JPS5921236A - Interlocking system of inverter to power system - Google Patents

Interlocking system of inverter to power system

Info

Publication number
JPS5921236A
JPS5921236A JP57129785A JP12978582A JPS5921236A JP S5921236 A JPS5921236 A JP S5921236A JP 57129785 A JP57129785 A JP 57129785A JP 12978582 A JP12978582 A JP 12978582A JP S5921236 A JPS5921236 A JP S5921236A
Authority
JP
Japan
Prior art keywords
inverter
power
separately excited
grid
interconnection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57129785A
Other languages
Japanese (ja)
Inventor
国吉 真照
洋三 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57129785A priority Critical patent/JPS5921236A/en
Publication of JPS5921236A publication Critical patent/JPS5921236A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は他励式インバータと電力系統を連系して成るシ
ステムに係り、%、VC連系点での系統電圧変動量を低
減し得るようにしたインバータと電力系統の連系システ
ムに関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a system in which a separately excited inverter is interconnected with a power grid, and is capable of reducing the amount of grid voltage fluctuation at a VC interconnection point by %. This paper relates to an interconnection system between an inverter and a power grid.

〔発明の技術的背量〕[Technical weight of the invention]

近年、省エネルギーを目的として直流電力をインノ々−
夕で交流電力に変換して電力系統に供給する、いわゆる
イン・ぐ−夕と電力系統の連系システムの研究開発が各
方面で盛んに行なわれてきている。この際、数kW〜数
十kWの比較的小規模のンステ′ムは、多量に設置され
る関係」―できる限シ安価なものとする必要があり、こ
のためイン・々−夕として他励式のものを採用し、且つ
その構成素子としてツーイリスタを用いる方式のものが
考えられている。
In recent years, DC power has become increasingly popular for the purpose of energy conservation.
Research and development is actively being carried out in various fields on so-called "in-day-out" and power grid interconnection systems, which convert alternating current power in the evening and supply it to the power grid. At this time, relatively small-scale systems of several kW to several tens of kW are installed in large numbers - it is necessary to make them as inexpensive as possible, and for this reason, as internal systems, separately excited type A method is being considered that employs a dual-lister and uses a two-ristor as a component.

第1図は、この種の連系システムの主回路構成例を示す
ものである。図において、1は燃料電池、太陽電池等を
用いてなる直流電源で、これには直流リアクトル2を介
して他励式インバータ3の直流側が接続されている。ま
た、この他励式インバータ30交流側釦は連系変圧器4
を介して、線路インピーダンス、図示しない系統変圧器
の漏れリアクタンスを含めた系統インピーダンス5を有
する電力系統6が連系されている。さらに、上記他励式
イン・9−夕3の交流側の連系変圧器4の2次側には、
進相コンrンサを兼ねるフィルタ装置7が図示の如く接
続されている。なお、第1図では直流側、汝流□側−′
:し中断器、および他、、!lJ式インバータ39制御
装。
FIG. 1 shows an example of the main circuit configuration of this type of interconnection system. In the figure, reference numeral 1 denotes a DC power source using a fuel cell, a solar cell, etc., to which the DC side of a separately excited inverter 3 is connected via a DC reactor 2. In addition, the AC side button of this separately excited inverter 30 is connected to the interconnection transformer 4.
A power system 6 having a system impedance 5 including line impedance and leakage reactance of a system transformer (not shown) is interconnected via the power system 6 . Furthermore, on the secondary side of the interconnection transformer 4 on the AC side of the separately excited type in/outer 3,
A filter device 7 which also serves as a phase advancing capacitor is connected as shown. In addition, in Figure 1, the DC side and the current □ side -'
: and interrupter, and others,! lJ type inverter 39 control system.

置はその図示を省略している。また、上記他励式イ・パ
ーク3i安1価で実゛績の高い6個のザイリスタを三相
ブリッジ接続上で構成される。
The location is omitted from illustration. In addition, six Zyristors, which are inexpensive and have a good track record, are configured on a three-phase bridge connection.

