JPH0423504B2 - - Google Patents

Info

Publication number
JPH0423504B2
JPH0423504B2 JP57128954A JP12895482A JPH0423504B2 JP H0423504 B2 JPH0423504 B2 JP H0423504B2 JP 57128954 A JP57128954 A JP 57128954A JP 12895482 A JP12895482 A JP 12895482A JP H0423504 B2 JPH0423504 B2 JP H0423504B2
Authority
JP
Japan
Prior art keywords
magnetic pole
inner diameter
main
yoke
main magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57128954A
Other languages
Japanese (ja)
Other versions
JPS5921268A (en
Inventor
Toshio Tomite
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12895482A priority Critical patent/JPS5921268A/en
Publication of JPS5921268A publication Critical patent/JPS5921268A/en
Publication of JPH0423504B2 publication Critical patent/JPH0423504B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/02DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting
    • H02K23/04DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting having permanent magnet excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Dc Machiner (AREA)

Description

【発明の詳細な説明】 本発明は永久磁石を主磁極とし、その円径面に
補助磁極を隣接して並設した磁石界磁式直流電動
機とその製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnet field type DC motor in which a permanent magnet is used as a main pole and auxiliary poles are arranged adjacent to each other on the radial surface of the main pole, and a method for manufacturing the same.

内燃機関の始動電動機等に用いられる直流機に
おいて、第1図に示すように、固定子1の継鉄2
の環状内径面に永久磁石よりなる主磁極3と軟鉄
片よりなる補助磁極4とを互いに円周方向に隣接
させて取付けることによつてトルク特性の向上が
得られることが知られている。このような公知の
磁石界磁式直流機においては、前記補助磁極4は
一般に軟鉄材の引抜または冷間成形により形成せ
られ、その材質のため所望寸法への加工において
十分な加工精度を得ることに格別の困難はない。
In a DC machine used for a starting motor of an internal combustion engine, etc., as shown in Fig. 1, a yoke 2 of a stator 1 is
It is known that torque characteristics can be improved by attaching a main magnetic pole 3 made of a permanent magnet and an auxiliary magnetic pole 4 made of a piece of soft iron so as to be adjacent to each other in the circumferential direction on the annular inner diameter surface of the magnet. In such a known magnet field type DC machine, the auxiliary magnetic pole 4 is generally formed by drawing or cold forming a soft iron material, and due to the material, it is difficult to obtain sufficient machining accuracy in machining to desired dimensions. There are no particular difficulties.

しかし、主磁極3の永久磁石として一般に用い
られているフエライト磁石は、セラミツク磁石と
呼ばれることからも知られるように極めて硬くか
つ脆いため、ダイヤモンドと砥粒を披着した切削
工具により切削することが主流で特殊加工が必要
となる。このような特殊加工によつて主磁極3を
継鉄2に取付ける前に主磁極3の外径面および内
径面を所望寸法に仕上げた後、やはり外径面およ
び内径面を所望寸法に仕上げられた補助磁極4と
ともに継鉄2の内径面に相互に隣接して固着させ
る。
However, ferrite magnets, which are generally used as permanent magnets for the main magnetic pole 3, are extremely hard and brittle, as is also known from the name ceramic magnets, so they cannot be cut with a cutting tool coated with diamond and abrasive grains. Mainstream and requires special processing. By such special processing, the outer and inner diameter surfaces of the main pole 3 are finished to the desired dimensions before the main pole 3 is attached to the yoke 2, and then the outer and inner diameter surfaces are also finished to the desired dimensions. The auxiliary magnetic poles 4 and the auxiliary magnetic poles 4 are fixed adjacent to each other on the inner diameter surface of the yoke 2.

