JPS5921268A - Manufacture of magnet field stator - Google Patents

Manufacture of magnet field stator

Info

Publication number
JPS5921268A
JPS5921268A JP12895482A JP12895482A JPS5921268A JP S5921268 A JPS5921268 A JP S5921268A JP 12895482 A JP12895482 A JP 12895482A JP 12895482 A JP12895482 A JP 12895482A JP S5921268 A JPS5921268 A JP S5921268A
Authority
JP
Japan
Prior art keywords
pole
stator
main pole
main
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12895482A
Other languages
Japanese (ja)
Other versions
JPH0423504B2 (en
Inventor
Toshio Tomite
富手 寿男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12895482A priority Critical patent/JPS5921268A/en
Publication of JPS5921268A publication Critical patent/JPS5921268A/en
Publication of JPH0423504B2 publication Critical patent/JPH0423504B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/02DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting
    • H02K23/04DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting having permanent magnet excitation

Abstract

PURPOSE:To improve the yield of manufacturing a magnet field stator by associating and polishing the radius a main pole to the inner peripheral surface of the main pole of a permanent magnet mounted on the inner peripheral surface of a cylindrical yoke smaller by the prescribed amount than the prescribed size and the radius of an auxiliary pole larger than the prescribed size of the main pole. CONSTITUTION:Auxiliary poles 4 made of soft iron and a main pole 3 made of permanent magnet are mounted inside a cylindrical yoke 2 forming a stator 1 of a DC rotary machine. The radius D to the inner peripheral surface of the main pole 3 is reduced by delta smaller than an air gap (d) between a rotor 5 and the stator 1 from the final prescribed size Dp. The radius Ds to the inner peripheral surface of the auxiliary pole 4 is formed slightly larger than the size Dp. Then, it is cut by a tool on which diamond abrasive is coated, the pole 3 made of permanent magnet is polished to form the prescribed radius Dp, thereby forming the prescribed air gap (d). In this manner, the magnet 3 which is hard and brittle is polished in high yield, thereby preventing the clogging of the tool due to the cutting chips of the soft iron of the pole 4.

Description

【発明の詳細な説明】 本発明は永久磁石を主磁極とし軟鉄製補助磁極を並設し
た直流機の磁石界磁固定子の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a magnet field stator for a DC machine in which a permanent magnet is used as a main pole and soft iron auxiliary poles are arranged in parallel.