かかる連系システム1おいて、直流電源1の直流電力は
直流リアクトル2を介して、他励式インバータ3の直流
入方側忙与えられる。そして、その交流出力電力は連系
変圧器4を介して電力系統6に供給さ・れる。その電力
は、図示しなり制i装置に□よシ制−角□βで所定値に
制御される。他励式イン−p’7p’sの入出力電圧関
係は、周知のように     □ にて表わされる。
In such a grid interconnection system 1, DC power from a DC power supply 1 is applied to a separately excited inverter 3 through a DC reactor 2. The AC output power is then supplied to the power grid 6 via the interconnection transformer 4. The electric power is controlled to a predetermined value by a control angle □β by a control device shown in the figure. As is well known, the input/output voltage relationship of the separately excited type in-p'7p's is expressed by □.

ここで、Edは直流電源14.電1圧11dは直流電流
、Rdは直流回路抵抗、vaは連系変圧器4のインバー
タ側交流電圧、Iaは同じくインバータ出力電流、Xは
転流リアクタンスでその大部分は連系変圧器4の漏れリ
アクタンスである。また、□上記で制御角1βは直流電
圧降下Id−Rd、交流電□圧V−の変動範囲を考慮し
て決定され、定格運転時は電気角で45°程度が多い。
Here, Ed is the DC power supply 14. Voltage 11d is a DC current, Rd is a DC circuit resistance, va is an AC voltage on the inverter side of the interconnection transformer 4, Ia is the inverter output current, and X is a commutation reactance, most of which is the DC circuit resistance of the interconnection transformer 4. It is leakage reactance. In addition, the control angle 1β above is determined in consideration of the variation range of the DC voltage drop Id-Rd and the AC voltage V-, and is often about 45 degrees in electrical angle during rated operation.

そして、力率はt4 tx□□□βで表わ)れるので、
、インバータ3の必要とする無効電力Qは有効電力5V
ala(2)β=Pと同程度となる。
Then, the power factor is expressed as t4 tx□□□β), so
, the reactive power Q required by the inverter 3 is the active power 5V.
It is approximately the same as ala(2)β=P.

一方、この場合に他励式インパーク3が発生する高調波
電流は、次数61±1次(” n”” 1 * 2 t
・・・)で略その逆数の大きさとなシインパ□−タ出力
電流に比例する。進相コンデンサを兼ねるフィルタ装置
7は、との高調波電流□を所定値に低減すると共に、イ
ンバータ3が必要、とす□、る無効電力を補4して1.
運転力率を、房45°=0.’7かも1程度に改善する
。このフィルタ装置7は、5次。
On the other hand, in this case, the harmonic current generated by the separately excited impark 3 has an order of 61 ± 1st ("n"" 1 * 2 t
...) and is approximately proportional to the reciprocal of the shimper output current. The filter device 7, which also serves as a phase advance capacitor, reduces the harmonic current □ of □ to a predetermined value, and also compensates for the reactive power required by the inverter 3 □.
Set the driving power factor to 45° = 0. '7 will improve to about 1. This filter device 7 is of 5th order.

7次の共振フィルタや高域フィルタ等公知の形態をとシ
得る。
A well-known form such as a 7th order resonant filter or a high-pass filter can be used.

さて、電力系統6に電力を供給すると系統インピーダン
ス5による電圧変動ΔVを生じ、これはΔV−RP−X
Qにて表わされる。ここで、Rけ系統インピーダンス5
の、抵抗分、Xは同じくリアクタンス分であシ、リアク
タンスの大部分は図示しない系統変圧器の、漏れリアク
タンスで一般にX>Hの関係にあシ1.  X Qはイ
ンバータ3が系統から遅れ無効電力をと、るξとKよる
電圧低下を示す。
Now, when power is supplied to the power grid 6, a voltage fluctuation ΔV occurs due to the grid impedance 5, which is ΔV-RP-X
It is represented by Q. Here, R system impedance 5
The resistance component, X, is also the reactance component, and most of the reactance is the leakage reactance of the system transformer (not shown), and generally there is a relationship of X>H.1. XQ indicates the voltage drop due to ξ and K when the inverter 3 receives delayed reactive power from the grid.

第2図は、連系点電圧vAとインバータ出方との関係を
示すものである・一般用、電力系統に連系されるインバ
ータ容量の上限は2oチ程度であシ、系統インピーダン
スを20%とすると、これをインバータ側に換算すると
4%に相当する。
Figure 2 shows the relationship between the interconnection point voltage vA and the inverter output. For general use, the upper limit of the inverter capacity interconnected to the power grid is about 2°, and the grid impedance is set to 20%. This corresponds to 4% when converted to the inverter side.