ところが上記のような特殊加工による工作誤差
のため、主磁極3の外径面、内径面の公差や、う
ねり、円筒度等の各公差が重畳集積し、主磁極3
の内径が電機子5の外径よりも小さくなつて電機
子5を固定子1に挿入することが不可能になるお
それがあるから、この公差の集積分だけ主磁極3
の内径を余分に大きくしなければならない。この
ことは電機子5の外径面と主磁極3の内径面との
間の空〓距離dを両面間の接触防止に必要な本来
の最小間隔を越えた過大な値とすることになる。
前記空〓距離dが増加することは周知のように界
磁極によつて励磁される磁気回路中の全磁気抵抗
のうちの大部分を占める空〓距離dの磁気抵抗の
増加を意味するから、磁気中の磁束密度整ないし
磁束が反比例的に減少してトルクを低下させる。
すなわち補助磁極の付設により向上したトルク特
性が上記空〓距離の増加による磁束数の減少のた
めに大きく滅失される結果となる。さらにこの補
助磁極付設方式による電機子反作用の増磁作用の
軽減という効果もまた上記の空〓距離の増大によ
る磁束密度の減少のために大きく打消されて、永
久磁石が付加逆減磁するおそれがある。
However, due to machining errors caused by the special machining described above, tolerances on the outer diameter surface and inner diameter surface of the main magnetic pole 3, as well as tolerances such as waviness and cylindricity, are accumulated, and the main magnetic pole 3
Since there is a possibility that the inner diameter of the armature 5 becomes smaller than the outer diameter of the armature 5 and it becomes impossible to insert the armature 5 into the stator 1, the main magnetic pole 3 is
The inner diameter must be made extra large. This causes the air distance d between the outer diameter surface of the armature 5 and the inner diameter surface of the main pole 3 to become an excessive value exceeding the original minimum distance necessary to prevent contact between the two surfaces.
As is well known, an increase in the air distance d means an increase in the magnetic resistance of the air distance d, which accounts for most of the total magnetic resistance in the magnetic circuit excited by the field pole. The magnetic flux density or the magnetic flux in the magnet decreases inversely proportionally, lowering the torque.
In other words, the torque characteristics improved by the addition of the auxiliary magnetic pole are largely lost due to the decrease in the number of magnetic fluxes due to the increase in the air distance. Furthermore, the effect of reducing the magnetizing effect of the armature reaction due to this auxiliary magnetic pole installation method is also largely canceled out due to the decrease in magnetic flux density due to the increase in air distance, and there is a risk that the permanent magnet will be demagnetized by addition. be.

本発明は上述のような直流機界磁方式の従来の
難点を解決した固定子構造を得ることを目的とす
るものである。
The object of the present invention is to obtain a stator structure that solves the conventional difficulties of the DC machine field system as described above.

以下本発明の一実施態様を第3図について説明
する。同図中1ないし5の符号は第1図の場合の
符号と同一の部分を示す。先ず固定子1の継鉄2
の内径面を所定寸法に仕上げ、引抜または冷間成
形による軟鉄材よりなる補助磁極4と、焼成され
たフエライト磁石素材よりなる主磁極3とをそれ
ぞれ単品の状態において外径面および内径面を切
削ないし研削により所定寸法に仕上げておく。
An embodiment of the present invention will be described below with reference to FIG. Reference numerals 1 to 5 in the figure indicate the same parts as those in FIG. First, stator 1 yoke 2
The inner diameter surface of the auxiliary magnetic pole 4 made of soft iron material by drawing or cold forming, and the main magnetic pole 3 made of fired ferrite magnet material are each individually cut to have the outer diameter surface and inner diameter surface cut to a predetermined size. Finish it to the specified dimensions by grinding or grinding.

次に仕上げ済みの上記主磁極3および補助磁極
4を電機子5の回転方向に沿つて互いに隣接させ
た状態でそれぞれの外径面を継鉄2の内径面に接
着剤等により固着させる。このようにして形成さ
れた界磁極を有する固定子1の横断面が第3図に
示されているわけであるが、今この状態における
継鉄2の内径をDy、主磁極3の内径(破線)を
D、補助磁極4の内径をDs、電機子の外径をDa
とし、所定の空〓距離をdとし、かつDa+2d=
Dp,Dp−D/2=δとする。
Next, the finished main magnetic pole 3 and auxiliary magnetic pole 4 are placed adjacent to each other along the direction of rotation of the armature 5, and their respective outer diameter surfaces are fixed to the inner diameter surface of the yoke 2 using an adhesive or the like. A cross section of the stator 1 having the field poles formed in this way is shown in FIG . ) is D, the inner diameter of the auxiliary magnetic pole 4 is D s , and the outer diameter of the armature is D a
, the predetermined sky distance is d, and D a +2d=
Let D p , D p −D/2=δ.

