JPS5947938A - Cooperating system between inverter and power system - Google Patents

Cooperating system between inverter and power system

Info

Publication number
JPS5947938A
JPS5947938A JP57157015A JP15701582A JPS5947938A JP S5947938 A JPS5947938 A JP S5947938A JP 57157015 A JP57157015 A JP 57157015A JP 15701582 A JP15701582 A JP 15701582A JP S5947938 A JPS5947938 A JP S5947938A
Authority
JP
Japan
Prior art keywords
inverter
power
separately excited
output
breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57157015A
Other languages
Japanese (ja)
Other versions
JPH05930B2 (en
Inventor
国吉 真照
洋三 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57157015A priority Critical patent/JPS5947938A/en
Publication of JPS5947938A publication Critical patent/JPS5947938A/en
Publication of JPH05930B2 publication Critical patent/JPH05930B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は他励式インバータと電力系統を連系して成るシ
ステムに係シ、特に連系点での系統電圧変動量を低減し
得るようにしたインバータと電力系統の連系システムに
関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a system in which a separately excited inverter is connected to a power grid, and in particular to a system that can reduce the amount of grid voltage fluctuation at a point of connection. Regarding interconnection systems between inverters and power grids.

〔発明の技術的背景〕[Technical background of the invention]

近年、省エネルギーを目的として直流電力をインバータ
で交流電力に変換して電力系統に供給する、いわゆるイ
ンバータと電力系統の連系システムの研究開発が各方面
で盛んに行なわれてきている。この際、数kW〜数士k
Wの比較的小規模のシステムは、多量に設置される関係
上できる限り安価々ものとする必要があり、このためイ
ン・ぐ−夕として他励式のものを採用し、且つその構成
素子としてサイリスタを用いる方式のものが考えられて
いる。
In recent years, for the purpose of energy saving, research and development has been actively conducted in various fields on so-called inverter-power system interconnection systems, which convert DC power into AC power using an inverter and supply it to the power system. At this time, several kW to several k
A relatively small-scale W system needs to be as inexpensive as possible since it is installed in large quantities, so a separately excited type is used as the internal regulator, and a thyristor is used as a component. A method using .

第1図は、この種の連系システムの主回路構成例を示す
ものである。図において、1は燃料電池、太陽電池等を
用いてなる直流電源で、これには直流しゃ断器2および
直流リアクトル3を介して他励式インバータ4の直流側
が接続されている。また、この他励式インバータ4は制
御装置5により制御角βで制御され、その交流側には連
系変圧器6および連系しゃ断器7を介して、線路インピ
ーダンス、図示しない系統変圧器の漏れリアクタンスを
含めた系統インピーダンス8を有する電力系統9が連系
されている。
FIG. 1 shows an example of the main circuit configuration of this type of interconnection system. In the figure, reference numeral 1 denotes a DC power source using a fuel cell, a solar cell, etc., to which the DC side of a separately excited inverter 4 is connected via a DC breaker 2 and a DC reactor 3. The separately excited inverter 4 is controlled by a control device 5 at a control angle β, and the AC side is connected to the line impedance and the leakage reactance of a grid transformer (not shown) via a grid interconnection transformer 6 and a grid breaker 7. A power grid 9 having a grid impedance 8 including .

さらに、上記他励式インバータ4の交流側の連系変圧器
6の2次側には、交流しゃ断器IOを介して進相コンデ
ンサを兼ねる所定容量のフィルタ装置1ノが図示の如く
接続されている。なお、第1図では他励式インバータ4
は安価で実績の高い6個のサイリスタを三相ブリッジ接
続して構成される。
Furthermore, a filter device 1 with a predetermined capacity that also serves as a phase advance capacitor is connected to the secondary side of the interconnection transformer 6 on the AC side of the separately excited inverter 4 via an AC breaker IO, as shown in the figure. . In addition, in Fig. 1, separately excited inverter 4
The system consists of six inexpensive and well-proven thyristors connected in a three-phase bridge.