内燃機関の始動1t#機等に用いられる直流機において
、第1図に示すように、固定子1の継鉄2の環状内周面
に永久磁石よシなる主磁極3と軟鉄片よ、97にる補助
磁極4とを互いに隣接させて取付ける゛ことによってト
ルク特性の向上が得られることが知られている。このよ
うな公知の磁石界磁型直流機固定子において、上記補助
磁極4は一般に軟鉄材の引抜または冷間成形によp形成
せられ、その材質のため所望寸法への加工において十分
な加工精度を得ることに格別の困難はない。しかし、主
磁極3の永久磁石として一般に用いられているフェライ
ト磁石は、セラミック磁石と呼ばれることからも知られ
るように極めて硬くかつ脆いため、ダイヤモンド砥粒を
被着した切削工具による特殊加工が必要となる。このよ
うな特殊加工によって主磁極3會継鉄2に取付ける前に
主磁極3の外周面および内周面を所望寸法に仕上げた後
、やはシ外周面および内周面を所望寸法に仕上げられた
補助磁極4とともに継鉄2の内周面に相互隣接して固着
させる。ところが上記のような特殊加工による工作誤差
のため、主磁極3の外周面、内周面の公差や、うねシ、
円筒度等の各公差が重畳集積し、主磁極3の内径が電機
子5の外径よシも小さくなって電機子5を固定子1に挿
入することが不可能になるおそれがあるから、この公差
の集積分だけ主磁極3の内径を余分に大きくしなければ
ならない。このことは電機子5の表面と主磁極3の内周
面との間の空隙距離dを両面間の接触防止に必要な本来
の最小間隔を越えた過大な値とすることになる。空隙距
離dが増加することは周知のように界磁極によって励磁
される磁気回路中の全磁気抵抗のうちの大部分を占める
空隙距離dの磁気抵抗の増加を意味するから、磁路中の
磁束密にない1−磁束が反比例的に減少してトルクを低
下させる。
In a DC machine used for starting a 1-ton engine, etc., for an internal combustion engine, as shown in FIG. It is known that the torque characteristics can be improved by attaching the auxiliary magnetic poles 4 adjacent to each other. In such a known magnet field type DC machine stator, the auxiliary magnetic pole 4 is generally formed by drawing or cold forming a soft iron material, and due to the material, sufficient machining accuracy is required for machining it to desired dimensions. There is no particular difficulty in obtaining it. However, ferrite magnets, which are commonly used as permanent magnets for the main magnetic pole 3, are extremely hard and brittle, as is known from the name ceramic magnets, and therefore require special processing using a cutting tool coated with diamond abrasive grains. Become. By such special processing, the outer and inner circumferential surfaces of the main pole 3 are finished to the desired dimensions before being attached to the yoke 2, and then the outer and inner circumferential surfaces of the main pole 3 are finished to the desired dimensions. The auxiliary magnetic poles 4 and the auxiliary magnetic poles 4 are fixed adjacent to each other on the inner circumferential surface of the yoke 2. However, due to machining errors due to the special machining mentioned above, the tolerances of the outer and inner circumferential surfaces of the main pole 3, the ridges,
There is a risk that various tolerances such as cylindricity will accumulate and the inner diameter of the main pole 3 will become smaller than the outer diameter of the armature 5, making it impossible to insert the armature 5 into the stator 1. The inner diameter of the main magnetic pole 3 must be increased by an amount corresponding to the accumulated tolerance. This causes the air gap distance d between the surface of the armature 5 and the inner circumferential surface of the main pole 3 to become an excessive value exceeding the original minimum distance necessary to prevent contact between the two surfaces. As is well known, an increase in the air gap distance d means an increase in the magnetic resistance of the air gap distance d, which accounts for most of the total magnetic resistance in the magnetic circuit excited by the field poles. Therefore, the magnetic flux in the magnetic path Lack of density 1 - Magnetic flux decreases inversely, reducing torque.

すなわち補助磁極の付設によ〃向上したトルク特性が上
記空隙距離の増加による磁束数の減少のために大きく減
殺でれる結果となる。さらにこの補助磁極付設方式によ
る電機子反作用の減磁作用の軽減という効果もまた上記
の空隙距離の増大による磁束密匿の減少のために大きく
打消されて、永久磁石を不可逆減磁するおそれを生ずる
In other words, the torque characteristics improved by the provision of the auxiliary magnetic pole are greatly diminished due to the decrease in the number of magnetic fluxes due to the increase in the air gap distance. Furthermore, the effect of reducing the demagnetizing effect of the armature reaction by this auxiliary magnetic pole attachment method is also largely negated by the decrease in magnetic flux sealing due to the increase in the air gap distance, resulting in the risk of irreversible demagnetization of the permanent magnet. .

本発明は上述のような直流機界磁方式の従来の難点’r
:59!l決した固定子製造方法ケ得ることを目的とす
るもので、前掲の特許請求の範囲の欄に記載した特徴を
有するものである。以下本発明方法の一笑施、態様ケ第
3図について説明する。同図中1ないし5の符号は第1
図の場合の符号と同一の部分を示す。先ず固定子lの継
鉄2の内周]rrJを所定寸法に仕上げ、引抜または冷
間成形による軟鉄材よシなる補助磁極4と、焼成された
フェライト磁石累月よシなる主磁極3とをそれぞれ単品
の状態において外周面および内周面ケ切削ないし研削に
よシ盾定寸法に仕上げておく。次に仕上げ済みの上記主
磁極3および補助磁極4を電機子5の回転方向に沿って
互いに隣接させた状態でそれぞれの外周面を継鉄2の内
周面に固着させる。このようにして形成された界磁極を
有する固定子1の横断面が第3図に示されているわけで
あるが、今この状態における継鉄2の内径をDア、主磁
極3の内径(破線)をD、補助磁極4の内径fDs、電
機子5の直径をり、とじ、所定の空隙距離をdとし、か
つり、 十d=Dp 、 D、 −D−δとする。
The present invention solves the drawbacks of the conventional DC machine field system as described above.
:59! The object of the present invention is to provide a method for manufacturing a stator, which has the characteristics described in the claims section. Hereinafter, the method of the present invention will be briefly explained with reference to FIG. 3. The numbers 1 to 5 in the figure are the first
The same parts as the numbers in the figure are shown. First, the inner periphery of the yoke 2 of the stator l] was finished to the specified dimensions, and the auxiliary magnetic pole 4 made of a soft iron material by drawing or cold forming, and the main magnetic pole 3 made of a fired ferrite magnet. The outer and inner circumferential surfaces of each item are finished to a fixed size by cutting or grinding. Next, the finished main magnetic pole 3 and auxiliary magnetic pole 4 are fixed to the inner peripheral surface of the yoke 2 with their respective outer peripheral surfaces adjacent to each other along the rotational direction of the armature 5. A cross section of the stator 1 having the field poles formed in this way is shown in FIG. (dashed line) is D, the inner diameter fDs of the auxiliary magnetic pole 4, the diameter of the armature 5, and the predetermined air gap distance is d, and d=Dp, D, -D-δ.