上記のように主磁極3および補助磁極4が継鉄
2に相互に隣接して取付けられた後、主磁極3の
内径面を前記ダイヤモンド砥粒を付着した特殊工
具で厚さδだけ研削することにより、該主磁極3
の内径DがDpまで研削され、この研削された主
磁極3の内径Dpと電機子5の外径Daとの差すな
わち空〓距離は上記の関係によつてDp−Da/2=d である。
After the main magnetic pole 3 and the auxiliary magnetic pole 4 are attached to the yoke 2 adjacent to each other as described above, the inner diameter surface of the main magnetic pole 3 is ground by a thickness δ using a special tool to which the diamond abrasive grains are attached. Accordingly, the main magnetic pole 3
The inner diameter D of the main pole 3 is ground to D p , and the difference between the ground inner diameter D p of the main pole 3 and the outer diameter D a of the armature 5, that is, the empty distance, is D p − D a / according to the above relationship. 2=d.

また補助磁極4は継鉄2からの取付け工程前の
加工によりその内径Dsを上記研削後の主磁極3
の内径より僅かに大きくしておくことにより、補
助磁極4の仕上加工された比較的軟質の軟鉄表面
を主磁極3の研削工具により研削されることが避
けられ、研削工具のダイヤモンド砥粒間が軟鉄切
削粉で目詰りすることにより該工具の破損するこ
とを防止できる。
In addition, the auxiliary magnetic pole 4 is machined before the installation process from the yoke 2 so that its inner diameter D s is the same as that of the main magnetic pole 3 after the above-mentioned grinding.
By making the inner diameter slightly larger than the inner diameter of the auxiliary magnetic pole 4, it is possible to avoid grinding the finished, relatively soft soft iron surface of the auxiliary magnetic pole 4 with the grinding tool of the main magnetic pole 3. It is possible to prevent the tool from being damaged due to clogging with soft iron cutting powder.

上述のように主磁極3を継鉄2に取付ける前の
加工時においてその内径Dを最終仕上寸法Dp
りも予め予測された研削厚2δだけ小さく仕上げ
しておくことにより、継鉄2へ取付け後の研削厚
がδになつたとき電機子5に対する空〓距離が所
定の距離dになる。すなわち主磁極3を継鉄2に
取付けた時点で、永久磁石材質に対する加工上の
困難性のため取付け前の加工による各部寸法の仕
上公差や、円筒度等の公差がどのように集積して
いても、この全公差積量に対応し得るだけの研削
厚δを見込んだ内径Dとなるように主磁極3の取
付け前の内径面を加工しておけば、主磁極3の内
径Dを取付け後の研削によりDpまで拡径したと
き、必然的に主磁極3の内径面と電機子5の表面
との間の空〓距離が初めに設定された値dに一致
する。
As mentioned above, before attaching the main magnetic pole 3 to the yoke 2, by finishing its inner diameter D smaller than the final finished dimension Dp by the previously predicted grinding thickness 2δ, the main magnetic pole 3 can be attached to the yoke 2. When the subsequent grinding thickness reaches δ, the air distance to the armature 5 becomes a predetermined distance d. In other words, when the main magnetic pole 3 is attached to the yoke 2, due to the difficulty in machining the permanent magnet material, it is difficult to determine how the finish tolerances of each part dimension and the tolerances such as cylindricity are accumulated due to the machining before installation. However, if the inner diameter surface of the main magnetic pole 3 is machined before installation so that the inner diameter D takes into account the grinding thickness δ that can accommodate this total tolerance volume, then the inner diameter D of the main magnetic pole 3 can be changed after installation. When the diameter is expanded to D p by grinding, the air distance between the inner diameter surface of the main pole 3 and the surface of the armature 5 inevitably matches the initially set value d.

本発明では上述のようにして主磁極3の工作上
および取付上の公差の集積の如何に拘わらず空〓
距離dを常に所望の設定値に正確に一致させるこ
とができ、該d値の不所望の増大を確実に防止し
得た。上記実施例として主磁極の内径面を加工す
る例を示したが、磁石の加工精度が向上すれば内
径を加工せずとも空〓距離を正確に得ることがで
きる。
In the present invention, as described above, regardless of the accumulation of manufacturing and installation tolerances of the main pole 3,
The distance d could always be accurately matched to the desired set value, and an undesired increase in the d value could be reliably prevented. Although the above embodiment shows an example in which the inner diameter surface of the main pole is machined, if the machining accuracy of the magnet is improved, the air distance can be accurately obtained without machining the inner diameter.