かかる連系システムにおいて、直流電源1の直流電力は
直流しゃ断器2および直流リアクトル3を介して、他励
式インバータ4の直流入力側に与えられる。そして、そ
の交流出力電力は連系変圧器6および連系しゃ断器7を
介して電力系統9に供給される。その電力は、制御装置
5によシ制御角βで所定値に制御される。他励式インバ
ータ4の入出力電圧関係は、周知のように 1 Ed−IaRa =−y’T Va(casβ+2 I
 a x )π にて表わされる。
In such a grid-connected system, DC power from a DC power supply 1 is applied to a DC input side of a separately excited inverter 4 via a DC breaker 2 and a DC reactor 3. The AC output power is then supplied to the power system 9 via the interconnection transformer 6 and the interconnection breaker 7. The power is controlled to a predetermined value by the control device 5 at a control angle β. As is well known, the input/output voltage relationship of the separately excited inverter 4 is 1 Ed-IaRa =-y'T Va(casβ+2 I
a x )π.

ここで、Edは直流電源1電圧、工dは直流電流、Rd
は直流回路抵抗、v8は連系変圧器6のインバータ側交
流電圧、Iaは同じくインバータ出力電流、Xは転流リ
アクタンスでその大部分は連系変圧器6の漏れリアクタ
ンスである。まだ、上記で制御角βは直流電圧降下Id
−Rd、交流電圧Vaの変動範囲を考慮して決定され、
定格運転時は電気角で45°程度が多い。そして、力率
はほぼ強βで表わされるので、インバータ4の必要とす
る無効電力Qは有効電力βVB11eQSβ=Pと同程
度となる。
Here, Ed is DC power supply voltage, Ed is DC current, Rd
is the DC circuit resistance, v8 is the inverter-side AC voltage of the interconnection transformer 6, Ia is the inverter output current, and X is the commutation reactance, most of which is the leakage reactance of the interconnection transformer 6. Still, in the above, the control angle β is the DC voltage drop Id
-Rd, determined in consideration of the variation range of AC voltage Va,
During rated operation, the electrical angle is often around 45°. Since the power factor is approximately expressed by strong β, the reactive power Q required by the inverter 4 is approximately the same as the active power βVB11eQSβ=P.

一方、この場合に他励式インバータ4が発生する高調波
電流は、次数6n±1次(n=1゜2、・・・)で略そ
の逆数の大きさとなシインパータ出力電流に比例する。
On the other hand, in this case, the harmonic current generated by the separately excited inverter 4 has an order of 6n±1st (n=1°2, . . . ) and is proportional to the inverter output current, which is approximately the reciprocal of the harmonic current.

進相コンデンサを兼ねるフィルタ装置11は、この高調
波電流を所定値に低減すると共に、インバータ4が必要
とする無効電力を補償して、定格運転力率を部45゜−
〇、7から1程度に改善する。このフィルタ装置11は
、5次、7次の共振フィルタや高域フィルタ等公知の形
態をとり得る。
The filter device 11, which also serves as a phase advance capacitor, reduces this harmonic current to a predetermined value, compensates for the reactive power required by the inverter 4, and lowers the rated operating power factor to 45°.
〇, improve from 7 to 1. This filter device 11 may take a known form such as a fifth-order or seventh-order resonance filter or a high-pass filter.

さて、電力系統9に電力を供給すると系統インピーダン
ス8による電圧変動ΔVを生じ、これはΔV=RP−X
Qにて表わされる。ここで、Rは系統インピーダンス8
の抵抗分、又は同じくリアクタンス分であシ、リアクタ
ンスの大部分は図示しない系統変圧器の漏れリアクタン
スで一般にX)Hの関係にあp、−XQはインバータ4
が系統から遅れ無効電力をとることによる電圧低下を示
す。
Now, when power is supplied to the power grid 9, a voltage fluctuation ΔV occurs due to the grid impedance 8, which is ΔV=RP−X
It is represented by Q. Here, R is the system impedance 8
Most of the reactance is the leakage reactance of the system transformer (not shown), which generally has the relationship of X)H, and -XQ is the inverter 4.
indicates a voltage drop due to delayed reactive power being taken from the grid.

