrading the quality of the resulting resin plate. It's hard to say it's something that should be done. In addition, Japanese Patent Publication No. 48-35357 uses a reactor in which at least one continuous stirred tank type reactor is arranged in series in the first stage and a tubular reactor in the second stage, so that the reaction mixture at the outlet of the first stage is conversion rate of 9-12%
A method for continuously producing a prepolymerized product of a methacrylic acid ester compound is described.

この方法は槽型反応器で連続的に製造する際に問題とな
る発生する熱量の除去に関するものであり、発熱反応を
安定に制御するための条件から一つの槽での転換率は最
大2.5%にすぎないことを見出し、より転換率の高い
予備重合物を得る方法として複数個の槽型反応器を直列
に配列して使用し、さらに管型反応器との結合により品
質を変化させずに生産量の調節を容易にし、また管型反
応器の欠点である管内の閉塞を防止することを主旨とす
るものである。この方法では前段の槽型反応器での転換
率は反応を安定に制御するうえから、9〜12%の範囲
内であるから樹脂板の製板時間を短縮するに適する重合
体含有率の高いシロツブを製造する目的を達し得ない欠
点を有している。
This method is related to the removal of the amount of heat generated during continuous production in a tank reactor, and due to the conditions for stably controlling the exothermic reaction, the conversion rate in one tank is at most 2. They found that it was only 5%, and as a method to obtain a prepolymer with a higher conversion rate, they used multiple tank reactors arranged in series and further changed the quality by combining them with a tubular reactor. The main purpose of this system is to make it easy to adjust the production amount without causing any problems, and to prevent clogging in the tubes, which is a drawback of tubular reactors. In this method, the conversion rate in the tank-type reactor in the first stage is within the range of 9 to 12% in order to stably control the reaction, so it is suitable for shortening the manufacturing time of resin plates. It has drawbacks that make it impossible to achieve the purpose of producing white whelk.

また、重合は50〜100℃の温度で行われるから得ら
れるシロツプ中の残留開始剤濃度は比較的高い段階にと
どまり、.この点からも満足すべき方法とは言い難い。
本発明者らはこれらの欠点を克服する方法について鋭意
検討した結果、メチルメタクリレート系単量体とラジカ
ル重合開始剤とを反応帯域に連続的に供給して部分的に
重合せしめ生成するシロツプを連続的に取り出すシロツ
プの連続製造方法において、前段に連続攪拌槽型反応器
1個を用い単量体と重合開始剤とを該反応器に連続的に
供給し、かつ、該反応器の温度および平均滞留時間の条
件を規定して重合度分布の狭い重合体を生ぜしめ、後段
に管型反応器を直列に配列して該反応器の温度および、
平均滞留時間の条件を規定することにより、重合度分布
を狭いままに維持し、かつ、残留開始剤濃度を極めて効
果的に減少させることができることを見出し、本発明を
完成した。すなわち本発明はメチルメタクリレート系単
量体とラジカル重合開始剤とを実質的に完全混合が達成
される反応区域1個からなる第一の反応帯域に連続的に
供給し、該反応帯域における残留開始剤濃度が供給開始
濃度の1/2〜1/1000倍量、好ましくは1/5〜
1/1000倍量、特に好ましくは1/10〜1/50
0倍量となるよう該反応帯域の条件を維持して、最終シ
ロツプ中の重合体の大部分を生ぜしめ、次いで得られる
反応混合物を実質的に押し出し流れが達成される第二の
反応帯域に導いて、該反応帯域を通過する間に残量の重
合体が生じ、かつ、残留開始剤濃度が実質的に無視でき
る量になるよう該反応帯域の温度および平均滞留時間の
条件を維持して最終シロツフ沖の重合体の重量平均重合
度を数平均重合度の比で表わした重合度分布の多分散度
が3.0以下、好ましくは2.5以下、特に好ましくは
2.2以下であるシロツプを得るメチルメタクリレート
系シロツプの連続製造方法である。
Furthermore, since the polymerization is carried out at a temperature of 50 to 100°C, the concentration of residual initiator in the resulting syrup remains at a relatively high level. From this point of view, it is difficult to say that this method is satisfactory.
The inventors of the present invention conducted intensive studies on methods to overcome these drawbacks, and found that a syrup produced by continuously supplying a methyl methacrylate monomer and a radical polymerization initiator to a reaction zone and partially polymerizing it was developed. In a method for continuous production of syrup, which can be taken out from A polymer with a narrow degree of polymerization distribution is produced by specifying the residence time conditions, and a tubular reactor is arranged in series in the latter stage to control the temperature of the reactor.
The present invention was completed based on the discovery that by specifying the conditions of the average residence time, the degree of polymerization distribution can be kept narrow and the residual initiator concentration can be extremely effectively reduced. That is, in the present invention, a methyl methacrylate monomer and a radical polymerization initiator are continuously supplied to a first reaction zone consisting of one reaction zone where substantially complete mixing is achieved, and residual initiator in the reaction zone is The agent concentration is 1/2 to 1/1000 times the supply starting concentration, preferably 1/5 to 1/5.
1/1000 times the amount, particularly preferably 1/10 to 1/50
Conditions in the reaction zone are maintained to yield the majority of the polymer in the final syrup, and the resulting reaction mixture is then substantially extruded into a second reaction zone where flow is achieved. and maintaining temperature and average residence time conditions in the reaction zone such that a residual amount of polymer is produced during passage through the reaction zone and the residual initiator concentration is substantially negligible. A syrup whose polydispersity of the polymerization degree distribution expressed as the ratio of the weight average degree of polymerization to the number average degree of polymerization of the final syrup is 3.0 or less, preferably 2.5 or less, particularly preferably 2.2 or less. This is a continuous production method for methyl methacrylate syrup.

本発明の方法によるシロツプの製造に用いられるメチル
メタクリレート系単量体としてはこの種のシロツプの製
造に通常用いられている単量体または単量体混合物がそ
のまま用いられるが、メチルメタクリレートを主成分と
する単量体が特に好ましく、メチルメタクリレートが単
独で用いられるか、あるいは単量体混合物の全量に対し
て20重量%以下の範囲内においてメチルアクリレート
、エチルアクリレート、ブチルアクリレート等のアルキ
ルアクリレート類、エチルメタクリレート、ラウリルメ
タクリレート等のアルキルメタクリレート類、アクリロ
ニトリル、メタクリロニトリル等の不飽和二トリル類、
スチレン、α−メチルスチレン等のビニル化合物の1種
または2種以上を含有するメチルメタクリレート単量体
を主成物とするメチルメタクリレート系単量体混合物が
用いられる。
As the methyl methacrylate monomer used in the production of syrup according to the method of the present invention, monomers or monomer mixtures normally used in the production of this type of syrup can be used as they are, but methyl methacrylate is the main component. Particularly preferred are monomers such as methyl methacrylate used alone, or alkyl acrylates such as methyl acrylate, ethyl acrylate, butyl acrylate, etc. within a range of 20% by weight or less based on the total amount of the monomer mixture; Alkyl methacrylates such as ethyl methacrylate and lauryl methacrylate; unsaturated nitrites such as acrylonitrile and methacrylonitrile;
A methyl methacrylate monomer mixture whose main constituent is a methyl methacrylate monomer containing one or more vinyl compounds such as styrene and α-methylstyrene is used.

これらの不飽和ビニル化合物は得られる樹脂板がメチル
メタクリレート系樹脂板としての特徴を損なわない範囲
内で種々の品質上の改良のために通常この範囲内の量が
用いられる。本発明の方法によるシロツブの製造に用い
られるラジカル重合開始剤としては、90〜200℃、
好ましくは110〜180℃において比較的急速にラジ
カルを発生するものが用いられ、半減期が5秒以下とな
る温度が180℃以下、好ましくは140℃以下である
ラジカル重合開始剤が適し、例えば、アゾビスイソブチ
ロニトリル、アゾビスジメチルバレロニトリル、アゾビ
スシクロヘキサンニトリルなどのアゾ化合物、ベンゾイ
ルパーオキサイド、ラウロイルパーオキサイド、アセチ
ルパーオキサイド、カプリルパーオキサイド、2・4−
ジクロルベンゾイルパーオキサイド、イソブチルパーオ
キザイド、アセチルシクロヘキシルスルホニルバーオキ
サイド、ターシヤリーブチルパーオキシピバレート、タ
ーシヤリーブチルパーオキシ一2−エチルヘキサノエニ
ト、イソプロピルパーオキシジカーボネート、イソブチ
ルパーオキシジカーボネート、セカンダリーブチルパー
オキシジカーボネート、ノルマルブチルパーオキシジカ
ーボネート、2−エチルヘキシルバーオキシジカーボネ
ート、ビス(4−ターシャリーブチルシクロヘキシル)
パーオキシジカーボネートなどの過酸化物をあげること
ができ、これらの重合開始剤の1種または2種以上が用
いられる。
These unsaturated vinyl compounds are generally used in amounts within this range for various quality improvements within the range that does not impair the characteristics of the resulting resin board as a methyl methacrylate resin board. The radical polymerization initiator used for producing white whelk according to the method of the present invention includes temperatures of 90 to 200°C,
Preferably, an initiator that generates radicals relatively rapidly at 110 to 180°C is used, and a radical polymerization initiator whose half-life is 5 seconds or less at a temperature of 180°C or lower, preferably 140°C or lower is suitable, for example, Azo compounds such as azobisisobutyronitrile, azobisdimethylvaleronitrile, azobiscyclohexanenitrile, benzoyl peroxide, lauroyl peroxide, acetyl peroxide, caprylic peroxide, 2,4-
Dichlorobenzoyl peroxide, isobutyl peroxide, acetylcyclohexylsulfonyl peroxide, tert-butyl peroxypivalate, tert-butyl peroxy-2-ethylhexanoenite, isopropyl peroxydicarbonate, isobutyl peroxydicarbonate, Secondary butyl peroxydicarbonate, normal butyl peroxydicarbonate, 2-ethylhexyl oxydicarbonate, bis(4-tert-butylcyclohexyl)
Examples include peroxides such as peroxydicarbonate, and one or more of these polymerization initiators are used.