その結果として、前記従来例について述べたよ
うな空〓距離の増大に起因する磁束密度の低下、
これに伴う出力ないしトルクの減少等の諸難点が
解決され、かつ補助磁極4による電機子反作用の
増磁効果が空〓距離の増大による減磁効果に打消
されて非可逆減磁を招くことを防止し得たのであ
る。
As a result, the decrease in magnetic flux density due to the increase in air distance as described in the conventional example,
The problems associated with this, such as a decrease in output or torque, have been solved, and the magnetizing effect of the armature reaction caused by the auxiliary magnetic pole 4 is canceled out by the demagnetizing effect due to the increase in air distance, resulting in irreversible demagnetization. It could have been prevented.

本発明による直流機の一例として、継鉄2の外
径68mm、電機子5の鉄心積厚45mm、主磁極3の内
径Dpと補助磁極4の内径Dsとの寸法差0.1mmとし
たものを形成し、その実験結果によれば、空〓距
離dを従来の0.5〜1.0mmを0.4〜0.5に縮減し得た
ことにより、磁束密度の増大による出力向上が
6.7%、対減磁耐力の向上が7%という結果が得
られた。
As an example of a DC machine according to the present invention, the outer diameter of the yoke 2 is 68 mm, the core thickness of the armature 5 is 45 mm, and the dimensional difference between the inner diameter D p of the main magnetic pole 3 and the inner diameter D s of the auxiliary magnetic pole 4 is 0.1 mm. According to the experimental results, by reducing the air distance d from the conventional 0.5 to 1.0 mm to 0.4 to 0.5, the output was improved by increasing the magnetic flux density.
The result was an improvement of 6.7%, and an improvement in demagnetization resistance of 7%.

なお第2図は本発明方法による主磁極3および
補助磁極4を用いた直流機における電機子反作用
等の外部減磁界に対する永久磁石の励磁動作の解
析図を示す。上記主磁極3に用いられた永久磁石
の残留磁束密度をBr、保持力をHcおよびiHc
し、B−H特性および4πI−H特性はそれぞれ図
示のB−H曲線および4πI−H曲線で示される通
りである。この直流機の磁気回路の全磁気抵抗で
決まる動作線をPcとすると、本発明方法による場
合には、上記全磁気抵抗の大部分を占める空〓距
離dの磁気抵抗が小さいので、上記動作線Pcが磁
束密度Bに対する角θが小さく、該Pc曲線はB−
H曲線とA点で交わり、これに対応する磁束密度
はBd1であり、A点に対応する4πI−H曲線上の点
はB点である。
Note that FIG. 2 shows an analytical diagram of the excitation operation of a permanent magnet in response to an external demagnetizing field such as an armature reaction in a DC machine using the main magnetic pole 3 and the auxiliary magnetic pole 4 according to the method of the present invention. The residual magnetic flux density of the permanent magnet used in the main magnetic pole 3 is B r , the coercive force is H c and iH c , and the B-H characteristic and 4πI-H characteristic are the B-H curve and 4πI-H curve shown in the figure, respectively. As shown in If the operating line determined by the total magnetic resistance of the magnetic circuit of this DC machine is P c , then in the case of the method of the present invention, the magnetic resistance at the air distance d, which accounts for most of the above total magnetic resistance, is small, so the above operation The angle θ of the line P c with respect to the magnetic flux density B is small, and the P c curve is B-
The magnetic flux density that intersects with the H curve at point A is B d1 , and the point on the 4πI-H curve that corresponds to point A is point B.

次に電機子5の回転に伴う電機子反作用のため
減磁界ΔHが作用したとすると、永久磁石動作線
は図の矢印に沿つてA→B→C→Dを経由して減
磁界を取除いた後B−H曲線に沿つてA点に戻る
から、磁束密度はBd1から変らない。すなわち不
可逆磁を生じない。
Next, if a demagnetizing field ΔH acts due to the armature reaction accompanying the rotation of the armature 5, the permanent magnet operating line will remove the demagnetizing field via A→B→C→D along the arrow in the figure. After that, it returns to point A along the B-H curve, so the magnetic flux density does not change from Bd 1 . In other words, irreversible magnetism does not occur.