上記のように主磁極3および補助磁極4が継鉄2に相互
隣接して取付けられた後、主磁極3の内周面を前記ダイ
ヤモンド砥粒を付着した特殊工具で厚さδだけ研削する
ことにより、該主磁極3の内径りがDpまで研削され、
この研削された主磁極3の内径り、と電機子5の直径り
、との差すなわち空隙距離は上記の関係によってDp−
D、 =dである。また補助磁極4は継鉄2からの取付
は工程前の加工によ)その内径Dsを上記研削後の主磁
極3の内径より僅かに大きくしておくことによシ、補助
磁極4の仕上加工された比較的軟質の軟鉄表面を主磁極
3の研削工具により研削されることが避けられ、研削工
具のダイヤモンド砥粒間が軟鉄切削粉で目詰りすること
により該工具の破損することを防止できる。
After the main magnetic pole 3 and the auxiliary magnetic pole 4 are attached to the yoke 2 adjacent to each other as described above, the inner peripheral surface of the main magnetic pole 3 is ground by a thickness δ using a special tool to which the diamond abrasive grains are attached. As a result, the inner diameter of the main magnetic pole 3 is ground to Dp,
The difference between the inner diameter of the ground main pole 3 and the diameter of the armature 5, that is, the air gap distance, is determined by the above relationship Dp-
D, = d. In addition, the auxiliary magnetic pole 4 can be attached to the yoke 2 by machining before the process) By making its inner diameter Ds slightly larger than the inner diameter of the main magnetic pole 3 after the above-mentioned grinding, the auxiliary magnetic pole 4 can be finished. This prevents the relatively soft soft iron surface from being ground by the grinding tool of the main magnetic pole 3, and prevents the tool from being damaged due to clogging between the diamond abrasive grains of the grinding tool with soft iron cutting powder. .

上述のように主磁極3を継鉄2に取付ける前の加工時に
おいてその内径りを最終仕上寸法り、よシも予じめ予測
された研削厚δだけ小さく仕上げておくことによシ、継
鉄2への取付は後の研削厚がδになったとき電機子5に
対する空隙距離が所定の距離dになる。すなわち主磁極
3を継鉄2に取付けた時点で、永久磁石材質に対する加
工上の困難性のため取付は前の加工による各部寸法の仕
上公差やうなシ、円筒度等の公差がどのように集積して
いても、この全公差積置に対応し得るだけの研削厚δを
見込んだ内径りとなるように主磁極3の取付は前の内周
面を加工しておけば、主磁極3の内径りを取付は後の研
削によりり、まで拡径したとき、必然的に主磁極3の内
周面と電極子5の表面との間の空隙距離が初めに設定さ
れた値dに一致する。
As mentioned above, when machining the main pole 3 before attaching it to the yoke 2, the inner diameter of the main pole 3 is made smaller than the final finished dimension by the pre-predicted grinding thickness δ. For attachment to the iron 2, when the subsequent grinding thickness becomes δ, the air gap distance to the armature 5 becomes a predetermined distance d. In other words, at the time the main magnetic pole 3 is attached to the yoke 2, due to the difficulty of machining the permanent magnet material, the installation process is based on how the finishing tolerances of each part dimension, cylindricity, etc. Even if the main pole 3 is installed, the inner circumferential surface of the main pole 3 can be machined so that the inner diameter takes into account the grinding thickness δ that can accommodate this total stacking tolerance. The inner diameter is installed by later grinding, and when the diameter is enlarged to the point where the gap distance between the inner circumferential surface of the main magnetic pole 3 and the surface of the electrode element 5 inevitably matches the initially set value d. .