第2図は、連系点電圧7人とインバータ出力との関係を
示すものである。一般に、電力系統に連系されるインバ
ータ容量の上限は20%程度であり、系統インピーダン
スを20チとすると、これをインバータ側に換算すると
4%に相嶺する。
FIG. 2 shows the relationship between the seven interconnection point voltages and the inverter output. Generally, the upper limit of the capacity of an inverter connected to a power grid is about 20%, and if the grid impedance is 20 inches, this translates to 4% on the inverter side.

〔背景技術の問題点〕[Problems with background technology]

この場合、進相コンデンサを兼ねるフィルタ装置11が
ない時には、インバータ4が系統からとる遅れ無効電力
は、前述のように系統に供5− 給する有効電力と同程度であり、夫々イン・り一タ出力
に比例するのでこの場合は第2図の直線Aに示すように
、定格出力のとき連系点電圧vAは0,96つまり4チ
低下する。
In this case, when there is no filter device 11 that also serves as a phase advance capacitor, the delayed reactive power taken by the inverter 4 from the grid is about the same as the active power supplied to the grid as described above, and In this case, as shown by straight line A in FIG. 2, the interconnection point voltage vA decreases by 0.96, or 4 inches, when the output is at the rated output.

一方、フィルタ装置11で高調波を所定値(例えば各次
調波1%、総合電圧歪率2チ)以下にすると共に、イン
バータ4の遅れ無効電力を補償すると、第2図の直線B
に示すようにインバータ出力が1のときに連系点電圧V
ムは1となるが、インノぐ一夕出力が0のときには1.
04つまシ4チ上昇することになる。
On the other hand, if the filter device 11 is used to reduce the harmonics to below a predetermined value (for example, each harmonic of 1%, total voltage distortion factor of 2ch) and compensate for the delayed reactive power of the inverter 4, then the straight line B in FIG.
As shown in , when the inverter output is 1, the interconnection point voltage V
However, when the input output is 0, it becomes 1.
This will result in an increase of 04 cm.

インバータによる系統電圧変動はできる限り小さい方が
望ましいが、この点上述した例ではいずれも変動が大き
い。
It is desirable that the system voltage fluctuation caused by the inverter be as small as possible, but in this respect, the fluctuations are large in all of the above examples.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような問題を解決するために成されたも
ので、その目的は他励式インバータによる系統電圧変動
の低減を図ることが可能なインバータと電力系統の連系
システムを提供することにある。
The present invention was made to solve the above problems, and its purpose is to provide an interconnection system between an inverter and a power grid that can reduce grid voltage fluctuations caused by a separately excited inverter. be.

6一 〔発明の概要〕 上記目的を達成するだめに本発明では、直流電源の直流
電力を他励式インバータで交流電力に変換して電力系統
に供給するシステムにおいて、前記他励式インバータの
交流側に交流しゃ断器を介して進相コンデンサを兼ねる
所定容量のフィルタ装置を設け、前記他励式インバータ
の出力が定格の30〜70チ以上で前記交流しゃ断器を
投入し且つこのインバータ出力が定格の30〜70チ以
下で前記交流しゃ断器をしゃ断することを特徴とする。
61 [Summary of the Invention] In order to achieve the above object, the present invention provides a system for converting DC power from a DC power source into AC power using a separately excited inverter and supplying it to the power system, in which the AC side of the separately excited inverter is A filter device with a predetermined capacity that also serves as a phase advancing capacitor is provided via an AC breaker, and the AC breaker is turned on when the output of the separately excited inverter is 30 to 70 inches or more than the rated value, and the inverter output is 30 to 70 inches or more than the rated value. The AC breaker is characterized in that the AC breaker shuts off at 70 inches or less.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面に示す一実施例について説明する。 An embodiment of the present invention shown in the drawings will be described below.

本発明によるインバータと電力系統の連系システムの構
成例は、前述した第1図と全く同様であるので、その図
示説明を省略しことではノ♀なる部分についてのみ述べ
る。
The configuration example of the interconnection system between an inverter and a power grid according to the present invention is completely the same as that shown in FIG.