これに対し第1図に示されるような従来方法に
よる場合には、空〓距離が大きいため第4図に示
すような動作線PcのB軸に対する角度θが大き
く、PcとB−H曲線とはa点で交わり、このとき
の磁束密度はBd2、4πI−H曲線上でa点に対応
する点はbである。点o、bを通る動作線Piを電
機子反作用ΔHだけ平行移動した動作線Pi′と4πI
−H曲線との交点をcとし、cに対応するB−H
曲線上の点をdとすると、d点はB−H曲線の下
方湾曲部に来るため、d点を経由して減磁界が取
除かれた後では、動作点がB−H曲線ではなく図
中矢印のd−a′の経路を通つて動作線Pc上のa点
とは異なるa′点に移る。したがつて初めの動作線
Pc上のa点に対する磁束密度Bd2がa′点に対する
Bd3に移り、差引きBd2とBd3との差だけ不可逆
減磁を生じている。このような不可逆減磁が本発
明によつて防止できる。
On the other hand, in the case of the conventional method as shown in Fig. 1, the angle θ of the operating line P c with respect to the B axis as shown in Fig. 4 is large because the air distance is large, and the angle θ between P c and B-H is large. The curve intersects at point a, the magnetic flux density at this time is Bd 2 , and the point corresponding to point a on the 4πI-H curve is b. The operating line P i ′ and 4πI are obtained by translating the operating line P i passing through points o and b by the armature reaction ΔH.
The intersection point with the -H curve is c, and the B-H corresponding to c
If the point on the curve is d, the d point is on the downward curve of the B-H curve, so after the demagnetizing field is removed via the d point, the operating point is not on the B-H curve but on the It moves to point a', which is different from point a, on the motion line Pc through the path d-a' indicated by the middle arrow. Therefore, the initial line of motion
The magnetic flux density Bd 2 for point a on P c is
Moving on to Bd 3 , irreversible demagnetization occurs by the difference between Bd 2 and Bd 3 . Such irreversible demagnetization can be prevented by the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第4図はそれぞれ従来の磁石界磁
式直流電動機の横断面図および励磁動作解析図、
第2図および第3図は本発明の実施例における磁
石界磁式直流電動機のそれぞれ横断面図および励
磁動作解析図を示す。 1……固定子、2……継鉄、3……主磁極、4
……補助磁極、5……電機子、d……空〓距離、
δ……研削厚。
Figures 1 and 4 are a cross-sectional view and excitation operation analysis diagram of a conventional magnet field type DC motor, respectively.
FIGS. 2 and 3 show a cross-sectional view and an excitation operation analysis diagram, respectively, of a magnet field type DC motor according to an embodiment of the present invention. 1...Stator, 2...Yoke, 3...Main magnetic pole, 4
... Auxiliary magnetic pole, 5 ... Armature, d ... Sky distance,
δ...Grinding thickness.

Claims (1)