本発明では上述のようにして主磁極3の工作上および取
付上の公差の集積の如何に拘わらず空隙距離dを常に所
望の設定値に正確に一致させることができ、該d値の不
所望の増大全確実に防止し得た。その結果として、前記
従来例について述べたような空隙距離の増大に起因する
磁束密度の低下、これに伴なう出力ないしトルクの減少
等の緒難点が解決され、かつ補助磁極4による′It機
子機作反作用磁効果が空隙距離の増大による減磁効果に
打消されて非可逆減磁を招くことを防止し得たのである
In the present invention, as described above, the air gap distance d can always be accurately matched to a desired set value regardless of the accumulation of manufacturing and installation tolerances of the main magnetic pole 3, and undesirable values of the d value can be avoided. It was possible to completely prevent the increase in As a result, problems such as a decrease in magnetic flux density due to an increase in the air gap distance and a corresponding decrease in output or torque as described in the conventional example are solved, and the auxiliary magnetic pole 4 This made it possible to prevent irreversible demagnetization caused by the slave unit reaction magnetic effect being canceled by the demagnetization effect due to the increase in air gap distance.

本発明による直流機の一例として、継鉄2の外径68m
m、!様子5の鉄心積厚45mm、主磁極3の内径り、
と補助磁極4の内径Dsとの寸法差Q、 l m mと
した場合の実験結果によれば、空隙距離dを従来の0.
5〜1.0 m m f 0.4〜0.5に縮減し得た
ことにより、磁束密度の増大による出力向上が6.7X
、対減磁耐力の向上が7%という結果が得られた。
As an example of the DC machine according to the present invention, the outer diameter of the yoke 2 is 68 m.
m,! Situation 5: Iron core thickness 45 mm, inner diameter of main pole 3,
According to the experimental results when the dimensional difference Q between the inner diameter Ds of the auxiliary magnetic pole 4 and the inner diameter Ds of the auxiliary magnetic pole 4 is 1 mm, the air gap distance d is set to 0.
By being able to reduce it to 5-1.0 mm f 0.4-0.5, the output improvement due to the increase in magnetic flux density was 6.7X.
The result was that the demagnetization resistance was improved by 7%.

なお第2図は本発明方法による主磁極3および補助磁極
4を用いた直流機における′wt機子機作反作用外部減
磁界に対する永久磁石の励磁動作の解析図を示す。上記
主磁極3に用いられた永久磁石の残留磁束密度をBrH
保持力をHCおよびiHcとし、B−H特性および4π
I−H特性はそれぞれ図示のB−8曲線および4πI−
8曲線で示される通シとする。この直流機の磁気回路の
全磁気抵抗で決まる動作線k P cとすると、本発明
方法による場合には、上記全磁気抵抗の大部分を占める
空隙距離dの磁気抵抗が小さいので、上記動作線Pcが
磁束密度B軸に対する角θが小さく、該Pc曲線はB−
8曲線とA点で交わり、これに対応する磁束密度はB 
a 1 であシ、A点に対応する4πI−H曲線上の点
はB点である。
FIG. 2 shows an analytical diagram of the excitation operation of the permanent magnets in response to an external demagnetizing field acting as a 'wt machine machine reaction in a DC machine using the main magnetic pole 3 and the auxiliary magnetic pole 4 according to the method of the present invention. The residual magnetic flux density of the permanent magnet used for the main magnetic pole 3 is BrH
The holding force is HC and iHc, and the B-H characteristic and 4π
The I-H characteristics are shown in the B-8 curve and 4πI-
8 curves. Assuming that the operating line k P c is determined by the total magnetic resistance of the magnetic circuit of this DC machine, in the case of the method of the present invention, the magnetic resistance at the air gap distance d, which accounts for most of the above total magnetic resistance, is small, so the above operating line The angle θ of Pc with respect to the magnetic flux density B axis is small, and the Pc curve is B-
8 curve intersects at point A, and the corresponding magnetic flux density is B
a 1 , the point on the 4πI-H curve corresponding to point A is point B.

