JPS59212651A - Dehumidifier - Google Patents

Dehumidifier

Info

Publication number
JPS59212651A
JPS59212651A JP58088430A JP8843083A JPS59212651A JP S59212651 A JPS59212651 A JP S59212651A JP 58088430 A JP58088430 A JP 58088430A JP 8843083 A JP8843083 A JP 8843083A JP S59212651 A JPS59212651 A JP S59212651A
Authority
JP
Japan
Prior art keywords
humidity
temperature
cooler
compressor
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58088430A
Other languages
Japanese (ja)
Inventor
和弘 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58088430A priority Critical patent/JPS59212651A/en
Publication of JPS59212651A publication Critical patent/JPS59212651A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、主として乾燥するために用いる除湿表1u
に関するもので必る。
DETAILED DESCRIPTION OF THE INVENTION This invention provides a dehumidifying table 1u mainly used for drying.
Must be related to.

従来の除湿装置は第1図に示すように構成されていた。A conventional dehumidifier was constructed as shown in FIG.

第1図中、1は圧縮機、2は凝縮器、3はキャピラリー
チューブ、4は冷却器であシ、これらが冷媒配管でj幀
次連通されて冷凍サイクルリカ5構成されたものである
。このように構成された除湿装置を品物の乾燥に使用し
た場合は、乾燥室内が到達湿度に達するのに時間がかか
る欠点があった0例えば木材を乾燥する場合、初期は乾
燥室内の相対湿度が100チ近くになる。しかし家具な
どに使用する木材の含水率は10チ程度のものが要求さ
れ、これを実現するには乾燥室を低湿度に保たなければ
ならない。低い到達湿度を実現できるキャピラリーチュ
ーブを選定すると、冷却器4の蒸発温度も低くなり、冷
媒循環量も小さくなるので、高湿度時の除湿能力が低く
なシ、到達湿度に達するまでに時間がかかるという欠点
があった。また、冬季における運転−始当初は室温が低
い。このために冷却器4の熱交換温度差が小さく、熱交
換量が小さいので、圧縮機1への液バツクを生じやすい
という問題もある。
In FIG. 1, 1 is a compressor, 2 is a condenser, 3 is a capillary tube, and 4 is a cooler, and these are interconnected through refrigerant piping to form a refrigeration cycle 5. When a dehumidifying device configured in this way is used to dry items, it has the disadvantage that it takes time for the humidity in the drying chamber to reach the desired level.For example, when drying wood, the relative humidity in the drying chamber is initially low. It will be close to 100 inches. However, wood used for furniture and the like must have a moisture content of about 10 cm, and to achieve this, drying rooms must be kept at low humidity. If you select a capillary tube that can achieve a low ultimate humidity, the evaporation temperature of the cooler 4 will also be low and the amount of refrigerant circulation will be small, so the dehumidification capacity at high humidity will be low and it will take time to reach the ultimate humidity. There was a drawback. Furthermore, at the beginning of operation in winter, the room temperature is low. For this reason, the heat exchange temperature difference in the cooler 4 is small and the amount of heat exchange is small, so there is also the problem that liquid backflow to the compressor 1 is likely to occur.

この発明は、このような実情に鑑みてなされたもので、
絞シ装置の抵抗を変えることにより、低湿度が来状でさ
ると共に1高湿度時の除湿能力も高く、シかも、室温が
低い時の圧縮機への液バツりを生じさせない除湿装置を
提供することを目的としている。
This invention was made in view of these circumstances.
By changing the resistance of the squeezing device, we provide a dehumidifying device that can handle low humidity in the past, has a high dehumidifying capacity when the humidity is high, and does not cause liquid splashes to the compressor when the room temperature is low. It is intended to.

以下、この発明の一実施例を図面によって説明する。An embodiment of the present invention will be described below with reference to the drawings.