特に半減期が5秒以下となる温度が140℃以下の重合
開始剤を用いた場合には反応温度が90〜160℃の低
温側で好適に実施され、単量体の予熱およびシロツプの
冷却の負荷が軽減されるほか、圧力条件も緩和されるの
で好ましい。重合開始剤の量はメチルメタクリレート系
単量体に対し通常0.001〜1重量%、好ましくは0
.01〜0.5重量%であり高い重合体含有率を所望の
ときには供給開始剤濃度を高く、また高い数平均重合度
を所望の場合には供給開始剤濃度が低く調節される。
In particular, when using a polymerization initiator whose half-life is 5 seconds or less and whose temperature is 140°C or lower, the reaction temperature is preferably carried out at a low temperature of 90 to 160°C, and the preheating of the monomers and the cooling of the syrup are preferably carried out. This is preferable because not only the load is reduced but also the pressure conditions are relaxed. The amount of polymerization initiator is usually 0.001 to 1% by weight, preferably 0.001 to 1% by weight based on the methyl methacrylate monomer.
.. When a high polymer content of 0.01 to 0.5% by weight is desired, the concentration of the initiator fed is adjusted to be high, and when a high number average degree of polymerization is desired, the concentration of the fed initiator is adjusted to be low.

単量体と重合開始剤とは予め混合し予熱して供給されて
も良いが、単量体のみを予熱し、重合開始剤溶液は冷却
して供給されるのが好ましい。
Although the monomer and the polymerization initiator may be mixed in advance and supplied after being preheated, it is preferable that only the monomer is preheated and the polymerization initiator solution is supplied after being cooled.

供給されるメチルメタクリレート系単量体または重合開
始剤溶液には紫外線吸収剤、酸化防止剤、顔料、染料そ
の他樹脂板の製造に用いられる添加剤の1種または2種
以上が場合により予め添加されても良い。本発明の方法
によるシロツプの製造においては連鎖移動剤を用いなく
とも、反応温度、供給開始剤濃度および反応混合物の平
均滞留時間を相互に調節することにより、シロツフ沖の
重合体の数平均重合度、重量平均重合度または粘度を所
望の値に容易に調節できる利点を有するから、連鎖移動
剤は通常用いられないが、得られる樹脂板の品質を低下
させない範囲内において連鎖移動剤を用いても良い。
The supplied methyl methacrylate monomer or polymerization initiator solution may optionally be pre-added with one or more of ultraviolet absorbers, antioxidants, pigments, dyes, and other additives used in the production of resin plates. It's okay. In the production of syrup according to the method of the present invention, without using a chain transfer agent, by mutually adjusting the reaction temperature, the concentration of the initiator fed, and the average residence time of the reaction mixture, the number average degree of polymerization of the syrup produced by the syrup Chain transfer agents are not normally used because they have the advantage of allowing the weight average degree of polymerization or viscosity to be easily adjusted to a desired value, but chain transfer agents may be used within a range that does not reduce the quality of the resulting resin plate. .

本発明においてはメチルメタクリレート系単量体とラジ
カル重合開始剤とは、先ず、実質的に完全混合が達成さ
れる第一の反応帯域に連続的に供給される。
In the present invention, the methyl methacrylate monomer and the radical polymerization initiator are first continuously supplied to the first reaction zone where substantially complete mixing is achieved.

該反応帯域の反応温度は残留開始剤濃度の供給開始剤濃
度に対する割合が前記の範囲になるよう開始剤の分解温
度に応じて調節され、通常90〜200℃、好ましくは
110〜180℃である。該反応帯域における反応混合
物の平均滞留時間は供給開始剤濃度の場合と同様に、所
望の最終シロツプ中の重合体含有率および数平均重合度
に応じて調節されるが通常1〜30分、好ましくは2〜
15分である。槽型反応器の温度条件を維持するには通
常該反応器の外部にジヤケツトを設け、該ジヤケツトに
熱媒体を循環し、該熱媒体の温度を制御する方法が行な
われるが、本発明の方法においては反応速度が極めて速
いから、このような方法では反応温度を所望の条件に維
持することは困難であり、特にスケールアツプした場合
には熱的に不安定となり、安定な定常操作が不可能とな
る。
The reaction temperature in the reaction zone is adjusted according to the decomposition temperature of the initiator so that the ratio of the concentration of the residual initiator to the concentration of the supplied initiator falls within the above range, and is usually 90 to 200°C, preferably 110 to 180°C. . The average residence time of the reaction mixture in the reaction zone is adjusted depending on the desired polymer content and number average degree of polymerization in the final syrup, as well as the feed initiator concentration, but is usually from 1 to 30 minutes, preferably. is 2~
It is 15 minutes. To maintain the temperature conditions of a tank reactor, a jacket is usually provided outside the reactor and a heat medium is circulated through the jacket to control the temperature of the heat medium, but the method of the present invention Because the reaction rate is extremely fast, it is difficult to maintain the reaction temperature at the desired conditions with this method, and it becomes thermally unstable, especially when scaled up, making stable steady operation impossible. becomes.

本発明の方法においては、重合による発熱量と、反応混
合物の温度を反応温度まで上昇するのに要する顕熱量と
はほぼ同程度であり、所望の重合体含有率と反応温度に
応じて反応混合物は加熱または冷却されて反応温度が維
持されるが、第一の反応帯域の温度の制御は該反応帯域
に供給される単量体の予熱温度を変化させることにより
好適に実施せられる。なお該反応帯域の外部にジヤケツ
トを設け、熱媒体を循環させる方法を併用することはよ
り効果的である。供給される単量体の予熱は実質的に滞
留部分を有せず、予熱温度の調節が可能な方法であれば
いかなる方法を用いても良いが、例えばジヤケツトを備
えた単管を用い、レイノルズ数5000以上、好ましく
は20000以上で単量体を通過させ、ジヤケツトに熱
媒体を循環させ、かつ該熱媒体の温度を調節することに
より好適に実施せられる。第一の反応帯域においては供
給される単量体および重合開始剤が反応混合物中に速や
かに混合して、濃度および温度が実質的に均一に維持さ
れる必要があるが、実質的に完全混合が達成される方法
であればいかなる反応装置および攪拌方法を用いても良
く、攪拌レイノルズ数が2000以上、好ましくは50
00以上となる攪拌方法が好適に用いられ、例えばリボ
ン状攪拌機を備えた連続攪拌槽型反応器がこの目的に使
用される。第一の反応帯域において生成する重合体の量
および数平均重合度は該反応帯域における供給開始剤の
種類と濃度、反応温度および反応混合物の平均滞留時間
により決定されるが、所望の最終シカツフ沖の重合体含
有率、数平均重合度あるいは粘度に応じて、好ましい供
給開始剤濃度、反応温度および反応混合物の平均滞留時
間が選択される。
In the method of the present invention, the amount of heat generated by polymerization and the amount of sensible heat required to raise the temperature of the reaction mixture to the reaction temperature are approximately the same, and the amount of heat generated by polymerization is approximately the same as the amount of sensible heat required to raise the temperature of the reaction mixture to the reaction temperature. is heated or cooled to maintain the reaction temperature, and the temperature of the first reaction zone is preferably controlled by changing the preheating temperature of the monomers supplied to the reaction zone. It is more effective to use a method in which a jacket is provided outside the reaction zone to circulate the heat medium. The supplied monomer may be preheated by any method as long as there is no substantial stagnation and the preheating temperature can be adjusted. This is suitably carried out by passing the monomer at a rate of several 5,000 or more, preferably 20,000 or more, circulating a heat medium through the jacket, and adjusting the temperature of the heat medium. In the first reaction zone, the monomers and polymerization initiator supplied must be rapidly mixed into the reaction mixture to maintain substantially uniform concentration and temperature, but substantially complete mixing is required. Any reaction device and stirring method may be used as long as the method achieves this, and the stirring Reynolds number is 2000 or more, preferably 50.
00 or more is preferably used, for example a continuous stirred tank reactor equipped with a ribbon stirrer is used for this purpose. The amount of polymer produced in the first reaction zone and the number average degree of polymerization are determined by the type and concentration of the feed initiator in the reaction zone, the reaction temperature and the average residence time of the reaction mixture; Depending on the polymer content, number average degree of polymerization or viscosity, the preferred feed initiator concentration, reaction temperature and average residence time of the reaction mixture are selected.