つ−!り、本発明の連系システムは前記第1図における
進相コンデンサを兼ねる所定容量のフィルタ装置11を
系統に連系する交流しゃ断器10を、前記他励式インバ
ータ4の出力が定格の5(1以上で投入し、また定格の
50%以下でしゃ断するようにしだものである。
Tsu-! In addition, in the grid interconnection system of the present invention, the AC breaker 10 for interconnecting the filter device 11 of a predetermined capacity, which also serves as a phase advance capacitor in FIG. It is designed to turn on at a temperature above 50% of the rating and shut off at 50% or less of the rating.

フィルタ装置11の進相容量として所定容量を持たせ、
且つこのフィルタ装置11を他励式インバータ4の出力
が定格の50%以上、以下の時、交流しゃ断器1oによ
シ系統に投入2切離することによシ、第3図のCにて示
すようにインバータ出力が0.5〜1のときに連系点電
圧vAは約1.02〜1゜oo、4たインバータ出力が
0−0.5のときには連系点電圧Vムは約1.00〜0
.98となる。換言すれば、インバータ出力が0〜0.
5のときには連系点電圧7人が2チ低下し、またインバ
ータ出力が1〜0.5のときには連系点電圧Vムは2チ
上昇することになり、結果的に他励式インバータ4によ
る連系点の系統電圧変動を、1±0.o2すなわち約半
分に低減することができることになる。
A predetermined capacitance is provided as a phase advance capacitance of the filter device 11,
In addition, when the output of the separately excited inverter 4 is 50% or more of the rated value or less, the filter device 11 is connected to and disconnected from the system by the AC breaker 1o, as shown in C in Fig. 3. As shown, when the inverter output is 0.5 to 1, the interconnection point voltage vA is about 1.02 to 1°oo, and when the inverter output is 0 to 0.5, the interconnection point voltage V is about 1.02˚oo. 00~0
.. It becomes 98. In other words, the inverter output is between 0 and 0.
5, the interconnection point voltage Vm decreases by 2cm, and when the inverter output is 1 to 0.5, the interconnection point voltage Vm increases by 2cm, and as a result, the interconnection point voltage by the separately excited inverter 4 The system voltage fluctuation at the system point is set to 1±0. o2, that is, can be reduced to about half.

一方、上記において他励式インバータ4の出力が定格の
50%以下のときは、系統にフィルタ装置11が投入さ
れないため前述した高調波が心配になるが、他励式イン
バータ4の高調波は出力電流に略比例するので、軽負荷
時は元々高調波が小さくフィルタ装置11を投入する必
要がない領域であり問題はない。また、他励式イン/J
−夕4の出力が定格出力の50%近辺で運転する場合に
は、交流しゃ断器1oの動作頻度が高く力る恐れがある
ので、第3図に示すように10〜20チのヒステリシス
幅δを確保してこれを防止するようにしている。
On the other hand, in the above case, when the output of the separately excited inverter 4 is 50% or less of the rating, the above-mentioned harmonics are a concern because the filter device 11 is not introduced into the system. Since it is approximately proportional, there is no problem when the load is light because the harmonics are originally small and there is no need to use the filter device 11. Also, separately excited type in/J
- When operating at around 50% of the rated output, there is a risk that the AC breaker 1o will operate too frequently, so the hysteresis width δ of 10 to 20 inches is shown in Figure 3. We are trying to prevent this by ensuring that

上述したように、直流電源1の直流電力を他励式インバ
ータ4で交流電力に変換して電力系統9に供給するシス
テムにおいて、上記他励式インバータ4の交流側に交流
しゃ断器1oを介して、該インバータが発生する高調波
を低減すると共に遅れ無効電力を補償するための進相コ
ンデンサを兼ねる所定容量のフィルタ装置11を設け、
このフィルタ装置11を他励式インバータ4の出力が定
格出力の50%以上、以下のときに夫々系統に投入、切
離するようにしたも9− のである。
As described above, in the system in which the DC power of the DC power source 1 is converted into AC power by the separately excited inverter 4 and is supplied to the power grid 9, the AC power is connected to the AC side of the separately excited inverter 4 via the AC breaker 1o. A filter device 11 with a predetermined capacity is provided, which also serves as a phase advancing capacitor for reducing harmonics generated by the inverter and compensating for delayed reactive power,
This filter device 11 is adapted to be connected to and disconnected from the system respectively when the output of the separately excited inverter 4 is 50% or more of the rated output or less than 50% of the rated output.