C背景技術の問題点〕 仁の場合、進相コンデンサを兼ねるフィルタ装置7がな
い時には、インバータ3が系統からとる遅れ無効電力は
、前述のように系統に供給する有効電力と同程度アあり
、夫々インバータ出力に比例するのでこの場合は第2図
の直MAに示すように、定格出力のとき連系点電圧Vム
は0.96っまシ4%低下する。
C. Problems of Background Art] In the case of Jin, when there is no filter device 7 that also serves as a phase advance capacitor, the delayed reactive power taken by the inverter 3 from the grid is about the same as the active power supplied to the grid, as described above. Since each is proportional to the inverter output, in this case, as shown by MA in FIG. 2, the interconnection point voltage Vm decreases by 0.96 or 4% at the rated output.

一方、フィルタ装置2で高調波を所定値(例えば各次調
波1%、総合電圧歪率2チ)以下にすると共に、インバ
ータ3の遅れ無効電力を補償すると、第2図の直線Bに
示すようにインバータ出力痴1のときに連系点電、圧M
A Pi lとなるが、インバータ出力がOのときには
1.04つ、tb4チ」二昇することになる。、   
  。
On the other hand, if the filter device 2 is used to reduce the harmonics to below a predetermined value (for example, each harmonic of 1%, total voltage distortion factor of 2) and compensate for the delayed reactive power of the inverter 3, then the line B in FIG. Like this, when the inverter output is 1, the voltage is
However, when the inverter output is O, it increases by 1.04, tb4ch''2. ,
.

インバータによる系統電圧変動はできる限シ小さい方が
望まし−が、この点上述した例ではいずれも変動が大き
い。
It is desirable that system voltage fluctuations caused by the inverter be as small as possible, but in this respect, the fluctuations are large in all of the above examples.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような問題を解決するだめに成されたも
ので、その目的は他動式インバータによる系統電圧変動
の低減を図ることが隻°能なインバータと電力系統の連
系システムを提供するとと忙ある。
The present invention was made to solve the above-mentioned problems, and its purpose is to provide an interconnection system between an inverter and a power grid that is capable of reducing grid voltage fluctuations caused by a passive inverter. Then I'm very busy.

・〔発明の概要〕 上記目的を達成するために本発明では、卓流電源の直流
電力を他励式インバータで文部電力に変換して電力系統
に供給するシステムにおい′て、前記他励式インバータ
の交流側に進相コンデンサを兼ねるフィルタ装置を設け
、このフィルタ装置の進相容量を前記他励式インバータ
の発生する定格運転時の遅れ無効電力による系統電圧変
動月゛の30〜70チ相肖分を補償するような容量とし
たことを特徴とする。
- [Summary of the Invention] In order to achieve the above object, the present invention provides a system in which DC power from a table current power supply is converted into power by a separately excited inverter and supplied to the power grid. A filter device that also serves as a phase advance capacitor is installed on the side, and the phase advance capacity of this filter device compensates for the 30 to 70 phase proportion of grid voltage fluctuation due to delayed reactive power generated by the separately excited inverter during rated operation. It is characterized by having a capacity that allows

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面に示す一実施例について説明する。 An embodiment of the present invention shown in the drawings will be described below.

本発明によるインバータと電力系統の連系システムの構
成例は、前述した第1図と全く同様であるので、その図
示説明を省略しここでは異なる部分についてのみ述べる
The configuration example of the interconnection system between the inverter and the power grid according to the present invention is completely the same as that shown in FIG. 1 described above, so the illustration and explanation thereof will be omitted and only the different parts will be described here.

つまシ、本発明の連系システムは前記第1図における進
相コンデンサを兼ねるフィルタ装置7の進相容量を、前
記他励式インバータ3の発生する定格運転時の遅れ無効
電力の約50%相当の容量としだものであり、この場合
の高調波低減量を所定値にする設計は容易に可能である
Finally, in the interconnection system of the present invention, the phase advance capacitance of the filter device 7 which also serves as the phase advance capacitor in FIG. In this case, it is easy to design the amount of harmonic reduction to a predetermined value.