第一の反応帯域における残留開始剤濃度はこの反応帯域
への供給開始剤濃度の1/2〜1/1000倍量、好ま
しくは1/5〜1/1000倍量、特に好ましくは1/
10〜1/500倍量になるように反応温度と反応混合
物0平均滞留時間の条件が維持される。この範囲内にお
いて残留開始剤濃度の割合が小さい場合には特に安定に
定常操作を行なうことができる。又同時に最終シロツプ
中の重合体の重合度分布を特に狭く且、残留開始剤濃度
を特に小さくすることが可能になる。第一の反応帯域に
おける残留開始剤濃度がこの範囲以上に大きいときは該
反応帯域は熱的に操作不安定になり易く、安定な定常操
作を行うためには該反応帯域において生成する重合体の
量を極めて低く抑えることが必要になるので重合体含有
率の高い最終シロツプを得ることができなくなり、最終
シロツプ中の残留開始濃度が大きくなる。
The residual initiator concentration in the first reaction zone is 1/2 to 1/1000 times, preferably 1/5 to 1/1000 times, particularly preferably 1/1/2 to 1/1000 times the concentration of initiator fed to this reaction zone.
The conditions of reaction temperature and zero average residence time of the reaction mixture are maintained so that the volume is 10 to 1/500 times larger. When the proportion of the residual initiator concentration within this range is small, steady operation can be carried out particularly stably. At the same time, it is possible to achieve a particularly narrow distribution of the degree of polymerization of the polymer in the final syrup and a particularly low residual initiator concentration. When the residual initiator concentration in the first reaction zone is greater than this range, the reaction zone tends to become thermally unstable, and in order to perform stable steady operation, it is necessary to reduce the amount of polymer produced in the reaction zone. The amount needs to be kept very low, making it impossible to obtain a final syrup with a high polymer content and resulting in a high residual starting concentration in the final syrup.

この残留開始剤濃度を充分に小さくするためには第二の
反応帯域における平均滞留時間を長くする必要があり、
この間に高重合度重合体が多量に生成して最終シロツフ
沖の重合体の重合度分布が広くなる結果を招き易く得策
ではない。一方残留開始剤濃度がこの範囲以下に小さい
時には該反応帯域において供給開始剤が反応混合物に充
分混合されないうちに不均一状態のままで分解してしま
い実質的に完全混合を達成することが不可能になつて生
成重合体が既にそれ自体で広い重合度分布を持つ結果に
なり得策でない。最終シロツプ中の重合体の重合度分布
が狭く、かつ、残留開始剤濃度が小さくなるようにする
ためには、第二の反応帯域において前記第一の反応帯域
より供給される重合体の狭い重合度分布を維持し、かつ
、残留開始剤濃度を効果的に減少させることができるよ
う第一の反応帯域を出る残留開始剤濃度の条件を前述の
ように維持しておく必要がある。
In order to sufficiently reduce this residual initiator concentration, it is necessary to increase the average residence time in the second reaction zone.
During this time, a large amount of high polymerization degree polymer is generated, which is not a good idea as it tends to result in a wide distribution of polymerization degree of the polymer at the final stage. On the other hand, if the residual initiator concentration is below this range, the supplied initiator will decompose in a non-uniform state before being sufficiently mixed into the reaction mixture in the reaction zone, making it impossible to achieve substantially complete mixing. As a result, the resulting polymer itself already has a wide polymerization degree distribution, which is not a good idea. In order to achieve a narrow polymerization degree distribution of the polymer in the final syrup and a small residual initiator concentration, a narrow polymerization of the polymer supplied from the first reaction zone is required in the second reaction zone. It is necessary to maintain the conditions of the residual initiator concentration exiting the first reaction zone as described above so that the concentration distribution can be maintained and the residual initiator concentration can be effectively reduced.

第一の反応帯域における残留開始剤濃度に関して上記の
条件が達成されるとき該反応帯域において生成する重合
体の最終シロツプ中の重合体に占める割合は通常60〜
99.5重量%、好ましくは90〜99.5重量%、特
に好ましくは95〜99.5重量%である。第一の反応
帯域を出た反応混合物は次いで実質的に押し出し流れが
達成される第二の反応帯域に導かれ、該反応帯域を通過
する間に残量の重合体が生成し、かつ、残留開始剤濃度
が減少させられる。
When the above-mentioned conditions regarding the residual initiator concentration in the first reaction zone are achieved, the proportion of polymer formed in the reaction zone in the final syrup is usually between 60 and 60%.
99.5% by weight, preferably 90-99.5% by weight, particularly preferably 95-99.5% by weight. The reaction mixture leaving the first reaction zone is then conducted to a second reaction zone where a substantially extrusion flow is achieved, and during passage through said reaction zone residual amounts of polymer are formed and residual Initiator concentration is reduced.

該反応帯域に導かれた反応混合物には該反応帯域を通過
する間に重合開始剤が供給されることはもはやあり得な
いから、重合開始剤が常時供給される実質的に完全混合
が達成される反応帯域における場合とは全く異なり第二
の反応帯域においては極めて容易に残留開始斉膿度を減
少させることができ、また、この間に生成する重合体の
量が小さいので、比較的高重合度重合体が生成するにも
かかわらず、最終シロツプ中の重合体の重合度分布は意
外にも小さく維持される。該反応帯域の温度は残留開始
剤が十分急速に分解する温度であれば良く、通常半減期
が20秒以下となる温度、好ましくは5秒以下となる温
度が選ばれるが、該前の反応帯域より低くない温度であ
ることが好ましく、特に反応混合物の温度が該反応帯域
を通過する間に重合熱などにより実質的に断熱的に上昇
するよう条件が維持されるのが好ましい。第一および第
二の反応帯域のいずれにおいても反応混合物の蒸気圧は
通常大気圧より高いので、両反応帯域における滞留時間
、温度等の制御を容易にし、従つて最終シロツフ沖の重
合体含有率、粘度および残留開始剤濃度などの品質を実
質的に一定に維持するためには反応混合物が実質的に液
相を維持するよう蒸気圧以上の圧力を加えることが望ま
しく、通常1〜20気圧、好ましく2〜10気圧に加圧
される。
Since the reaction mixture introduced into the reaction zone can no longer be supplied with polymerization initiator while passing through the reaction zone, substantially complete mixing with constant supply of polymerization initiator is achieved. In contrast to the case in the second reaction zone, the residual initiation degree can be very easily reduced in the second reaction zone, and since the amount of polymer produced during this period is small, a relatively high degree of polymerization can be achieved. Despite the formation of polymer, the degree of polymerization distribution of the polymer in the final syrup remains surprisingly small. The temperature of the reaction zone may be a temperature at which the residual initiator decomposes sufficiently rapidly, and is usually selected to have a half-life of 20 seconds or less, preferably 5 seconds or less. Preferably, the temperature is no lower than that, and in particular conditions are maintained such that the temperature of the reaction mixture increases substantially adiabatically during passage through the reaction zone, such as due to the heat of polymerization. Since the vapor pressure of the reaction mixture in both the first and second reaction zones is usually higher than atmospheric pressure, it is easy to control the residence time, temperature, etc. in both reaction zones, and therefore the polymer content in the final reactor, In order to maintain substantially constant quality such as viscosity and residual initiator concentration, it is desirable to apply a pressure equal to or higher than the vapor pressure so that the reaction mixture maintains a substantially liquid phase, usually from 1 to 20 atm, preferably. It is pressurized to 2 to 10 atmospheres.

第二の反応帯域における反応混合物の平均滞留時間は第
一の反応帯域における平均滞留時間の0.05〜5倍、
好ましくは0.1〜2倍が選らばれる。
The average residence time of the reaction mixture in the second reaction zone is 0.05 to 5 times the average residence time in the first reaction zone;
Preferably, 0.1 to 2 times is selected.