従って、他励式インバータ4による連系点の系統電圧変
動を従来のシステムに比して半減することが可能となる
Therefore, it is possible to reduce the grid voltage fluctuation at the interconnection point caused by the separately excited inverter 4 by half compared to the conventional system.

尚、上記実施例ではフィルタ装置11の系統への投入、
切離を、他励式インバータ4の出方が定格出力の50%
以上、以下を基準として行なったが、30〜70%の範
囲を基準としても同様の効果を得ることができるもので
ある。
In addition, in the above embodiment, inputting the filter device 11 into the system,
When disconnecting, the output of separately excited inverter 4 is 50% of the rated output.
Although the above was carried out based on the following criteria, similar effects can be obtained even if the range is 30 to 70%.

その他、本発明はその要旨を変更しない範囲で、種々に
変形して実施することができる。
In addition, the present invention can be implemented with various modifications without changing the gist thereof.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、他励式インバータ
の交流側に交流しゃ断器を介して設けられるフィルタ装
置を、イン・ぐ−夕の出方が定格出力の30〜70チ以
上、以下のとき系統に投入、切離するようにしたので、
他励式インバータによる系統電圧変動の低減を図ること
が可能な極めて信頼性の高いインバータと電力系統の連
系システムが提供できる。
As explained above, according to the present invention, a filter device provided on the AC side of a separately excited inverter via an AC breaker is installed when the in/output direction is 30 to 70 inches or more or less than the rated output. Since it was made to be inserted into the system and disconnected at the same time,
It is possible to provide an extremely reliable inverter and power grid interconnection system that can reduce grid voltage fluctuations caused by separately excited inverters.

10−10-

【図面の簡単な説明】[Brief explanation of the drawing]

@1図はインバータと電力系統の主回路構成例を示す図
、第2図は従来のシステムにおける連系点電圧とインバ
ータ出力との関係を示す図、第3図は本発明のシステム
における連系点電圧とインバータ出力との関係を示す図
である。 1・・・直流電源、2・・・直流しゃ断器、3・・・直
流リアクトル、4・・・他励式インバータ、5・・・制
御装置、6・・・連系変圧器、7・・・連系しゃ断器、
8・・・系統インピーダンス、9・・・電力系統、10
・・・交流しゃ断器、11・・・フィルタ装置。 出願人代理人  弁理士 鈴 江 武 彦11− 石へ・−ジム力 −
@Figure 1 is a diagram showing an example of the main circuit configuration of the inverter and the power system, Figure 2 is a diagram showing the relationship between interconnection point voltage and inverter output in the conventional system, and Figure 3 is the diagram showing the relationship between interconnection point voltage and inverter output in the system of the present invention. FIG. 3 is a diagram showing the relationship between point voltage and inverter output. DESCRIPTION OF SYMBOLS 1... DC power supply, 2... DC breaker, 3... DC reactor, 4... Separately excited inverter, 5... Control device, 6... Interconnection transformer, 7... grid breaker,
8... Grid impedance, 9... Power system, 10
...AC breaker, 11...filter device. Applicant's agent Patent attorney Takehiko Suzue 11- Stone - Jim Chikara -

Claims (1)