フィルタ装置7の進相容量としてかかる容量を持たせる
ことによシ、第3図のCにて示すようにインバータ出力
が1のときに連系点1[1□圧VAは約0.98、また
インバータ出力が0のときには連系点電圧■^は約1.
02となる。換言すれば、インバータ出力が1のときK
は連系点知川V人が2多低下し、またインパーク出力が
0のときには連系点電圧vAは2L4上昇することにf
j′、!)、結果的に他励式インバータ3による連系点
の系統電圧変動を、1±0.02すなわち約半分に低減
することができることになる。才た、この鳩舎には力率
改善の度合も半減するが、一方ではフィルタ装置70寸
法2重1.コストをも低減することも可能となる。
By providing such a capacitance as the phase advance capacitance of the filter device 7, when the inverter output is 1, the pressure VA at the interconnection point 1 [1□ is about 0.98, as shown by C in FIG. Also, when the inverter output is 0, the interconnection point voltage ■^ is approximately 1.
It becomes 02. In other words, when the inverter output is 1, K
When the interconnection point Chigawa V decreases by 2 and the impark output is 0, the interconnection point voltage vA increases by 2L4.
j',! ), as a result, the system voltage fluctuation at the interconnection point due to the separately excited inverter 3 can be reduced to 1±0.02, that is, approximately half. In addition, this pigeon house also reduces the degree of power factor improvement by half, but on the other hand, the filter device 70 size is 2 times 1. It also becomes possible to reduce costs.

上述したように、直流電源Iの直流電力を他励式インバ
ータ3で交流電力に変換して電力系統6に供給するシス
テノ・において、他励式インバータ3の交流側に接続さ
れる進相コンデンサを兼ねるフィルタ装M7の進相容量
を、他励式インバータ3の発生する定格運転時の遅れ無
効電力の50%相当の容量とするようにしたものである
As mentioned above, in the system system which converts the DC power of the DC power source I into AC power using the separately excited inverter 3 and supplies it to the power grid 6, a filter that also serves as a phase advance capacitor is connected to the AC side of the separately excited inverter 3. The phase advance capacity of the device M7 is set to be equivalent to 50% of the delayed reactive power generated by the separately excited inverter 3 during rated operation.

従って、他励式インバータ30発生する遅れ無効電力に
よる系統電圧低下量の約50%分を補償し、連系点の系
統電圧変動を従来に比較して半減することが可能となる
。寸た、これに伴なってフィルタ装置70寸法2重量、
コストをも低減することができる。
Therefore, it is possible to compensate for about 50% of the amount of grid voltage drop due to the delayed reactive power generated by the separately excited inverter 30, and to reduce the grid voltage fluctuation at the interconnection point by half compared to the conventional system. Along with this, the filter device 70 dimensions 2 weight,
Costs can also be reduced.

尚、上記実施例ではフィルタ装置7の進相容量を他励式
インバータ3の発生する定格運転時の遅れ無効電力の5
0チ相当としたが、約30〜70チの範囲の容量として
も同様の効果を得ることができるものである。
In the above embodiment, the phase advance capacity of the filter device 7 is set to 5 of the delayed reactive power generated by the separately excited inverter 3 during rated operation.
Although it is assumed that the capacitance is equivalent to 0 inches, the same effect can be obtained even if the capacity is in the range of about 30 to 70 inches.

その他、本発明はその要旨を変更しない範囲で、種々に
変形して実施することができる。
In addition, the present invention can be implemented with various modifications without changing the gist thereof.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、他励式インバータ
の交流側に設けるフィルタ装置の進相容量を、他励式イ
ンバータの発生する定格運転時の遅れ無効電力の30〜
70%相当の容量としたので、他励式インバータによる
系統電圧変動の低減を図ることが可能な信頼性の高いイ
ンバータと電力系統の連系システムが提供できる。
As explained above, according to the present invention, the phase advancing capacity of the filter device provided on the AC side of the separately excited inverter is set to 30 to 30% of the delayed reactive power generated by the separately excited inverter during rated operation.
Since the capacity is set to be equivalent to 70%, it is possible to provide a highly reliable interconnection system between an inverter and a power grid that can reduce grid voltage fluctuations caused by a separately excited inverter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はインバータと電力系統の連系システムの主回路
構成を示す図、第2図は従来のシステムにおける連系点
電圧とインバータ出力との関係を示す図、第3図は本発
明のシステノ、における連系点電圧とインバータ出力と
の関係を示す図でおる。 1・・・直流電源、3・・・他励式インバータ、4・・
・連系変圧器、5・・・系統インピーダンス、6・・・
電力系統、7・・・フィルタ装置。
Fig. 1 is a diagram showing the main circuit configuration of an interconnection system between an inverter and a power grid, Fig. 2 is a diagram showing the relationship between interconnection point voltage and inverter output in a conventional system, and Fig. 3 is a diagram showing the relationship between an interconnection point voltage and an inverter output in a conventional system. It is a diagram showing the relationship between interconnection point voltage and inverter output in . 1... DC power supply, 3... Separately excited inverter, 4...
- Grid connection transformer, 5... Grid impedance, 6...
Power system, 7...filter device.

