JPS59212176A - Submerged arc welding method - Google Patents

Submerged arc welding method

Info

Publication number
JPS59212176A
JPS59212176A JP8403483A JP8403483A JPS59212176A JP S59212176 A JPS59212176 A JP S59212176A JP 8403483 A JP8403483 A JP 8403483A JP 8403483 A JP8403483 A JP 8403483A JP S59212176 A JPS59212176 A JP S59212176A
Authority
JP
Japan
Prior art keywords
welding
electrode
groove
submerged arc
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8403483A
Other languages
Japanese (ja)
Other versions
JPS6340633B2 (en
Inventor
Masaaki Tokuhisa
徳久 正昭
Masao Hirai
平井 征夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8403483A priority Critical patent/JPS59212176A/en
Publication of JPS59212176A publication Critical patent/JPS59212176A/en
Publication of JPS6340633B2 publication Critical patent/JPS6340633B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • B23K9/186Submerged-arc welding making use of a consumable electrodes
    • B23K9/188Submerged-arc welding making use of a consumable electrodes making use of several electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To improve welding efficiency without welding defects in multi-layer two-electrode submerged arc welding by specifying wire diameter, etc. and making the space between a succeeding electrode and the wall face of a groove smaller than the spacing between the preceding electrode and the wall face of the groove. CONSTITUTION:The wire diameters of a preceding electrode L and a succeeding electrode T are set at 1.2-3.2mm., welding current is set at 200-600A, welding speed at 40-70cm/min and the distance between the electrodes at 5-30cm in multi-layer two-electrode submerged arc welding for joint welding of extra- thick steel plates, etc. The electrodes L, T are disposed in such a way that the space TW between the succeeding electrode T and the wall face 1a on the groove side is smaller than the space LW between the preceding electrode L and the wall face 1a on the groove side in proximity thereto. Generation of an undercut, etc. is prevented in the narrow groove by such welding method, by which a satisfactory weld zone is formed.

Description

【発明の詳細な説明】 不発明は、多層盛2電極脣弧溶接法に・ぶり、特にi:
!l< ノ≠廟板2#手浴接する場合、スラグ剥離作業
が銭めで容易に行うことができ、かつ、高能率で1ノ」
二全性にトンれた浴接部を告ることができる溶接方法に
関する。
[Detailed Description of the Invention] The invention is directed to a multilayer two-electrode arc welding method, particularly i:
! l < ノ ≠ Shrine board 2 # When using a hand bath, the slag removal work can be easily done with a small amount of money, and it is highly efficient.
The present invention relates to a welding method capable of producing a bimodal bath weld.

厚鋼板の継手浴接には多層盛γ6桜法か採用されている
が、最近、溶接コストの低i+1’j K図る・Z−突
上から種々の改良が提案されてし・る。その1つは、第
1図に示すように、ルート1iti IIn 12 r
r、:nl、jiJ先角度8°の開先部を鋼板1.1′
に形成し、j15−”市ll11!潜弧溶接法により1
f帝1バスの1if層法で多層盛t11とする方法であ
り、また、ン、すの方法(町、・82図に示すように、
ルート間隔24朋、開先角度2°の開先部を2電極潜弧
溶接法により1層2バスの債チ;ツ法で多層盛溶接する
方法である。なお、1/U中、2(ま溶接ビードである
The multi-layer welding γ6 method has been adopted for bath welding joints of thick steel plates, but recently various improvements have been proposed, including low welding costs. One of them is the root 1iti IIn 12 r as shown in FIG.
r, : nl, jiJ The groove part with the tip angle of 8° is steel plate 1.1'
1 by submerged arc welding method.
This is a method of making a multi-layer stack T11 using the 1if layer method of the 1st bus, and also the method of N, Su (machi), as shown in Figure 82.
In this method, a groove with a root interval of 24 mm and a groove angle of 2° is welded in multiple layers using a two-electrode submerged arc welding method using a one-layer, two-bus bonding method. In addition, in 1/U, 2 (ma) is a weld bead.

しかし、これらの方法にも一艮−jAjがらって、いず
れも満是し得る方法とは云い〕;・;い。Jち、tI。
However, there is one thing to be said about all of these methods; none of them are completely satisfactory. Jchi, tI.