第2図はこの発明の一実施例を示す。除湿装置の構成図
で、第2図中、1は冷凍サイクルの圧縮機、2は凝縮器
、4は冷却器であり、これらは従来のものと同様である
。5idバイパス回路7aと並列につながれた第1キヤ
ピラリーチユーブ、7はバイパス回路7aに設けた電磁
弁、6は第2キヤピラリーチユーブで、第1キヤピラリ
ーチユーブ5と直列につながれており、これらで抵抗を
可変にした絞り装置8を構成している。9は冷却器4に
流入する空気の湿度を検出する湿度調節器、1゜は冷却
器4に流入する空気の温度を検出する温度訓節躇であり
、いずれも冷却器4の近傍に検出部9a及び検出部10
aが配設されている。第8図に第2図に示す実施例の電
気回路の該当部を示す。第8図中、9−1は湿度調節器
9の接点で、例えば冷却器4に流入する空気の相対湿度
が低下してきて40チになると開き、相対湿度が上昇し
てさて50%になると閉じるようにする。10−1は温
度調節器10の接点で、例えば冷却器4に流入する空気
の温度が20°C以下では開゛き、25°Cにまで上昇
すると閉じるようになっている。7−1は電磁弁7の電
磁コイルで、通電されている時には、電磁弁7は開くよ
うになっている。11は電源で、湿度調節器9の接点9
−1、温度調節器10の接点10−1 、電磁コイル7
−1と直列につながれている。
FIG. 2 shows an embodiment of the invention. This is a block diagram of the dehumidification device, and in FIG. 2, 1 is a compressor of a refrigeration cycle, 2 is a condenser, and 4 is a cooler, which are the same as those of the conventional one. 5id a first capillary reach tube connected in parallel with the bypass circuit 7a, 7 a solenoid valve provided in the bypass circuit 7a, and 6 a second capillary reach tube connected in series with the first capillary reach tube 5. It constitutes an aperture device 8 with variable resistance. 9 is a humidity controller that detects the humidity of the air flowing into the cooler 4, and 1° is a temperature regulator that detects the temperature of the air that flows into the cooler 4. Both of them have a detection unit near the cooler 4. 9a and detection unit 10
a is arranged. FIG. 8 shows the relevant part of the electric circuit of the embodiment shown in FIG. 2. In Fig. 8, 9-1 is a contact point of the humidity controller 9. For example, it opens when the relative humidity of the air flowing into the cooler 4 decreases to 40%, and closes when the relative humidity increases and reaches 50%. do it like this. Reference numeral 10-1 denotes a contact point of the temperature regulator 10, which opens when the temperature of the air flowing into the cooler 4 is below 20°C, and closes when the temperature rises to 25°C. 7-1 is an electromagnetic coil of the electromagnetic valve 7, and the electromagnetic valve 7 is opened when energized. 11 is a power supply, contact 9 of humidity controller 9
-1, contact 10-1 of temperature regulator 10, electromagnetic coil 7
-1 is connected in series.

次に第2図、第8図に示す実施例の作用について説明す
る。例えば木材を乾燥する場合に、初期は木材から蒸発
した水分によって乾燥室内の+1対湿度が100%に近
い高湿度状態にある。しかし、室内温度は外気温度にほ
ぼ等しく、冬季では20’0以下である。この場合には
、湿度調節器9の接点9−1が閉じているが、温度調節
器1oの接点1o−1が開いているので、電磁コイル7
−1が通電されないので、電磁弁7は閉じてお9、冷媒
は第1キヤピラリーチユーブ5および第2キヤピラリー
チユーブ6を通って、冷凍サイクルを流れる。このよう
に冷却器4への流入空気温度が低い場合、絞り抵抗を大
きくして、冷却器4への冷媒供給量を少なくすると共に
蒸発温度を低くして熱交換温度差を太きくすることによ
って、冷媒が冷却器4で全て蒸発できるようにする。こ
のことによって、運転開始尚初の圧縮機1への准バック
が防止きれる。
Next, the operation of the embodiment shown in FIGS. 2 and 8 will be explained. For example, when drying wood, initially the drying chamber is in a high humidity state where the ratio of +1 to humidity is close to 100% due to moisture evaporated from the wood. However, the indoor temperature is almost equal to the outdoor temperature, which is below 20'0 in winter. In this case, the contact 9-1 of the humidity controller 9 is closed, but the contact 1o-1 of the temperature controller 1o is open, so the electromagnetic coil 7
-1 is not energized, so the solenoid valve 7 is closed 9 and the refrigerant flows through the refrigeration cycle through the first capillary reach tube 5 and the second capillary reach tube 6. In this way, when the temperature of the air flowing into the cooler 4 is low, the throttle resistance is increased to reduce the amount of refrigerant supplied to the cooler 4, and the evaporation temperature is lowered to widen the heat exchange temperature difference. , allowing all of the refrigerant to evaporate in the cooler 4. This prevents the compressor 1 from backing up even after the start of operation.

この運転が続くと、圧縮機1の人力相当分の発熱によシ
除湿装置の加熱効果によって室温が上昇してくる。そし
て、25°Cにまで上昇すると接点1o−1か閉じる。
If this operation continues, the room temperature will rise due to the heating effect of the dehumidifier due to the heat generated by the compressor 1 equivalent to the human power. When the temperature rises to 25°C, contact 1o-1 closes.