平均滞留時間は残留開始剤濃度が実質的に無視できる量
になるよう十分長ければ良く、平均滞留時間が長過ぎて
も残留開始剤濃度がもはや実質的に無視できる量しか存
在しないから、重合は熱的に極めて徐々に進行するのみ
であり、従つて重合体含有率や粘度の伸びは実質的に無
視できる量であるから何ら差支えないが、不必要に長く
するのは大きな反応帯域を必要とするなど無駄である。
第二の反応帯域に供給される反応混合物には新たに供給
される成分がないので濃度的には本質的に混合を必要と
せず、また温度的にも、該反応帯域において生成する重
合体の量が小さいので断熱的に反応させても暴走は起ら
ず容易に制御できるので、実質的に押し出し流れが達成
される方法であればいかなる反応装置および攪拌方法を
用いても良いが、攪拌を全く行なわない場合には反応器
壁への重合体の付着が起り実質的に押し出し流れを達成
することが困難となり、さらに進行すると閉塞を起すこ
とになるので、攪拌を行なうことが望ましく、逆混合係
数が0.2以下、好ましくは0.1以下となるよう工夫
された攪拌機を用いて攪拌レイノルズ数2000以上、
好ましくは5000以上で攪拌を行なう方法または、逆
混合係数が0.2以下、好ましくは0.1以下であるセ
ルフワイピング型攪拌機を用いる撹拌方法が好適に用い
られ、例えば二軸スクリユ一型押出機に類似の構造を有
する管型反応器がこの目的に使用せられる。流体の流れ
方向に混合が起ることを逆混合があるというが、ここで
いう逆混合係数とは、管型反応装置内での反応流体の流
れの状態がどの程度理想的な押し出し流れと隔たりがあ
るかを表わす尺度であり、流体の通過速度と逆混合速度
との関係を規定する無次元項である修正ペクレ一数をM
としたとき1/Mで表わされ、この値が小さいほど理想
的な押し出し流れに近づくことを示す。なお、本発明で
適用する修正ペクレ一数Mは、1968年10月20日
、化学同人発行、化学増刊36「反応工学」第91ペー
ジ最下行のM−UL/2E式に基づく。該反応帯域には
外部にジヤケツトを設けて熱媒体により温度を調節して
も良いが、実質的に断熱条件下に維持することにより残
留開始剤がより急速に減少して好ましい。第二の反応帯
域を通過した反応混合物中の残留開始剤濃度は1ppm
以下の実質的に無視できる量、好ましくは0.1ppm
以下、特に好ましくは0.01ppm以下であり、かつ
、残留開始剤濃度は該反応帯域の入口から出口に向つて
急速に減少するので、これに対応して該反応帯域におい
て新たに生成する重合体の数平均重合度は入口から出口
へ向つて急速に増大するが、一方、その生成量は該反応
帯域の入口から出口へ向つて急速に減少するので、該反
応帯域において生成する重合体は意外にも、該前の反応
帯域において生成する重合体の数平均重合度と比較して
それほど大きくない数平均重合度を有することになり、
最終シロツプ中の残留開始剤濃度を実質的に無視できる
量に減少させると同時に、該シロツプ中の重合体の重合
度分布を極めて狭く維持することが実現され、該重合体
の重量平均重合度と数平均重合度の比で表わした重合度
分布の多分散度は3以下、好ましくは2.5以下、特に
好ましくは2.2以下である。
The average residence time only needs to be long enough so that the residual initiator concentration is essentially negligible; even if the average residence time is too long, the residual initiator concentration is no longer present in an essentially negligible amount, so that polymerization will not occur. There is no problem since the reaction progresses only thermally very slowly and therefore the increase in polymer content and viscosity is virtually negligible, but making it unnecessarily long would require a large reaction zone. There is no point in doing so.
Since the reaction mixture supplied to the second reaction zone does not have any newly supplied components, it essentially requires no mixing in terms of concentration, and also in terms of temperature. Since the amount is small, runaway will not occur even if the reaction is carried out adiabatically and it can be easily controlled. Therefore, any reaction device and stirring method may be used as long as it achieves substantially extrusion flow, but stirring is not recommended. If this is not done at all, the polymer will adhere to the reactor wall, making it difficult to achieve a substantial extrusion flow, and if it progresses further, it will cause blockage. Stirring with a Reynolds number of 2000 or more using a stirrer designed so that the coefficient is 0.2 or less, preferably 0.1 or less,
Preferably, a method of stirring at 5,000 or more, or a method of stirring using a self-wiping type stirrer with a back mixing coefficient of 0.2 or less, preferably 0.1 or less, is preferably used, such as a twin-screw one-type extruder. A tubular reactor with a similar construction is used for this purpose. Mixing that occurs in the flow direction of the fluid is called back-mixing, and the back-mixing coefficient here refers to the degree to which the flow state of the reaction fluid in the tubular reactor differs from the ideal extrusion flow. M
It is expressed as 1/M, and the smaller this value is, the closer it is to the ideal extrusion flow. The modified Péclet number M applied in the present invention is based on the M-UL/2E formula on the bottom line of page 91 of Kagaku Special Issue 36, "Reaction Engineering," published by Kagaku Doujin, October 20, 1968. Although the reaction zone may be provided with an external jacket to control the temperature with a heat medium, it is preferable to maintain the reaction zone under substantially adiabatic conditions because the residual initiator is more rapidly reduced. The residual initiator concentration in the reaction mixture passing through the second reaction zone is 1 ppm.
a substantially negligible amount of less than or equal to 0.1 ppm, preferably 0.1 ppm
The concentration of the residual initiator is particularly preferably 0.01 ppm or less, and since the concentration of the residual initiator rapidly decreases from the inlet to the outlet of the reaction zone, correspondingly, the concentration of the remaining initiator is 0.01 ppm or less. The number average degree of polymerization of the reaction zone increases rapidly from the inlet to the outlet, while its production amount rapidly decreases from the inlet to the outlet of the reaction zone, so the amount of polymer produced in the reaction zone is unexpected. also has a number average degree of polymerization that is not so large compared to the number average degree of polymerization of the polymer produced in the previous reaction zone,
It has been achieved to reduce the residual initiator concentration in the final syrup to a virtually negligible amount, while at the same time maintaining a very narrow degree of polymerization distribution of the polymer in the syrup, with the weight average degree of polymerization of the polymer The polydispersity of the degree of polymerization distribution expressed as a ratio of number average degrees of polymerization is 3 or less, preferably 2.5 or less, particularly preferably 2.2 or less.

本発明の方法により製造されるシロツプ中の重合体含有
率は5〜40重量%、好ましくは10〜30重量%であ
り、この範囲より低いときは製板時間を短縮する効果は
比較的小さく、この範囲より高いときはトロムスドルフ
効果に基づく重合速度の加速現象のために濃度的に不安
定となつて安定な定常操作ができず、いずれも得策でな
い。
The polymer content in the syrup produced by the method of the present invention is 5 to 40% by weight, preferably 10 to 30% by weight, and when it is lower than this range, the effect of shortening the board making time is relatively small; If the concentration is higher than this range, the polymerization rate will be accelerated due to the Tromsdorff effect, resulting in instability in terms of concentration, making stable steady operation impossible, and neither is a good idea.

一方、シロツプの25℃における粘度は0.5〜500
ポイズ、好ましくは1〜100ポイズであり、この範囲
より低いときは樹脂板の製造時における注入の際に液も
れの原因となり、この範囲より高いときは、やはり濃度
的に不安定となつて安定な定常操作ができず、いずれも
得策でない。特にこの範囲内で重合体含有率が20〜4
0重量%のものは得られたシロツプのままで、樹脂板の
製造時における注入等に際し好適な作業性を有し、かつ
、得られる樹脂板の品質を低下しないで製板時間が大巾
に短縮されるので、特に連続製板方法において使用する
のに適している。シロツプ中の重合体の数平均重合度は
300〜6000に選ばれ、特に連続製板方法に使用す
るに適する重合体含有率の高いシロツプの場合には30
0〜2000に選ばれるが、所望の重合体含有率に対し
て粘度が過度に高すぎない範囲内においてできるだけ高
い数平均重合度を選ぶことが得られる樹脂板の品質を高
める上で好ましい。上記方法で得られた最終シロツプは
得られたままの温度条件下に放置しても重合体含有率お
よび粘度の上昇はほとんど認められないが、最終シロツ
プを樹脂板の製造に使用するまでの間貯蔵されるのが普
通であり、この間のシロツプの変質をできるだけ少なく
し、また樹脂板の製造にあたり重合開始剤その他の添加
剤の添加や、シロツプの注入などの作業の間に重合体含
有率や粘度の上昇が起つて作業性を低下させたり、得ら
れる樹脂板の品質を低下させたりすることのないよう通
常100℃以下、好ましくは80℃以下の適度な温度ま
で冷却される。
On the other hand, the viscosity of syrup at 25°C is 0.5 to 500.
poise, preferably 1 to 100 poise; if it is lower than this range, it will cause liquid leakage during injection during the production of resin plates, and if it is higher than this range, the concentration will become unstable. Stable steady operation is not possible, and neither is a good idea. Particularly within this range, the polymer content is between 20 and 4.
The 0% by weight syrup remains the obtained syrup and has suitable workability for injection etc. during the production of resin boards, and can significantly increase the board manufacturing time without degrading the quality of the resulting resin board. This shortening makes it particularly suitable for use in continuous board manufacturing processes. The number average degree of polymerization of the polymers in the syrup is selected to be between 300 and 6000, especially for syrups with a high polymer content suitable for use in continuous plate making processes.
The number average degree of polymerization is selected from 0 to 2000, but it is preferable to select a number average degree of polymerization as high as possible within a range where the viscosity is not too high relative to the desired polymer content in order to improve the quality of the resulting resin plate. Even when the final syrup obtained by the above method is left under the same temperature conditions, there is almost no increase in polymer content or viscosity, but until the final syrup is used for manufacturing resin plates, During this period, the syrup should be stored to minimize deterioration, and the polymer content should be controlled during operations such as adding polymerization initiators and other additives during the production of resin plates, and pouring the syrup. It is cooled to an appropriate temperature, usually 100° C. or lower, preferably 80° C. or lower, so as not to cause an increase in viscosity that would reduce workability or deteriorate the quality of the resulting resin plate.

本発明の方法により得られるシロツプは残留開始剤濃度
が1ppm以下の実質的に無視できる量、好ましくは0
.1ppm以下、特に好ましくは0.01ppm以下で
あるから、第二の反応帯域を出た後、急速な冷却を行な
わなくとももはや重合体含有率および粘度の上昇は無視
し得る程度であり、一定品質のものが得られ易い利点を
有し、貯蔵中においても重合体含有率および粘度の上昇
は認められず、さらに貯蔵中のシロツプの変質により得
られる樹脂板中の残留単量体含有率が増加したり、樹脂
板の加熱成形時に発泡し易くなるなどの品質低下も認め
られないなどすぐれた貯蔵安定性を有している。
The syrup obtained by the process of the present invention has a residual initiator concentration in a substantially negligible amount of less than 1 ppm, preferably 0.
.. Since it is 1 ppm or less, particularly preferably 0.01 ppm or less, the increase in polymer content and viscosity after leaving the second reaction zone is negligible even without rapid cooling, and a constant quality can be achieved. It has the advantage of being easy to obtain, and no increase in polymer content or viscosity is observed during storage, and furthermore, the residual monomer content in the resin plate obtained due to deterioration of the syrup during storage increases. It has excellent storage stability, with no deterioration in quality such as easy foaming or foaming during hot molding of the resin plate.