接所要時間については、後4は1jij者に比パ・てほ
ぼ2倍の開先断面積を有するが、 1jL4.がガが括
(z/T1.)であるので、はぼ等L7いと云えるり−
れども9m折材料の必要量は+iiJ者の方が%に半減
するメソッドがある。しかし、逆に、例えば、円l51
)状(1°η造物の円I+¥1継手部を溶接1−る場合
には、+JiJ晶(・址、1′外接スフグ8を除去しな
ければならないので、てのために専従の作業者を必要と
するのに対し、後者は、通常、浴接スラグδが自然落下
するので、前者のような作業者を必要とせず、万が−の
場合にも、浴接条件をコントロール乃至監視する作業者
のみで必要な作業を行えば足りる。このように、前者に
だ接材料費が生滅するにしても、作業者を2人必要とす
るので、後者の1人に比べて人件費が2倍かカリ、トー
タルコストとしては、後者の方が有利である。
Regarding the time required for contact, L4 has a groove cross-sectional area that is almost twice that of 1JJ, but 1JL4. Since ga is bracket (z/T1.), it can be said that it is equivalent to L7.
However, there is a method that reduces the required amount of 9m folding material by half to +iiJ%. However, on the contrary, for example, yen l51
) shape (1°η) When welding the circle I+¥1 joint part of the structure, +JiJ crystal (・址、1′ circumscribing sufugu 8) must be removed, so a full-time worker is required to do so. On the other hand, in the latter case, the bath contact slag δ normally falls naturally, so unlike the former case, an operator is not required, and even in the unlikely event that the bath contact conditions are controlled or monitored. It is enough to perform the necessary work with only one worker.In this way, even if the cost of welding materials is reduced in the former case, two workers are required, so the labor cost is 20% compared to the latter one. In terms of total cost, the latter is more advantageous.

したがって、F’JiJ者は、作業者が2人であっても
、それ程効果的な解接を行うことはできず、また、浴接
金属2に關湿割れを発生しや丁く、健全な溶仮部が得ら
れ斧い欠点もある0もっとも、後者におっても、先行電
極および後行電極の配置位置が変幻した場合、アンダカ
ット、スラグ巻込み等の64接欠順を伴ったり、スラグ
剥離性が劣化するなどの欠点がある。
Therefore, F'JiJ workers cannot perform welding effectively even with two workers, and the welding metal 2 is prone to moisture cracking and is not healthy. However, even in the latter case, if the placement positions of the leading electrode and the trailing electrode are changed, the 64-connection order may be accompanied by undercutting, slag entrainment, etc. There are drawbacks such as deterioration in slag removability.

そこで、本発明者等は、前述の従来技術の諸欠点を完全
に解消し、作業者が1人で足り、かつ、狭開先部を圓能
塾で、しかも溶接欠陥を伴わすに溶接できて健全な溶接
部がf辱られる多層盛711弧溶接方法について鋭意研
究したところ、狭開先内で1層2バス積層法により多層
盛271j極潜弧m接を行うのが有利であって、その除
、■バスビードの幅を小さくするよう制御すると共に、
更に、特にアンダカット、スラグ巻込みなどのr’d 
F&欠陥2防止Tるうえで、先行電極に対する後行V4
i極の配置1・tが重要であるとの知見を得、本発明分
なすに至ったのである。
Therefore, the present inventors have completely solved the various drawbacks of the prior art mentioned above, and it is possible to weld a narrow gap with only one operator and without causing welding defects. After intensive research on the multi-layer welding method in which a sound weld is damaged, we found that it is advantageous to perform polar submerged arc welding using the one-layer, two-bus lamination method within a narrow gap. Besides that, ■ In addition to controlling the width of the bath bead to be small,
Furthermore, r'd such as undercuts and slag entrainment, etc.
F & defect 2 prevention T, trailing V4 with respect to leading electrode
It was discovered that the arrangement 1·t of the i-pole is important, and the present invention was achieved.