尚、室温の上昇につれて、木拐からの水分蒸発量が増加
するので、湿度は、1oo%近い114、湿度状態にあ
る。従って、接点9−1も閉じてぃゐので″I′Ii:
磁弁7か開いて、冷媒はバイパス回路7ajっよひ第2
キヤピラリーチユーブ6を通って冷凍シイクルを流れる
。このように、室温が高い時は冷却器4の熱交換能力が
大きいので、絞9抵抗を小σくし冷媒循環量を多くして
も、冷却器4で全ての冷媒が蒸発する。この運転によっ
て、木材の乾燥が進んで室内空気の相対湿度が低下して
くると、接点9−1が開き、電磁コイル7−1は通電さ
れなくなるので、電磁弁7が閉じ、冷媒は第1キヤピラ
リーチユーブ5および第2キヤピラリーチユーブ6を流
れる。このように乾燥室内が高湿度の時は、露点温度が
高いので冷却器4のコイルの表面温度が高くても除湿で
きる。従って、絞り装置8の抵抗を低湿度時に比較して
小さくシ、冷却器4の蒸発温度を高くする。このように
すると、冷媒循環量も人さくなり、冷凍能力が上がり除
湿能力も上がる。また乾燥室内の空気の湿度が下がって
くると、絞シ装置8の抵抗を増し、低湿度状態を保つよ
うにする。
Note that as the room temperature rises, the amount of moisture evaporated from the wood grains increases, so the humidity is close to 114% humidity. Therefore, since contact 9-1 is also closed, "I'Ii:
The magnetic valve 7 is opened, and the refrigerant flows through the bypass circuit 7ajyohi No. 2.
It flows through the refrigeration cycle through the capillary reach tube 6. As described above, when the room temperature is high, the heat exchange capacity of the cooler 4 is large, so even if the resistance of the throttle 9 is made small σ and the amount of refrigerant circulation is increased, all of the refrigerant evaporates in the cooler 4. Through this operation, when the wood becomes dry and the relative humidity of the indoor air decreases, the contact 9-1 opens and the electromagnetic coil 7-1 is no longer energized, so the electromagnetic valve 7 closes and the refrigerant flows through the first It flows through the capillary reach tube 5 and the second capillary reach tube 6. When the humidity inside the drying chamber is high as described above, the dew point temperature is high, so even if the surface temperature of the coil of the cooler 4 is high, dehumidification can be performed. Therefore, the resistance of the expansion device 8 is made smaller than when the humidity is low, and the evaporation temperature of the cooler 4 is made higher. In this way, the amount of refrigerant circulated is reduced, the refrigeration capacity is increased, and the dehumidification capacity is also increased. Furthermore, when the humidity of the air in the drying chamber decreases, the resistance of the squeezing device 8 is increased to maintain a low humidity state.

以上説明したように、この発明の除湿装置は、冷凍サイ
クルに抵抗を可変にした絞シ装置を設け、湿度調節器が
検出する湿度と温度調節器が検出する温度のそれぞれが
所定値以上になると絞り装置の抵抗を小さくするように
したので、高湿度時の除籍能力が高く、シかも低い到達
湿度を実現できると共に、運転開始時の室温が低い場合
の圧縮機への液バツクが防止でさるという効果が得られ
る。
As explained above, the dehumidifier of the present invention includes a diaphragm device with variable resistance in the refrigeration cycle, and when the humidity detected by the humidity controller and the temperature detected by the temperature controller each exceed a predetermined value, By reducing the resistance of the expansion device, it has a high removal capacity at times of high humidity, achieves low humidity levels, and prevents liquid from leaking into the compressor when the room temperature is low at the start of operation. This effect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の除湿装置の構成図、第2図はこの発明
の一実施例を示す除湿装置の構成図、8図は第2図に示
す除湿装置の電気回路図である。 1 圧縮機、2・・凝縮器、4・・冷却器、5.6− 
キャピラリーチューブ、7・・・電磁弁、7a・・・バ
イパス回路、8・・・絞り装置、9・・・湿度調節器1
9−1゛湿度調節器の接点、7−1・・・電磁コイル、
10・・・温度調節器、10−1・・・温度調節器の接
点。 なお、図中同一符号は同一または相当部分を示す。 代理人 大岩増雄
FIG. 1 is a block diagram of a conventional dehumidifier, FIG. 2 is a block diagram of a dehumidifier according to an embodiment of the present invention, and FIG. 8 is an electric circuit diagram of the dehumidifier shown in FIG. 1 Compressor, 2... Condenser, 4... Cooler, 5.6-
Capillary tube, 7... Solenoid valve, 7a... Bypass circuit, 8... Squeezing device, 9... Humidity controller 1
9-1 Contact point of humidity controller, 7-1... Electromagnetic coil,
10...Temperature regulator, 10-1...Temperature regulator contact. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Masuo Oiwa