また本発明の方法により得られるシロツプ中の重合体の
重合度分布は極めて狭く、重量平均重合度と数平均重合
度の比で表わした重合度分布の多分散度は3以下、好ま
しくは2.5以下、特に好ましくは2.2以下であるか
ら、樹脂板の平均重合度に影響する数平均重合度を比較
的高く、かつ、シロツプの粘度に影響する重量平均重合
度を比較的低く選ぶことができるので、比較的低粘度で
、かつ、重合体含有率の高いシロツプが得られ、樹脂板
の品質を低下させることなく製板時間を短縮できる極め
て好ましい利点を有している。またこのシロツプを用い
て製板時間は短縮しない条件下で重合を行なうときは、
樹脂板の平均重合度を向上させることができ特に品質の
すぐれた樹脂板が得られる利点も有している。さらにま
た、本発明の方法により得られる重合体含有率の比較的
低いシロツプを用いて樹脂板を製造するにあたり使用す
る重合開始剤濃度を増加させることにより製板時間を短
縮することも可能であり、この場合にも得られる樹脂板
の品質低下は比較的小さい利点も有している。本発明の
方法により製造されるシロツプは樹脂板の製造にあたり
、得られたままの重合体含有率および粘度を有するシロ
ツプとして使用しても良いが、重合体含有率が15〜5
0重量%、好ましくは20〜40重量%で、かつ、25
℃における粘度が0.5〜1000ポイズ、好ましくは
5〜500ポイズの範囲内の所望の値となるように濃縮
するかあるいは単量体または同種のシロツプによつて希
釈を行なつても良く、場合によりこれによつて樹脂板の
製造に供するシロツプの均質性または生産性を高めるこ
とが好適に実施せられる。
Further, the polymerization degree distribution of the polymer in the syrup obtained by the method of the present invention is extremely narrow, and the polydispersity of the polymerization degree distribution expressed as the ratio of the weight average degree of polymerization to the number average degree of polymerization is 3 or less, preferably 2. 5 or less, particularly preferably 2.2 or less, the number average degree of polymerization, which affects the average degree of polymerization of the resin plate, should be relatively high, and the weight average degree of polymerization, which affects the viscosity of the syrup, should be selected to be relatively low. As a result, a syrup with a relatively low viscosity and a high polymer content can be obtained, which has the extremely favorable advantage of shortening the board making time without degrading the quality of the resin board. In addition, when polymerizing using this syrup under conditions that do not shorten the board-making time,
It also has the advantage that the average degree of polymerization of the resin plate can be improved and a resin plate of particularly excellent quality can be obtained. Furthermore, it is also possible to shorten the board making time by increasing the concentration of the polymerization initiator used when manufacturing resin boards using the syrup with a relatively low polymer content obtained by the method of the present invention. This case also has the advantage that the quality of the resin plate obtained is relatively small. The syrup produced by the method of the present invention may be used as a syrup having the same polymer content and viscosity as obtained in the production of resin plates, but the syrup with a polymer content of 15 to 5
0% by weight, preferably 20-40% by weight, and 25% by weight.
It may be concentrated or diluted with a monomer or similar syrup so that the viscosity at °C reaches a desired value in the range of 0.5 to 1000 poise, preferably 5 to 500 poise, Depending on the case, this can be used to advantageously improve the homogeneity or productivity of the syrup used in the production of resin plates.

本発明の方法により製造されるシロツプは重合体含有率
の高い割合に低粘度であり、かつ、貯蔵安定性が良好で
あるから、その用途は樹脂脂板の製造のみに限定される
ものではなく、成形材料の製造、接着剤、塗料、樹脂コ
ンクリート組成物その他この種のシロツプの用いられる
用途一般に好適に使用せられる。つぎに本発明を実施例
によつて具体的に説明するが、本発明はこれらによつて
限定されるものではない。
Since the syrup produced by the method of the present invention has a high polymer content, low viscosity, and good storage stability, its use is not limited to the production of resin boards. It is suitably used in the production of molding materials, adhesives, paints, resin concrete compositions, and other applications in which syrups of this type are generally used. EXAMPLES Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.

なお実施例中の%は重量%である。なお、実施例中にお
けるシロツプの粘度はB型粘度計を用いて25℃で測定
し、シロツプ中の重合体の数平均重合度および重合度分
布の多分散度はポリスチレンゲルを充填剤とし、テトラ
ヒドロフランを溶離液とするゲル浸透クロマトグラフイ
一により測定した。また樹脂板の重合発泡は得られた樹
脂板を肉眼観察によつて泡の有無を判定し、加熱発泡は
得られた樹脂板を循環式熱風炉に入れて180℃で30
分間加熱したのち肉眼観察によつて泡の有無を判定した
Note that % in the examples is % by weight. In addition, the viscosity of the syrup in the examples was measured at 25°C using a B-type viscometer, and the number average degree of polymerization and polydispersity of the polymerization degree distribution of the polymer in the syrup were measured using polystyrene gel as a filler and tetrahydrofuran. The measurement was carried out by gel permeation chromatography using as an eluent. In addition, for polymerization foaming of resin plates, the presence or absence of bubbles is determined by visually observing the obtained resin plate, and for heat foaming, the obtained resin plate is placed in a circulating hot air oven for 30 minutes at 180°C.
After heating for a minute, the presence or absence of bubbles was determined by visual observation.

また還元粘度は得られた樹脂板の0.1%クロロホルム
溶液を25℃で測定し、残留単量体濃度は得られた樹脂
板を塩化メチレンに溶解してガスクロマトグラフイ一に
よつて測定した。
The reduced viscosity was determined by measuring a 0.1% chloroform solution of the obtained resin plate at 25°C, and the residual monomer concentration was measured by dissolving the obtained resin plate in methylene chloride and using gas chromatography. .

実施例 1 前段にリボン状攪拌翼を設置した攪拌槽型反応器、後段
に攪拌軸を有し、該攪拌軸上に軸と垂直方向に設置した
ピンが管壁に垂直に軸に向つて設置した固定ピンと互い
に拭い合うように配置してなる管型反応器を配列してな
る二段式連続反応装置を使用した。
Example 1 A stirred tank reactor with a ribbon-shaped stirring blade installed in the front stage, a stirring shaft in the rear stage, and a pin installed on the stirring shaft in a direction perpendicular to the shaft and facing the axis perpendicular to the tube wall. A two-stage continuous reaction apparatus was used, which consisted of an array of fixed pins and tubular reactors arranged so as to wipe each other.

槽型反応器と管型反応器の容積比は1:0.25であつ
た。重合開始剤であるアゾビスイソブチロニトリルを0
.047%含有するメチルメタクリレート単量体を槽型
反応器における平均滞留時間が147秒となるよう連続
的に供給し、各反応器の温度は160℃、各反応器の圧
力は6.0気圧に維持した。供給液はジヤケツト付きの
単管を用い約80℃に予熱した。管型反応器を出たシロ
ツプの重合体含有率は26.6%、25℃における粘度
は21.0ポイズであり、全重合体の95%が槽型反応
器において生成した。
The volume ratio of the tank reactor to the tube reactor was 1:0.25. 0 of azobisisobutyronitrile, a polymerization initiator
.. Methyl methacrylate monomer containing 0.47% was continuously fed so that the average residence time in the tank reactor was 147 seconds, the temperature of each reactor was 160 ° C., and the pressure of each reactor was 6.0 atm. Maintained. The feed liquid was preheated to about 80° C. using a single tube with a jacket. The polymer content of the syrup leaving the tubular reactor was 26.6%, the viscosity at 25°C was 21.0 poise, and 95% of the total polymer was produced in the tank reactor.