即ち、本発明の要旨とするところは、1層2バスの積層
方法で行う多層−盛2電極/h弧溶接法において、先行
電極及び後行°電極については、い冬れも電極ワイヤ径
を1.2〜3.2關、rW接°屯流を200〜eooA
、溶接速度を40〜70 c+n/ m1rlにすると
共に電極間距離を5〜80 amとし、力)つ、1ii
ノ記先行i極とこれに近接した開先側11゛4而との間
隔よりも前記後行−極と1jJ記開先側壁面との間隔の
方が小さくなるような電極配置にして、溶接′?i:行
うことを特徴とする狭1形先2屯極満弧溶接方法、にあ
る。
That is, the gist of the present invention is that in the multi-layer stacked 2-electrode/h-arc welding method performed by the 1-layer 2-bus lamination method, the diameter of the electrode wire can be reduced even in winter for the leading electrode and the trailing electrode. 1.2-3.2, rW contact current 200-eooA
, the welding speed was set to 40 to 70 c+n/m1rl, the distance between the electrodes was set to 5 to 80 am, and the force) was 1ii
Welding is performed by arranging the electrodes such that the distance between the trailing pole and the groove side wall surface 1jJ is smaller than the distance between the leading pole i and the groove side 11'4 adjacent thereto. ′? i: A narrow 1-point, 2-ton, full-arc welding method characterized by:

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

まず、第3図に本発明における開先形状と積層法を示す
。鋼板l、1′の開先部はルート間隔W。
First, FIG. 3 shows the groove shape and lamination method in the present invention. The groove portions of steel plates 1 and 1' have a root interval W.

開先角度θの狭開先形状であって(なお、Hはルートフ
ェースである。)、1層を2バス法で溶接ビード2を順
次形成していく積層法で行う。なお、ルー ) 11j
隔Wが大きくなる程、スラグ3の剥離性が向上するが、
溶接能率が逆に損われるので、ルート間隔Wは17朋以
下が好ましい。しかし、10Tnmより小さくTると、
円周継手浴接の場合に溶接スラグδが自然に落下し離〈
なって、スラグ1余去に労力を’ATるようになる。開
先角度θについても同1条であって、15°以下にする
のが好ましく、15°よりも太きくすると、溶接能率が
損われ、経済的ではない。
It has a narrow groove shape with a groove angle θ (H is the root face), and is performed by a lamination method in which weld beads 2 are sequentially formed in one layer using a two-bath method. In addition, Lou) 11j
As the distance W increases, the removability of the slag 3 improves,
Since welding efficiency is adversely affected, the root spacing W is preferably 17 mm or less. However, when T is smaller than 10Tnm,
In the case of circumferential joint bath welding, welding slag δ naturally falls and separates.
As a result, you will be able to spend more effort than just one slug. The groove angle θ is also the same, and is preferably 15° or less; if it is wider than 15°, welding efficiency will be impaired and it is not economical.

?容接7a極は、第4図に示す如く、2電極である。? The capacitor 7a has two electrodes as shown in FIG.

(なお、溶接進行方向αに双して前方に位置Tる117
、 極りを先行−極とし、その後方に位Illするt極
゛fを漫Tテ°tit f所とTる。〕11市極に使用
するワイヤ径は1.2〜8.2wとTる。1.2朋より
も細くすると、ltiイ1向り、Tに2!Ljどした鋼
板lの開先側壁面1aを浴t1すlさせるために、各電
極と開先側壁面1aとノIJ l、;七L’A’ 、 
TVI’ ヲ2 m+以下にしなければならなくなり、
−きの結l(ト、トーチノズルが開先面に接触し短絡を
生ずる危険性がある。一方、J2mmよりも太く一す−
ると、ビード幅が広くなりすぎて17音1バスヒ−ドに
近いビとド形状となり、スラグ剥離性を劣化させると共
にスラグ巻込みが生じやすくなる。
(Note that T 117 is located at the front of the welding direction α.
, Let the pole be the leading pole, and let the pole located behind it be the point. ] The wire diameter used for 11 city poles is 1.2 to 8.2w. If you make it thinner than 1.2, lti is 1 direction, T is 2! In order to bathe the groove side wall surface 1a of the steel plate l which has been adjusted to Lj, each electrode and the groove side wall surface 1a are connected to each electrode and the groove side wall surface 1a;
TVI' had to be less than 2 m+,
-There is a risk that the torch nozzle will come into contact with the groove surface and cause a short circuit.On the other hand, if it is thicker than J2mm-
In this case, the bead width becomes too wide, resulting in a bead shape similar to that of a 17-tone 1 bass head, which deteriorates the slag removability and makes it easy for slag entrainment to occur.

溶接電流は各電極とも200〜600 Aと1゛る。The welding current for each electrode is 200 to 600 A.