Claims (1)

【特許請求の範囲】[Claims] 直流電源の直流電力を他励式インバータで交流電力に変
換して電力系統に供給するシステムにおいて、前記他励
式インバータの交流側に進相コンデンサを兼ねるフィル
タ装置を設け、このフィルタ装置の進相容量を前記他励
式インバータの発生する定格運転時の遅れ無効電力の3
0〜70%相当の容量としたことを特徴とするインバー
タと電力系統の連系システム。
In a system that converts DC power from a DC power source into AC power using a separately excited inverter and supplies it to the power grid, a filter device that also serves as a phase advance capacitor is provided on the AC side of the separately excited inverter, and the phase advance capacity of this filter device is increased. 3 of the delayed reactive power generated by the separately excited inverter during rated operation.
An interconnection system between an inverter and a power system, characterized by having a capacity equivalent to 0 to 70%.
JP57129785A 1982-07-26 1982-07-26 Interlocking system of inverter to power system Pending JPS5921236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57129785A JPS5921236A (en) 1982-07-26 1982-07-26 Interlocking system of inverter to power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57129785A JPS5921236A (en) 1982-07-26 1982-07-26 Interlocking system of inverter to power system

Publications (1)

Publication Number Publication Date
JPS5921236A true JPS5921236A (en) 1984-02-03

Family

ID=15018162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57129785A Pending JPS5921236A (en) 1982-07-26 1982-07-26 Interlocking system of inverter to power system

Country Status (1)

Country Link
JP (1) JPS5921236A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62277029A (en) * 1986-05-23 1987-12-01 株式会社日立製作所 Operation control of solar generating system
JPH01291636A (en) * 1988-05-16 1989-11-24 Shikoku Sogo Kenkyusho:Kk Distributed power source linking system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62277029A (en) * 1986-05-23 1987-12-01 株式会社日立製作所 Operation control of solar generating system
JPH01291636A (en) * 1988-05-16 1989-11-24 Shikoku Sogo Kenkyusho:Kk Distributed power source linking system

Similar Documents

Publication Publication Date Title
Peng et al. A power line conditioner using cascade multilevel inverters for distribution systems
Huang et al. Design of power decoupling strategy for single-phase grid-connected inverter under nonideal power grid
Rathmann et al. New generation UPS technology, the delta conversion principle
KR20020069495A (en) Inverter, power supply system and method of ruducing leakage current in power supply system
JPS59198873A (en) Rectified power source circuit
CN106356862A (en) Megawatt current transformer parallel connection alternating current bus voltage quality improving method
Tsai et al. Design and implementation of a cost-effective quasi line-interactive UPS with novel topology
Ismail et al. A multi-objective control scheme of a voltage source converter with battery–supercapacitor energy storage system used for power quality improvement
Huang et al. Stability analysis of two-stage single-phase converter system adopting electrolytic capacitor-less second harmonic current compensator
CN111865112A (en) Series-connection type multi-pulse rectifier using direct-current side passive harmonic suppression method
JPS5921236A (en) Interlocking system of inverter to power system
US3605003A (en) Stabilized sine wave inverter
Liu et al. Sliding mode control of solid state transformer using a three-level hysteresis function
JPH0628517B2 (en) Power converter
Mellincovsky et al. Infinite virtual capacitor realization for grid-connected power converters
Su et al. A novel topology for single phase UPS systems
Ramesh et al. Single phase transformer based inverter for nonlinear load application using pi controller
CN112421647B (en) Power electronic virtual camera and control method
JPS6192173A (en) Power converter
JPS5947938A (en) Cooperating system between inverter and power system
JPH09247862A (en) Self-excitation reactive power compensator
CN110690831B (en) Control method of double-inverter photovoltaic power generation system considering leakage current suppression
JP3480538B2 (en) Self-excited reactive power compensator
JPS59149747A (en) Operating system of system interlocking inverter
CN117155089A (en) Input ripple suppression method for three-phase voltage type inverter under nonlinear load