また、槽型反応器における残留開始剤濃度は供給開始剤
濃度の1/32倍量であつた。最終シロツプ中の残留開
始剤濃度は0.01ppm以下であり、60℃において
5時間静置加熱しても重合体含有率および粘度には全く
変化が認められなかつた。またシロツプ中の重合体の数
平均重合度は745であり、重量平均重合度と数平均重
合度の比で表わした重合度分布の多分散度は2.17で
あつて、重合体の数平均重合度およびシロツプの重合体
含有率が高い割合に低粘度であつた。このシロツプに重
合開始剤としてアゾビスジメチルバレロニトリル0.0
5%を溶解して重合性液状組成物となし、減圧下に脱気
した後、公知の連続重合装置を使用して重合を完結させ
て樹脂板を製造した。幅500mm、厚さ0.6m1L
の鏡面仕上げしたステンレススチールバンドを用い、水
平距離10000m1Lの重合帯域のうち最初の674
0m7!!が85℃の温水で加熱する加熱重合区域、次
の217011が120℃の熱風で加熱する熱処理区域
、最後の1090mmが冷風で冷却できる冷却区域であ
つた。板厚3mmの樹脂板が得られるよう上下バンド間
隔を調節し、上記の重合性組成物を該バンド間に連続的
に供給し、該組成物が加熱重合区域を18分間で通過す
るようバンド移動速度374mm/分で該バンドを駆動
させた。この製品の還元粘度は2.37d1/7で、残
留単量体濃度は0.8%であり、重合発泡および加熱発
泡はいずれも観察されず良好な外観を有していた。比較
例 1 実施例1の前段の攪拌槽型反応器のみからなる一段式連
続反応装置を使用したほかは、重合開始剤の種類と濃度
、槽型反応器における平均滞留時間、温度および圧力な
ど実施例1と全く同一条件で反応を行なつて、重合体含
有率が25.0%で、粘度が10.3ポイズのシロツプ
を得た。
Further, the concentration of the residual initiator in the tank reactor was 1/32 times the concentration of the supplied initiator. The residual initiator concentration in the final syrup was 0.01 ppm or less, and no change was observed in the polymer content or viscosity even after standing and heating at 60° C. for 5 hours. The number average degree of polymerization of the polymer in the syrup is 745, and the polydispersity of the polymerization degree distribution expressed as the ratio of the weight average degree of polymerization to the number average degree of polymerization is 2.17. The degree of polymerization and the polymer content of the syrup were high and the viscosity was low. This syrup was added with 0.0 azobisdimethylvaleronitrile as a polymerization initiator.
5% was dissolved to obtain a polymerizable liquid composition, which was degassed under reduced pressure, and then polymerization was completed using a known continuous polymerization apparatus to produce a resin board. Width 500mm, thickness 0.6m1L
The first 674 of the polymerization zone with a horizontal distance of 10,000 m 1L was
0m7! ! 217011 was a heating polymerization zone heated with 85° C. hot water, the next 217011 was a heat treatment zone heated with 120° C. hot air, and the last 1090 mm was a cooling zone that could be cooled with cold air. The interval between the upper and lower bands was adjusted to obtain a resin plate with a thickness of 3 mm, and the above polymerizable composition was continuously supplied between the bands, and the band was moved so that the composition passed through the heated polymerization zone in 18 minutes. The band was driven at a speed of 374 mm/min. This product had a reduced viscosity of 2.37 d1/7, a residual monomer concentration of 0.8%, and had a good appearance with no polymerization foaming or thermal foaming observed. Comparative Example 1 Except for using a one-stage continuous reaction apparatus consisting of only the stirred tank reactor in the first stage of Example 1, the type and concentration of the polymerization initiator, average residence time in the tank reactor, temperature, pressure, etc. The reaction was carried out under exactly the same conditions as in Example 1 to obtain a syrup having a polymer content of 25.0% and a viscosity of 10.3 poise.

シロツプ中の重合体の数平均重合度は725、重合度分
布の多分散度は2.02であつたが、残留開始剤濃度が
15.2ppmと大きく、60℃において静置加熱した
ところ重合が急速に進行して1時間で全く流動性を失な
い、長時間の貯蔵に耐え得ない性状であつた。このシロ
ツプにアゾビスジメチルバレロニトリル0.04%を添
加して、実施例1の連続重合装置を用い、加熱重合区域
を24分間で通過させる他は実施例1と同一条件で重合
を完結させて樹脂板を得た。
The number average degree of polymerization of the polymer in the syrup was 725, and the polydispersity of the degree of polymerization distribution was 2.02, but the residual initiator concentration was as large as 15.2 ppm, and when heated at 60°C, polymerization did not occur. The process progressed rapidly and lost no fluidity within one hour, making it impossible to withstand long-term storage. 0.04% of azobisdimethylvaleronitrile was added to this syrup, and the polymerization was completed using the continuous polymerization apparatus of Example 1 under the same conditions as in Example 1, except that the syrup was passed through the heated polymerization zone for 24 minutes. A resin plate was obtained.

この製品の還元粘度は2.69d1/7で、重合発泡は
生じなかつたが、残留単量体濃度が4.2%と高く、加
熱発泡が生じた。なお、加熱重合区域を21分間で通過
させる他は上記と同一条件で重合させたところ著しい重
合発泡が生じ、得られた樹脂板は商品としての価値を全
く有しないものであつた。また、このシロツプ?アゾビ
スジメチルバレロニトリルを0.05%添加して加熱重
合区域を21分間で通過させた場合には重合発泡は生じ
なかつたが、加熱発泡が著しかつた。比較例 2リボン
状攪拌翼を設置した撹拌槽型反応器を2個直列に配列し
てなり、第一段と第二段の反応器の容積比がに0.25
である二段式連続反応装置を使用し、アゾビスイソブチ
ロニトリルを0.047%含有するメチルメタクリレー
ト単量体を第一段の反応器における平均滞留時間が14
7秒となるよう連続的に供給し、各反応器の温度は16
0℃、各反応器の圧力は6.0気圧に維持した。
The reduced viscosity of this product was 2.69 d1/7, and no polymerization foaming occurred, but the residual monomer concentration was as high as 4.2%, and thermal foaming occurred. When polymerization was carried out under the same conditions as above except that the resin was passed through the heating polymerization zone for 21 minutes, significant polymerization and foaming occurred, and the resulting resin plate had no value as a commercial product. Also, this syrup? When 0.05% azobisdimethylvaleronitrile was added and the mixture was passed through the heating polymerization zone for 21 minutes, no polymerization foaming occurred, but the heating foaming was significant. Comparative Example 2 Two stirred tank reactors equipped with ribbon-shaped stirring blades were arranged in series, and the volume ratio of the first and second stage reactors was 0.25.
A two-stage continuous reactor was used, and the average residence time in the first stage reactor was 14.
7 seconds, and the temperature of each reactor was 16
The pressure in each reactor was maintained at 0° C. and 6.0 atm.

第二の反応器を出たシロツプの重合体含有率は28.3
%、粘度は80.9ポイズであり、全重合体の88%が
第一の反応器において生成した。シロツプ中の残留開始
剤濃度は2.53ppmであり、60℃において3時間
静置加熱したところ、重合体含有率は28.7%、粘度
は780ポイズに増加した。また、シロツプ中の重合体
の数平均重合度は795、重合度分布の多分散度は2.
55であつた。このシロツプにアゾビスジメチルバレロ
ニトリル0.04%を添加して、実施例1の連続重合装
置を用い、加熱重合区域を20分間で通過させる他は実
施例1と同一条件で重合を完結させて樹脂板を得た。
The polymer content of the syrup leaving the second reactor is 28.3
%, the viscosity was 80.9 poise, and 88% of the total polymer was produced in the first reactor. The residual initiator concentration in the syrup was 2.53 ppm, and when it was left to stand and heated at 60° C. for 3 hours, the polymer content increased to 28.7% and the viscosity increased to 780 poise. The number average degree of polymerization of the polymer in the syrup is 795, and the polydispersity of the degree of polymerization distribution is 2.
It was 55. 0.04% of azobisdimethylvaleronitrile was added to this syrup, and the polymerization was completed using the continuous polymerization apparatus of Example 1 under the same conditions as Example 1, except that the syrup was passed through the heated polymerization zone for 20 minutes. A resin plate was obtained.

この製品の還元粘度は2.65d1/Vで、重合発泡も
生じなかつたが、残留単量体濃度が2.7%と高く、加
熱発泡が生じた。一方、このシロツプを実施例1と同じ
粘度21.0ポイズになるまで単量体で希釈して得た重
合体含有率24.3%のシロツプにアゾビスジメチルバ
レロニトリル0.05%を添加して、加熱重合区域を2
2分間で通過させる他は上と同じ条件で重合を完結させ
たところ、製品の還元粘度は2.53d1/7で、残留
単量体濃度は2.3%であり、重合発泡は生じなかつた
が、加熱発泡が生じた。比較例 3 第一段と第二段の反応器の容積比が1:2である他は比
較例2と同じである反応装置を使用し、比較例2と全く
同一条件で反応を行なつて、重合体含有率が31.4%
で、粘度が1100ポイズのシロツプを得た。
The reduced viscosity of this product was 2.65 d1/V, and no polymerization foaming occurred, but the residual monomer concentration was as high as 2.7%, and thermal foaming occurred. On the other hand, 0.05% of azobisdimethylvaleronitrile was added to a syrup with a polymer content of 24.3% obtained by diluting this syrup with a monomer until it had the same viscosity as in Example 1, 21.0 poise. and heat polymerization zone 2.
Polymerization was completed under the same conditions as above except that the polymer was passed for 2 minutes, and the reduced viscosity of the product was 2.53 d1/7, the residual monomer concentration was 2.3%, and no polymerization foaming occurred. However, heating and foaming occurred. Comparative Example 3 Using the same reactor as Comparative Example 2 except that the volume ratio of the first and second stage reactors was 1:2, a reaction was carried out under exactly the same conditions as Comparative Example 2. Combined content rate is 31.4%
A syrup with a viscosity of 1100 poise was obtained.