2.0OAよりも小さくすると、鋼板1′の開先1+l
 虫面1′bと前バスビードCを十分に浴融させること
ができなくなるので、融合不良が発生しやすくなり、ま
た溶着速度が低下してn・;接tIは牟が損われるロ一
方、600Aよりも犬きくすると、浴接ビー1゛2に萬
温割れが発生しやすくなり、史には、ビード幅が広くな
りすぎて11Gグ1バスピー ドにJ/1いビード形状
となり、スラグ剥離°1つ:を劣化させると共にスラグ
巻込みが生じやすくなる。
If it is smaller than 2.0OA, the groove 1+l of steel plate 1'
Since the insect surface 1'b and the front bath bead C cannot be sufficiently melted in the bath, poor fusion tends to occur, and the welding speed decreases, resulting in damage to the welding surface. If it is made too harsh, thermal cracking is likely to occur in the bath-welded bead 1-2, and in history, the bead width becomes too wide and the bead shape becomes J/1 smaller than the 11G/1 bath speed, resulting in slag peeling. One: It causes deterioration and slag entrainment is more likely to occur.

溶接速度を40〜70 Cm/minにするのは、40
am/ m i r+よりも遅くすると、ビード幅が広
くなりすき゛て11僻1バスビードに近いビード形状と
なってスラグ剥離性が劣化し、更にはスラグ巻込みが発
生しや丁くなり、一方、70 cm/minよりも速く
すると、1水先側壁面1’bと前ノくスピード2のコー
ナーOf十分に溶/独させることができなくなるので、
融合不良を発生しやすくなり、更にはビード表面形状が
乱れるためである。
To set the welding speed to 40 to 70 Cm/min, 40
If the speed is slower than am/m i r+, the bead width becomes wider and the bead shape becomes closer to a bus bead, deteriorating the slag removability, and furthermore, slag entrainment occurs and becomes difficult. If the speed is faster than 70 cm/min, it will not be possible to sufficiently fuse the 1st side wall surface 1'b and the 2nd corner of the front.
This is because poor fusion is likely to occur and furthermore, the bead surface shape is disturbed.

先ヤ]′屯極りと後行電極Tとの間隔りは5〜30關の
範囲内にする。5朋よりも小さくすると、各i′L極に
生ずる屯tH力によってアークに相互作用が鋤らいて不
安定となり、溶接欠陥の発生原因となる。一方、80窮
よりも大きくすると、先行電極りのアーク安定性は維持
されるが、後行電極Tのアークは、先行電極りにより生
じた溶接スラク°に1狙害されて不安定となり、更には
ビード形状も悪化するため、スラグ巻込み、融合不良な
どの欠陥が生じ−やすくなる。
The distance between the leading electrode and the trailing electrode T is within the range of 5 to 30 degrees. If it is smaller than 5, the force generated at each i'L pole causes interaction in the arc, making it unstable and causing welding defects. On the other hand, if the value is set higher than 80, the arc stability of the leading electrode is maintained, but the arc of the trailing electrode T is damaged by the welding slack generated by the leading electrode and becomes unstable. Since the bead shape also deteriorates, defects such as slag entrainment and poor fusion are more likely to occur.

なお、アーク安定性は28〜36V程度が好ましい。こ
の1mlml外の値にすると、短絡を生じて融合不良を
発生しやす〈、また、アンターカットやスラグ巻込みを
発生しやり−くなる!川向がらa(凸′(l用m源特性
としては父流或し箇まir、l’、 lXi: 17’
)いずれもi:J4用することができ、また、浴接用フ
ランクとし−Cも、溶融型大成いは焼成型フランクスの
いずれも用いることができる。
Note that the arc stability is preferably about 28 to 36V. If the value is outside of this 1ml, short circuits may occur and poor fusion will occur (also, undercuts and slag entrainment may occur, which can be dangerous!). Kawamukai's a (convex'
) Any of them can be used for i:J4, and either -C, melting type Taisei or firing type flanks can be used as bath wetting flanks.