次に電機子5の回転に伴なう電機子反作用のため減磁界
ΔHが作用したとすると、永久磁石動作線は図の矢印に
沿ってA−+B−+C:Dを経由して減磁界を取除いた
後B−H曲線に沿ってA点に戻るから、磁束密度は13
d、から変らない。すなわち不可通磁を生じない。
Next, if a demagnetizing field ΔH acts due to the armature reaction accompanying the rotation of the armature 5, the permanent magnet operating line will pass through A-+B-+C:D along the arrow in the figure, and the demagnetizing field will be applied. After removing it, it returns to point A along the B-H curve, so the magnetic flux density is 13
No change from d. In other words, no magnetic impermeability occurs.

これに対して第1図に示されるような従来方法による場
合には、空隙距離が大きいため第4図に示すように動作
線PcのB軸に対する角度θが大きく、PcとB−8曲
線とはa点で交わり、このときの磁束密度はBd、、4
πl−H曲線上でa点に対応する点はbである。点o、
bを通る動作aPIを電機子反作用ΔHだけ平行移動し
た動作線P’+  と4πI−8曲線との交点kcとし
、Cに対応するB−H曲線上の点をdとすると、d点は
B−8曲線の下方湾曲部に来るため3d点を、経由して
減磁界が取除かれた後では、動作点がB−8曲線ではな
く図中矢印のd −a ’の経路を通って動作線Pc上
のa点とは異なるa′点に移る。
On the other hand, in the case of the conventional method shown in FIG. 1, the angle θ of the operating line Pc with respect to the B axis is large as shown in FIG. intersect at point a, and the magnetic flux density at this time is Bd,,4
The point corresponding to point a on the πl-H curve is b. Point o,
If the motion aPI passing through b is the intersection point kc of the motion line P'+ and the 4πI-8 curve, which is translated by the armature reaction ΔH, and the point on the B-H curve corresponding to C is d, then the point d is B After the demagnetizing field is removed via point 3d to reach the downward curve of the -8 curve, the operating point is not on the B-8 curve but on the path indicated by the arrow d-a' in the figure. Move to point a' on line Pc, which is different from point a.

したがって初めの動作線Pc上のa点に対する磁束密度
Bd、がa′点に対するBa3に#シ、差引きBd、と
Ba、との差だけ不可逆減磁を生じている。このような
不可逆減磁が本発明方法によって前記のように防止でき
たのである。
Therefore, the magnetic flux density Bd for the point a on the initial operating line Pc is equal to the magnetic flux density Bd for the point a', and irreversible demagnetization occurs by the difference between the subtraction Bd and Ba. Such irreversible demagnetization can be prevented by the method of the present invention as described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第4図はそれぞれ従来例の横断面図および
励磁動作解析図、第2図および第3図は本発明方法実施
例のそれぞれ横断面図fよび励磁動作解析図を示す。 1・・・固定子%2川継鉄、3・・・主磁極、4・・・
補助磁第 l 図 第 3  目 茅4.口
1 and 4 respectively show a cross-sectional view and an excitation operation analysis diagram of a conventional example, and FIGS. 2 and 3 respectively show a cross-sectional view f and an excitation operation analysis diagram of an embodiment of the method of the present invention. 1...Stator%2 River yoke, 3...Main magnetic pole, 4...
Auxiliary magnet No. l Figure 3 Eyes 4. mouth

Claims (1)