シロツプ中の重合体の80%が第一の反応器において生
成した。シロツプ中の残留開始剤濃度は0.23ppm
であり、60℃において3時間静置加熱したところ、重
合体含有率は31.6%、粘度は2500ポイズに増加
した。また、シロツプ中の重合体の数平均重合度は87
0、重合度分布の多分散度は3.32であつた。このシ
ロツプにアゾビスジメチルバレロニトリル0.04%を
添加して、実施例1の連続重合装置を用い、加熱重合区
域を17分間で通過させる他は実施例1と同一条件で重
合を完結させて樹脂板を得た。このシロツプは高粘であ
るため移動バンド間への注入が困難であり、この製品に
は重合発泡が見られた。なお、このシロツプを実施例1
と同じ粘度21.0ポイズになるまで単量体で希釈して
得た重合体含有率21.5%のシロツブにアゾビスジメ
チルバレロニトリル0.05%を添加して、加熱重合区
域を25分間で通過させる他は上と同じ条件で重合を完
結させたところ、製品の還元粘度は2.74dj/7で
、残留単量体濃度は1.9%であり、重合発泡は生じな
かつたが、加熱発泡が生じた。
80% of the polymer in the syrup was produced in the first reactor. Residual initiator concentration in syrup is 0.23 ppm
When the mixture was heated at 60° C. for 3 hours, the polymer content increased to 31.6% and the viscosity increased to 2500 poise. In addition, the number average degree of polymerization of the polymer in the syrup is 87.
0, and the polydispersity of the polymerization degree distribution was 3.32. 0.04% of azobisdimethylvaleronitrile was added to this syrup, and the polymerization was completed using the continuous polymerization apparatus of Example 1 under the same conditions as Example 1, except that the syrup was passed through the heated polymerization zone for 17 minutes. A resin plate was obtained. The high viscosity of this syrup made it difficult to inject between the moving bands, and the product exhibited polymeric foaming. In addition, this syrup was used in Example 1.
Add 0.05% of azobisdimethylvaleronitrile to a syrup with a polymer content of 21.5% obtained by diluting with a monomer until the viscosity is the same as that of 21.0 poise, and heat the polymerization section for 25 minutes. When the polymerization was completed under the same conditions as above except that the product was passed through, the reduced viscosity of the product was 2.74 dj/7, the residual monomer concentration was 1.9%, and no polymerization foaming occurred. Heat foaming occurred.

また、同じ希釈後のシロツプにアゾビスジメチルバレロ
ニトリル0.08%を添加して、加熱重合区域を21分
間で通過させる他は上と同じ条件で重合を完結させたと
ころ、製品の還元粘度は2.17dj/tで、残留単量
体濃度は1.7%であり、重合発泡は生じなかつたが、
著しい加熱発泡が生じた。比較例 4比較例1の一段式
連続反応装置を使用した。
In addition, when 0.08% of azobisdimethylvaleronitrile was added to the same diluted syrup and the polymerization was completed under the same conditions as above except that it passed through the heating polymerization zone for 21 minutes, the reduced viscosity of the product was At 2.17 dj/t, the residual monomer concentration was 1.7%, and no polymerization foaming occurred.
Significant heat foaming occurred. Comparative Example 4 The single-stage continuous reaction apparatus of Comparative Example 1 was used.

アゾピスイソブチロニトリルを0.45%含有するメチ
ルメタクリレート単量体を平均滞留時間が14.6分と
なるよう連続的に供給し、反応器の圧力は常圧、温度は
85℃を目標とした。また、反応槽出口における残留開
始剤濃度は供給開始剤濃度の約90/100倍量であつ
た。はじめ重合体含有率約25%、粘度約12ポイズの
シロツプが得られたが、反応温度を一定に維持すること
は困難であり、約1時間後に鳥土昇し、重合反応が暴走
して内容物は固化し、反応を続行することは不可能であ
つた。実施例 2 槽型反応器と管型反応器の容積を共に5f!とした以外
は実施例1と同様の装置を用いた。
Methyl methacrylate monomer containing 0.45% azopisisobutyronitrile is continuously fed so that the average residence time is 14.6 minutes, and the target pressure in the reactor is normal pressure and the temperature is 85°C. And so. Further, the concentration of the residual initiator at the outlet of the reaction tank was about 90/100 times the concentration of the supplied initiator. At first, a syrup with a polymer content of about 25% and a viscosity of about 12 poise was obtained, but it was difficult to maintain a constant reaction temperature, and after about an hour the syrup reached a boiling point, causing the polymerization reaction to run out of control. The material solidified and it was impossible to continue the reaction. Example 2 The volumes of both the tank type reactor and the tube type reactor are 5f! The same apparatus as in Example 1 was used except for the following.

重合開始剤であるアゾビスイソブチロニトリルを20℃
の0.7%エチルアクリレート単量体溶液として0.2
11/分で槽型反応器に連続的に供給し、またメチルメ
タクリレート単量体を120℃に予熱して1.91/分
で該反応器に連続的に供給し、各反応器の温度は160
℃、各反応器の圧力は6.0気圧に維持した。また槽型
反応器における残留開始剤濃度は供給開始剤濃度の1/
32倍量であつた。管型反応器を出たシロツプの重合体
含有率は31.9%、25℃における粘度は45.9ポ
イズであり、残留開始剤濃度は0.01ppm以下であ
つた。
Polymerization initiator azobisisobutyronitrile at 20℃
As a 0.7% ethyl acrylate monomer solution of 0.2
The methyl methacrylate monomer was preheated to 120°C and was continuously fed to the reactor at a rate of 1.91/min, and the temperature of each reactor was 160
℃, and the pressure in each reactor was maintained at 6.0 atm. In addition, the concentration of residual initiator in a tank reactor is 1/1/1 of the concentration of supplied initiator.
It was 32 times the amount. The syrup leaving the tubular reactor had a polymer content of 31.9%, a viscosity at 25° C. of 45.9 poise, and a residual initiator concentration of less than 0.01 ppm.

また、シロツプ中の重合体の数平均重合度は615であ
り、重合度分布の多分散度は2.18であつた。実施例
3〜14槽型反応器と管型反応器の容積比を第1表に
示す値にした以外は実施例1と同様の装置を用いた。
The number average degree of polymerization of the polymer in the syrup was 615, and the polydispersity of the degree of polymerization distribution was 2.18. Examples 3 to 14 The same apparatus as in Example 1 was used except that the volume ratio of the tank reactor and the tubular reactor was set to the values shown in Table 1.

重合開始剤として種々のラジカル重合開始剤を種種の異
なる量使用し、単量体としてメチルメタクリレート単量
体を使用して、種々の温度および平均滞留時間で反応さ
せて、第1表に示す重合体含有率、粘度および数平均重
合度のシロツプを得た。また、槽型反応器における残留
開始剤濃度の供給開始剤濃度に対する割合はそれぞれ第
1表に示す値であつた。いずれの場合もシロツプ中の残
留開始剤濃度は0.01ppm以下であり、シロツプ中
の重合体の重合度分布の多分散度は2.2以下であつた
。実施例 15 実施例3と全く同様にして得た重合体含有率25.5%
、粘度70,0ポイズのシロツプをメチルメタクリレー
ト単量体で希釈して得た重合体含有率が14.3%で、
粘度が1.1ポイズであるシロツプにアゾビスイソブチ
ロニトリル0.1%を溶解して重合性液状組成物となし
、減圧下に脱気した後、板厚3′の樹脂板が得られる様
な間隔を保持してガスケツトでシールされた二枚のガラ
ス板の間の空間に注入して、65℃で4時間加熱して重
合させ、次いで、120℃で2時間加熱して重合を完結
させて樹脂板を得た。
Using various radical polymerization initiators in different amounts as polymerization initiators and using methyl methacrylate monomer as a monomer, the reactions were carried out at various temperatures and average residence times to produce the polymers shown in Table 1. A syrup with coalesced content, viscosity and number average degree of polymerization was obtained. Further, the ratio of the concentration of the residual initiator to the concentration of the supplied initiator in the tank reactor was the value shown in Table 1. In all cases, the residual initiator concentration in the syrup was 0.01 ppm or less, and the polydispersity of the polymerization degree distribution of the polymer in the syrup was 2.2 or less. Example 15 Polymer content 25.5% obtained in exactly the same manner as Example 3
, the polymer content obtained by diluting syrup with a viscosity of 70.0 poise with methyl methacrylate monomer was 14.3%,
A polymerizable liquid composition is prepared by dissolving 0.1% of azobisisobutyronitrile in syrup having a viscosity of 1.1 poise, and after degassing under reduced pressure, a resin plate with a thickness of 3' is obtained. The mixture was injected into the space between two glass plates sealed with a gasket with a certain distance maintained, and heated at 65°C for 4 hours to polymerize, and then heated at 120°C for 2 hours to complete the polymerization. A resin plate was obtained.