【特許請求の範囲】 1 継鉄の環状内径面の円周方向に永久磁石から
なる主磁極と磁性材料からなる補助磁極とを互い
に隣接配置し、かつ前記補助磁極を電機子反作用
の増磁界側に設けて固定磁極を形成してなる磁石
界磁式直流電動機において、前記主磁極の内径
Dpは前記補助磁極の内径Dsより小径とすること
を特徴した磁石界磁式直流電動機。 2 継鉄の環状内径面の円周方向に永久磁石から
なる主磁極と磁性材料からなる補助磁極とを互い
に隣接配置して固定磁極を形成してなる磁石界磁
式直流電動機の製法において、予め内径に研削代
δを見込んで形成した主磁極を前記補助磁極と並
設して継鉄の内径面に固着し、その後前記補助磁
極の内径Dsより小さい内径Dp位置まで前記研削
代δを研削加工して主磁極を形成することを特徴
とした磁石界磁式直流電動機の製法。
[Scope of Claims] 1. A main magnetic pole made of a permanent magnet and an auxiliary magnetic pole made of a magnetic material are arranged adjacent to each other in the circumferential direction of the annular inner diameter surface of the yoke, and the auxiliary magnetic pole is placed on the side of the increasing field of armature reaction. In a magnet field type DC motor in which the main magnetic pole is provided with a fixed magnetic pole, the inner diameter of the main magnetic pole is
A magnet field type DC motor characterized in that D p is a smaller diameter than the inner diameter D s of the auxiliary magnetic pole. 2. In the method of manufacturing a magnet field type DC motor in which a main magnetic pole made of a permanent magnet and an auxiliary magnetic pole made of a magnetic material are arranged adjacent to each other in the circumferential direction of the annular inner diameter surface of a yoke to form a fixed magnetic pole, A main magnetic pole formed with a grinding allowance δ on the inner diameter is placed in parallel with the auxiliary magnetic pole and fixed to the inner diameter surface of the yoke, and then the grinding allowance δ is adjusted to a position where the inner diameter D p is smaller than the inner diameter D s of the auxiliary magnetic pole. A method for manufacturing a magnet field type DC motor characterized by forming the main magnetic pole by grinding.
JP12895482A 1982-07-26 1982-07-26 Manufacture of magnet field stator Granted JPS5921268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12895482A JPS5921268A (en) 1982-07-26 1982-07-26 Manufacture of magnet field stator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12895482A JPS5921268A (en) 1982-07-26 1982-07-26 Manufacture of magnet field stator

Publications (2)

Publication Number Publication Date
JPS5921268A JPS5921268A (en) 1984-02-03
JPH0423504B2 true JPH0423504B2 (en) 1992-04-22

Family

ID=14997513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12895482A Granted JPS5921268A (en) 1982-07-26 1982-07-26 Manufacture of magnet field stator

Country Status (1)

Country Link
JP (1) JPS5921268A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034859A1 (en) 2012-08-30 2014-03-06 株式会社クレハ Carbonaceous material for negative electrodes of lithium ion capacitors and method for producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315504A (en) * 1976-07-28 1978-02-13 Mitsubishi Electric Corp Direct current machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110470U (en) * 1980-01-23 1981-08-26
JPS56174932U (en) * 1980-05-28 1981-12-24
JPS57197779U (en) * 1981-06-11 1982-12-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315504A (en) * 1976-07-28 1978-02-13 Mitsubishi Electric Corp Direct current machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034859A1 (en) 2012-08-30 2014-03-06 株式会社クレハ Carbonaceous material for negative electrodes of lithium ion capacitors and method for producing same

Also Published As

Publication number Publication date
JPS5921268A (en) 1984-02-03

Similar Documents

Publication Publication Date Title
US4714852A (en) Permanent-magnet field synchronous motor
US5861695A (en) Composite inductor for electric rotary machines comprising sintered permanent magnets coated with a ferromagnetic binder
EP1326319A2 (en) Rotor, method of manufacturing the same and rotary machine
EP0392028A1 (en) Permanent-magnet synchronous motor
EP0096868A1 (en) Permanent magnet type motor
EP0859139A2 (en) Throttle valve control device
CN1215628C (en) Permanent magnet synchronous motor
EP0111740B1 (en) Permanent magnet field type dc machine
JPH0423504B2 (en)
EP0365781B1 (en) Stepping motor rotor assembly for an electronic timepiece
JP2000116083A (en) Rotor in rotating electric machine and manufacturing method therefor
US4839546A (en) Rotational noise reduction structure in dc motor with rotor magnets
JPH08317626A (en) Cylindrical linear motor and manufacture of cylindrical linear motor
JPH0698489A (en) Rotor for servo motor
US20080231996A1 (en) Voice coil motors and magnetic circuits therefor
JP2000209836A (en) Stepping motor
JPS622943Y2 (en)
JP2001319810A (en) Magnet roller and developing device
JPS622945Y2 (en)
JPH06124822A (en) R-tm-b group anisotropic ring magnet and its manufacture
JPS5814143B2 (en) Manufacturing method of rotor for small motor
JPH0888962A (en) Dc motor
US5627700A (en) Floating type magnetic head having flush rear reference surface
RU2153968C2 (en) Grinding device
JPH0729726A (en) Manufacture of magnet roll