【特許請求の範囲】[Claims] 1、直流機固定子継鉄の環状内周面に永久磁石の主磁極
と軟鉄の補助磁極とが互いにVW!接して固定された界
磁極を有する固定子の形成工程において、上記継鉄への
取付前に予じめ上記補助磁−極の内径DBを上記電機子
の直径り、ど所定の空隙IJJ隔dの2倍との和Dp 
 (=D、 十d)より僅かに大きく形成しておくとと
もに、上記主磁極の内径Dk上記り、値よシも少なくと
も予定研削厚δだけ小さく形成しておき、上記主磁極お
よび補助磁極を互いにv4接させて上記固定子内周面に
固着させた状態のもとて上記主磁極の内径りをり、にな
るまで研削加工することを特徴とする磁石界磁固定子の
製造方法。
1. On the annular inner peripheral surface of the DC machine stator yoke, the main magnetic pole of the permanent magnet and the auxiliary magnetic pole of soft iron are mutually VW! In the process of forming a stator having field poles that are fixed in contact with each other, the inner diameter DB of the auxiliary magnetic pole is adjusted in advance to the diameter of the armature and the predetermined gap IJJ distance d before installation to the yoke. The sum Dp with twice
(=D, 10d), and the inner diameter Dk of the main pole is made smaller by at least the planned grinding thickness δ, so that the main pole and the auxiliary pole are A method for manufacturing a magnet field stator, characterized in that the inner diameter of the main pole is ground until the inner diameter of the main pole, which is fixed to the inner circumferential surface of the stator in contact with the main pole, is rounded.
JP12895482A 1982-07-26 1982-07-26 Manufacture of magnet field stator Granted JPS5921268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12895482A JPS5921268A (en) 1982-07-26 1982-07-26 Manufacture of magnet field stator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12895482A JPS5921268A (en) 1982-07-26 1982-07-26 Manufacture of magnet field stator

Publications (2)

Publication Number Publication Date
JPS5921268A true JPS5921268A (en) 1984-02-03
JPH0423504B2 JPH0423504B2 (en) 1992-04-22

Family

ID=14997513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12895482A Granted JPS5921268A (en) 1982-07-26 1982-07-26 Manufacture of magnet field stator

Country Status (1)

Country Link
JP (1) JPS5921268A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104641435B (en) 2012-08-30 2017-05-03 株式会社吴羽 Carbonaceous material for negative electrodes of lithium ion capacitors and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315504A (en) * 1976-07-28 1978-02-13 Mitsubishi Electric Corp Direct current machine
JPS56110470U (en) * 1980-01-23 1981-08-26
JPS56174932U (en) * 1980-05-28 1981-12-24
JPS57197779U (en) * 1981-06-11 1982-12-15

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315504A (en) * 1976-07-28 1978-02-13 Mitsubishi Electric Corp Direct current machine
JPS56110470U (en) * 1980-01-23 1981-08-26
JPS56174932U (en) * 1980-05-28 1981-12-24
JPS57197779U (en) * 1981-06-11 1982-12-15

Also Published As

Publication number Publication date
JPH0423504B2 (en) 1992-04-22

Similar Documents

Publication Publication Date Title
US4714852A (en) Permanent-magnet field synchronous motor
US5861695A (en) Composite inductor for electric rotary machines comprising sintered permanent magnets coated with a ferromagnetic binder
US4510407A (en) Permanent magnet type motor having improved pole structure
EP0392028A1 (en) Permanent-magnet synchronous motor
JP2005304178A (en) Rotor for brushless motor and brushless motor
EP0201793B1 (en) Motor
JPH0576146A (en) Ac servo motor
JP4062943B2 (en) Rotating motor having split stator structure
US5083054A (en) Permanent magnet field type dc machine
JPS5921268A (en) Manufacture of magnet field stator
JP2000116083A (en) Rotor in rotating electric machine and manufacturing method therefor
JP2769061B2 (en) Extremely anisotropically oriented magnet
JP2792083B2 (en) Permanent magnet rotor
JP2775795B2 (en) Permanent magnet rotor
JPH0698489A (en) Rotor for servo motor
JPH10174318A (en) Small-sized motor
JP2007151275A (en) Stepping motor
JPH0686483A (en) Motor
JPH0518243B2 (en)
SU936055A1 (en) Method of manufacturing spiral strip-type magnetic circuits
JP2021087293A (en) Rare-earth sintered ring magnet, manufacturing method of the same, and rotor using the rare-earth sintered ring magnet
SU1000252A1 (en) Method of cleaning abrasive wheel at grinding ferromagnetic material part
JPS6158453A (en) Manufacture of rotor for stepping motor
JPH0442755A (en) Armature and manufacture thereof in electric rotary machine
RU2153968C2 (en) Grinding device