Claims (1)

【特許請求の範囲】 1 メチルメタクリレートを主成分とする単量体とラジ
カル重合開始剤とを実質的に完全混合が達成される反応
区域1個からなる第一の反応帯域に連続的に供給し、該
反応帯域における残留開始剤濃度が供給開始剤濃度の1
/2〜1/1000倍量となるよう該反応帯域の条件を
維持して最終シロツプ中の重合体の大部分を生ぜしめ、
次いで得られる反応混合物を実質的に押し出し流れが達
成される第二の反応帯域に導いて、該反応帯域を通過す
る間に残量の重合体が生じ、かつ残留開始剤濃度が実質
的に無視できる量になるよう該反応帯域の温度および平
均滞留時間の条件を維持して最終シロツプ中の重合体の
重量平均重合度と数平均重合度の比で表わした重合度分
布の多分散度が3.0以下であるシロツプを得ることを
特徴とするメチルメタクリレート系シロツプの連続製造
方法。 2 ラジカル重合開始剤として半減期が5秒以下となる
温度が180℃以下であるラジカル重合開始剤を用いる
特許請求の範囲第1項に記載の方法。 3 第一の反応帯域における撹拌レイノルズ数が200
0以上である特許請求の範囲第1項に記載の方法。 4 第一の反応帯域において生成する重合体の最終シロ
ツプ中の重合体に占める割合が60〜99.5重量%で
ある特許請求の範囲第1項に記載の方法。 5 第一の反応帯域における残留開始剤濃度が供給開始
剤濃度の1/5〜1/1000倍量でかつ最終シロツプ
中の重合度分布の多分散度が2.5以下である特許請求
の範囲第1項に記載の方法。 6 第一の反応帯域における残留開始剤濃度が供給開始
剤濃度の1/10〜1/500倍量でかつ最終シロツプ
中の重合度分布の多分散度が2.2以下である特許請求
の範囲第1項に記載の方法。 7 第二の反応帯域の温度が第一の反応帯域の温度より
低くない温度である特許請求の範囲第1項に記載の方法
。 8 第二の反応帯域における反応混合物の平均滞留時間
が第一の反応帯域における平均滞留時間の0.1〜2倍
である特許請求の範囲第1項に記載の方法。 9 第二の反応帯域において逆混合係数が0.2以下で
ある攪拌方法を用いる特許請求の範囲第1項に記載の方
法。 10 最終シロツプ中の残留開始剤濃度が1ppm以下
である特許請求の範囲第1項に記載の方法。 11 最終シロツプ中の残留開始剤濃度が0.01pp
m以下である特許請求の範囲第1項に記載の方法。 12 最終シロツプ中の重合体含有率が5〜40重量%
であり、かつ25℃における粘度が0.5〜500ポイ
ズである特許請求の範囲第1項に記載の方法。 13 最終シロツプ中の重合体含有率が10〜30重量
%であり、かつ25℃における粘度が1〜100ポイズ
である特許請求の範囲第1項に記載の方法。
[Claims] 1. A monomer mainly composed of methyl methacrylate and a radical polymerization initiator are continuously supplied to a first reaction zone consisting of one reaction zone where substantially complete mixing is achieved. , the residual initiator concentration in the reaction zone is 1 of the feed initiator concentration.
/2 to 1/1000 times the amount by maintaining the conditions in the reaction zone to produce the majority of the polymer in the final syrup;
The resulting reaction mixture is then directed to a second reaction zone where a substantially extrusion flow is achieved such that a residual amount of polymer is produced during passage through the reaction zone and a residual initiator concentration is substantially negligible. The temperature and average residence time of the reaction zone are maintained so that the polydispersity of the polymerization degree distribution expressed as the ratio of the weight average degree of polymerization to the number average degree of polymerization of the polymer in the final syrup is 3. A method for continuously producing methyl methacrylate syrup, characterized in that a syrup having a concentration of .0 or less is obtained. 2. The method according to claim 1, which uses a radical polymerization initiator whose temperature at which its half-life is 5 seconds or less is 180° C. or less. 3 Stirring Reynolds number in the first reaction zone is 200
The method according to claim 1, wherein the number is 0 or more. 4. The process according to claim 1, wherein the proportion of the polymer produced in the first reaction zone in the final syrup is from 60 to 99.5% by weight. 5. Claims in which the concentration of the residual initiator in the first reaction zone is 1/5 to 1/1000 times the concentration of the supplied initiator, and the polydispersity of the degree of polymerization distribution in the final syrup is 2.5 or less. The method described in paragraph 1. 6. Claims in which the concentration of the residual initiator in the first reaction zone is 1/10 to 1/500 times the concentration of the supplied initiator, and the polydispersity of the degree of polymerization distribution in the final syrup is 2.2 or less. The method described in paragraph 1. 7. The method of claim 1, wherein the temperature of the second reaction zone is no lower than the temperature of the first reaction zone. 8. The method of claim 1, wherein the average residence time of the reaction mixture in the second reaction zone is 0.1 to 2 times the average residence time in the first reaction zone. 9. The method according to claim 1, which uses a stirring method in which the back mixing coefficient is 0.2 or less in the second reaction zone. 10. The method of claim 1, wherein the residual initiator concentration in the final syrup is 1 ppm or less. 11 Residual initiator concentration in final syrup is 0.01pp
2. The method according to claim 1, wherein: m or less. 12 Polymer content in the final syrup is 5-40% by weight
The method according to claim 1, wherein the viscosity at 25° C. is 0.5 to 500 poise. 13. The method of claim 1, wherein the final syrup has a polymer content of 10 to 30% by weight and a viscosity of 1 to 100 poise at 25°C.
JP12068377A 1977-10-06 1977-10-06 Continuous manufacturing method for methyl methacrylate syrup Expired JPS5921325B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP12068377A JPS5921325B2 (en) 1977-10-06 1977-10-06 Continuous manufacturing method for methyl methacrylate syrup
DE19782843759 DE2843759A1 (en) 1977-10-06 1978-10-06 METHOD FOR THE CONTINUOUS PRODUCTION OF A PREPOLYMER SYRUP AND THE USE THEREOF
CA312,893A CA1107752A (en) 1977-10-06 1978-10-06 Process for continuous production of prepolymer syrups
AU40503/78A AU520196B2 (en) 1977-10-06 1978-10-06 Continuous production of prepolymer syrups
NLAANVRAGE7810090,A NL187487C (en) 1977-10-06 1978-10-06 PROCESS FOR CONTINUOUS PRODUCTION OF A PRE-POLYMER SYRUP.
GB7839660A GB2005282B (en) 1977-10-06 1978-10-06 Process for continuous production of prepolymer syrups
IT69324/78A IT1160698B (en) 1977-10-06 1978-10-06 PROCEDURE FOR THE CONTINUOUS PRODUCTION OF METHYL METHACRYLATE PREPOLYMER SYRUP
FR7828678A FR2405269A1 (en) 1977-10-06 1978-10-06 PROCESS FOR THE CONTINUOUS PRODUCTION OF SYRUP OF METHYL METHACRYLATE PREPOLYMERS AND NEW PRODUCTS THUS OBTAINED

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12068377A JPS5921325B2 (en) 1977-10-06 1977-10-06 Continuous manufacturing method for methyl methacrylate syrup

Publications (2)

Publication Number Publication Date
JPS5454188A JPS5454188A (en) 1979-04-28
JPS5921325B2 true JPS5921325B2 (en) 1984-05-19

Family

ID=14792355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12068377A Expired JPS5921325B2 (en) 1977-10-06 1977-10-06 Continuous manufacturing method for methyl methacrylate syrup

Country Status (1)

Country Link
JP (1) JPS5921325B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345799Y2 (en) * 1984-04-24 1991-09-27

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132002A (en) * 1982-01-29 1983-08-06 Asahi Chem Ind Co Ltd Continuous production of methacrylate copolymer
JPS59210910A (en) * 1983-05-17 1984-11-29 Sumitomo Chem Co Ltd Transfer of high-temperature polymerizable liquid composition
JPS59210911A (en) * 1983-05-17 1984-11-29 Sumitomo Chem Co Ltd Continuous production of methyl methacrylate syrup
JPS59213710A (en) * 1983-05-17 1984-12-03 Sumitomo Chem Co Ltd Continuous cooling of methyl methacrylate syrup

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345799Y2 (en) * 1984-04-24 1991-09-27

Also Published As

Publication number Publication date
JPS5454188A (en) 1979-04-28

Similar Documents

Publication Publication Date Title
KR100319421B1 (en) Method for preparing methacrylate polymer
EP0019372B1 (en) Rubber modified methyl methacrylate syrups, production and use in producing cast sheets and moulding materials
JP3293702B2 (en) Method for producing methyl methacrylate polymer
US3474081A (en) Methyl methacrylate polymer and process for making same
SU580844A3 (en) Method of preparing acryl nitrile polymer or copolymer
JPS5921325B2 (en) Continuous manufacturing method for methyl methacrylate syrup
JP3013951B2 (en) Acrylic resin manufacturing method
JP3906848B2 (en) Method for producing methacrylic resin
CA1107752A (en) Process for continuous production of prepolymer syrups
JPS5921326B2 (en) Continuous manufacturing method for methyl methacrylate syrup
JP2009191096A (en) Method for producing thermoplastic resin composition
JP3565229B2 (en) Method for producing methacrylic resin
JP2003096105A (en) Process for manufacturing methacrylic polymer
KR830001196B1 (en) Continuous preparation method of propolymer syrup
US3479312A (en) Continuous solution-polymerization of acrylonitrile
KR20100036981A (en) Recirculation loop reactor bulk polymerization process
CN112063340A (en) Preparation method of solvent type acrylate pressure-sensitive adhesive
JPS58132002A (en) Continuous production of methacrylate copolymer
JP4325475B2 (en) Methacrylic polymer and process for producing the same
KR20070060682A (en) Process for methacrylic resin having good optical properties
JP2009256513A (en) Methacrylic syrup, method for producing the same and method for producing methacrylic resin plate
JP3319484B2 (en) Method for producing methacrylic resin having thermal decomposition resistance
JPH06239905A (en) Sheet production of methacrylic polymer
JPH09268202A (en) Syrup and production of the same
JP3901700B2 (en) Method for producing methacrylic resin