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、#縮器、抵抗を可変にした絞シ装置および冷却
器を冷媒配管で順次連通させた冷凍サイクルと、上記冷
却器に流入する空気の湿度を検出して作動する湿度調節
器と上記冷却器に流入する空気の温度を検出して作動す
る温度調節器とを備え、上記湿度調節器が検出する湿度
と上記温度調節器が検出する温度のそれぞれが所定値以
上になると絞り装置の抵抗を小さくするようにしたこ、
とを特徴とする除湿装置。
A refrigeration cycle in which a compressor, a compressor, a throttling device with variable resistance, and a cooler are sequentially connected through refrigerant piping, a humidity controller that operates by detecting the humidity of the air flowing into the cooler, and the above. and a temperature regulator that is activated by detecting the temperature of the air flowing into the cooler, and when the humidity detected by the humidity regulator and the temperature detected by the temperature regulator each exceed a predetermined value, the resistance of the throttle device increases. I tried to make it smaller,
A dehumidifying device characterized by.
JP58088430A 1983-05-18 1983-05-18 Dehumidifier Pending JPS59212651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58088430A JPS59212651A (en) 1983-05-18 1983-05-18 Dehumidifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58088430A JPS59212651A (en) 1983-05-18 1983-05-18 Dehumidifier

Publications (1)

Publication Number Publication Date
JPS59212651A true JPS59212651A (en) 1984-12-01

Family

ID=13942567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58088430A Pending JPS59212651A (en) 1983-05-18 1983-05-18 Dehumidifier

Country Status (1)

Country Link
JP (1) JPS59212651A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988008742A1 (en) * 1987-05-08 1988-11-17 Mitsubishi Denki Kabushiki Kaisha Moisture remover
US5096549A (en) * 1987-03-08 1992-03-17 Mitsubishi Denki Kabushiki Kaisha Dehumidifier and method of using
GB2399774A (en) * 2003-03-25 2004-09-29 Ebac Ltd A dehumidifier having variable flow of refrigerant.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5096549A (en) * 1987-03-08 1992-03-17 Mitsubishi Denki Kabushiki Kaisha Dehumidifier and method of using
WO1988008742A1 (en) * 1987-05-08 1988-11-17 Mitsubishi Denki Kabushiki Kaisha Moisture remover
GB2399774A (en) * 2003-03-25 2004-09-29 Ebac Ltd A dehumidifier having variable flow of refrigerant.
GB2399774B (en) * 2003-03-25 2006-04-26 Ebac Ltd Dehumidifiers

Similar Documents

Publication Publication Date Title
CA1101211A (en) Swimming pool dehumidifier
US3747362A (en) Space cooling system
JP4783048B2 (en) Constant temperature and humidity device
JP2001353398A (en) Drying equipment
JPS59212651A (en) Dehumidifier
JP3069046B2 (en) Environmental test equipment with variable water surface humidifier
CN113261457A (en) Automatic accurate simulation system for artificial climate environment in glass greenhouse
JPS59164857A (en) Dehumidifier
JP3114860U (en) Room temperature drying equipment
JP2004028526A (en) Dehumidifying and humidifying system
JP3297105B2 (en) Air conditioner
JPH02213683A (en) Cold storage display case
JPH0510187Y2 (en)
CN112923462B (en) Fresh air system and control method, storage medium and control device thereof
CN218120033U (en) Electrodeless dehumidification air conditioner heat pump all-in-one that adjusts temperature
KR102659473B1 (en) Thermo-hygrostat control method for energy-saving dehumidification control of a low-load thermo-hygrostat facility and its thermo-hygrostat
JPH0317178Y2 (en)
JPH06288566A (en) Heat pump type cooling/heating device
JP2548662Y2 (en) Environmental test equipment
JPS597896B2 (en) air conditioner
JP2744543B2 (en) Air-conditioning processing equipment
JPH0439578B2 (en)
JPS6365288A (en) Dehumidifying drier
JPH0432599Y2 (en)
JPS61172509A (en) Receiving furniture with dehumidifier