【特許請求の範囲】[Claims] 直流電源の直流電力を他励式イン・々−夕で交流電力に
変換して電力系統に供給するシステムにおいて、前記他
励式インバータの交流側に交流しゃ断器を介して進相コ
ンデンサを兼ねる所定容量のフィルタ装置を設け、前記
他励式インバータの出力が定格の30〜70チ以上で前
記交流しゃ断器を投入し且つこのインバータ出力が定格
の30〜70%以下で前記交流しゃ断器をしゃ断する手
段を具備したことを特徴とするインバータと電力系統の
連系システム。
In a system that converts DC power from a DC power supply into AC power using a separately excited inverter and supplies it to the power grid, a predetermined capacity capacitor that also serves as a phase advance capacitor is connected to the AC side of the separately excited inverter via an AC breaker. A filter device is provided, and means for turning on the AC breaker when the output of the separately excited inverter is 30 to 70% or more of the rated value, and turning off the AC breaker when the inverter output is 30 to 70% or less of the rated value. An interconnection system between an inverter and a power system, which is characterized by:
JP57157015A 1982-09-09 1982-09-09 Cooperating system between inverter and power system Granted JPS5947938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57157015A JPS5947938A (en) 1982-09-09 1982-09-09 Cooperating system between inverter and power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57157015A JPS5947938A (en) 1982-09-09 1982-09-09 Cooperating system between inverter and power system

Publications (2)

Publication Number Publication Date
JPS5947938A true JPS5947938A (en) 1984-03-17
JPH05930B2 JPH05930B2 (en) 1993-01-07

Family

ID=15640312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57157015A Granted JPS5947938A (en) 1982-09-09 1982-09-09 Cooperating system between inverter and power system

Country Status (1)

Country Link
JP (1) JPS5947938A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010226843A (en) * 2009-03-23 2010-10-07 Honda Motor Co Ltd Single-phase to n-phase converter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56103719A (en) * 1980-01-22 1981-08-19 Toshiba Corp Controller for applied phase of invalid power supply device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56103719A (en) * 1980-01-22 1981-08-19 Toshiba Corp Controller for applied phase of invalid power supply device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010226843A (en) * 2009-03-23 2010-10-07 Honda Motor Co Ltd Single-phase to n-phase converter

Also Published As

Publication number Publication date
JPH05930B2 (en) 1993-01-07

Similar Documents

Publication Publication Date Title
Peng et al. A power line conditioner using cascade multilevel inverters for distribution systems
Huang et al. Design of power decoupling strategy for single-phase grid-connected inverter under nonideal power grid
US8154896B2 (en) STATCOM system for providing reactive and/or active power to a power network
Tu et al. Dynamic voltage restorer with an improved strategy to voltage sag compensation and energy self-recovery
US4641232A (en) Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module
Zhuang et al. Dynamic performance of a STATCON at an HVDC inverter feeding a very weak AC system
US4922124A (en) Arrangement for connecting plural self-commutated voltage type inverters to a utility grid
CN110718931A (en) Novel direct current transmission system suitable for offshore wind power grid connection
Cheng et al. Operations of the dominant harmonic active filter (DHAF) under realistic utility conditions
AU2023348038A1 (en) Energy storage system control method, device and energy storage system
Ismail et al. A multi-objective control scheme of a voltage source converter with battery–supercapacitor energy storage system used for power quality improvement
CN114337314A (en) Low-voltage MW-level high-power direct-current stabilized power supply and control method thereof
CN117879035A (en) Distributed photovoltaic grid-connected power quality control method and system based on sagging control
EP3839999B1 (en) Transformer arrangement
Zhang et al. Autonomous control strategy of bidirectional AC/DC converter in low voltage hybrid microgrid
JPS5947938A (en) Cooperating system between inverter and power system
Wai et al. Power decoupling strategy for single-phase grid-connected inverter under weak power grid
CN110289627B (en) Micro-grid power quality stabilization method and device based on droop control
Chandran et al. Voltage quality enhancement in distribution systems using dynamic voltage restorer with adaptive fuzzy pi controller
JPS5921236A (en) Interlocking system of inverter to power system
CN117895521B (en) Power distribution network control system and method based on AVC circuit mixed regulation
Ramesh et al. Single phase transformer based inverter for nonlinear load application using pi controller
CN217037055U (en) High-voltage direct-current power supply based on input voltage fluctuation compensation
KR102513884B1 (en) System for reducing unbalanced current in microgrid
JPS61121726A (en) Uninterruptible feed system