以上説明した各条件で溶接を行っても、アンダ   −
カント、スラグ巻込みなどの浴接欠陥3生J゛る場合が
ある。そこで、本発明者等は各4:In実験2行って調
べた結果、これらの浴接欠陥の発生をノロ全に防止Tる
には、各電極り、Tの配r1′t、を′1.5定の関〆
Even if welding is performed under each of the conditions explained above, under-
Bath contact defects such as cant and slag entrainment may occur. Therefore, the inventors conducted two 4:In experiments and found that in order to completely prevent the occurrence of these bath contact defects, the arrangement r1't of each electrode and T should be set to '1'. .5 fixed Seki〆.

に規制する必要があることを児い出したのである。This led to the realization that there was a need for regulation.

実験は、板厚’/ 5 rntn(1) ASTM A
a87 Gr22 (0,14%G、0.22%S1、
(1,43%)7111、o、ooa%P、0.008
%S、2.25%Qr、1.t1%lイ0)の21藺板
を、θ−2°、W−15m、rn、H−10mmのl)
Jゲc、杉伏(第3図参照)に加工した1裟、表=1に
7バすil#成型フラックスと表−2に示すila B
 (1)溶接ワイヤを組合わせて、表−3の溶接条件の
下に2 ’::f 4ijlj 1′i’f弧溶接法で
行い、開先側壁面1aと先5’ riε(+’gs’ 
Iヨとの間隔LWと、後行電極Tとの間隔TWを種々変
化さゼで、アンダカット、融合不良、スラグ巻込みなど
の溶接欠陥の発生状況と各電極の配置との開法について
検査した。その結果2第5図に示TO貢 第6図から明らかなように、先イJ11i jiili
 l、の酢1.゛1位RLWが;3 mmの場合(実−
lン及び5,1朗の:4汁(実−2)のいずれにおいて
も、1・2行□1ii 1:u: Tの配置位置TVが
ある臨界位iI!Jよりも小さい、illち、開先側壁
面1aに近づくと、溶接欠陥の発生が殆んど皆無になる
が、逆に大きい、即ち、開先1則壁げUlaから離れる
につれて急激に浴接欠陥の発生が多くなることがわかる
。そして、その1記昇位汁jは先行電極りの配置位置L
wに略でしい位1iTである(同図中、LW矢印参J績
〕。
The experiment was conducted using plate thickness '/5 rntn (1) ASTM A
a87 Gr22 (0.14%G, 0.22%S1,
(1,43%)7111,o,ooa%P,0.008
%S, 2.25%Qr, 1. 21 board of t1%l0), θ-2°, W-15m, rn, H-10mm l)
Jgec, 1 shoe processed into cedar-bush (see Figure 3), 7 bus il # molding flux in Table 1 and ila B shown in Table 2
(1) Combine welding wires and perform arc welding under the welding conditions shown in Table 3 using the 2'::f 4ijlj 1'i'f arc welding method. '
By varying the distance LW between I and the trailing electrode T and the distance TW between the trailing electrode T, we inspected the occurrence of welding defects such as undercuts, poor fusion, and slag entrainment, as well as the location of each electrode. did. The result is shown in Figure 5.As is clear from Figure 6,
l, vinegar 1.゛If the 1st place RLW is ;3 mm (actual -
In both the 1 and 2 lines □1ii 1:u: T's placement position TV is located at the critical position iI! If the welding defect is smaller than J, i.e., closer to the groove side wall surface 1a, there will be almost no welding defects, but if it is larger, i.e., the welding defect will rapidly increase as you move away from the groove wall Ula. It can be seen that more defects occur. Then, the first ascending liquid j is located at the placement position L of the preceding electrode.
W is approximately 1iT (in the figure, the LW arrow refers to J results).

以上の実験結果より、本発明においては、各″rji。From the above experimental results, in the present invention, each "rji.

極の配置位置間IAを規制し、先行i’l’i、、 l
ii@ Lとこれに近接した開先側壁面1aとの間隔L
wよりも俵r」”flε極Tとの間隔TVの方が小さく
なるように各市4・j≦を配置する。これによって、ア
ンターカットなどを1\、IJざ、良好な溶接部を得る
ことができる1、四に、LwよりもTVを大きくすると
、7′ンタカノト、スラグ巻込みなどの溶接欠陥が発生
しゃi−くなる。ンrお、先行電極りの配置位置Lwは
t  5 mm以下にTるのが好ましく、開先1fi!
I壁而1aを十分に浴証し、俗jd欠陥の発生を防止す
ることが可能となる。
The IA between the pole placement positions is regulated, and the preceding i'l'i,, l
ii@ Distance L between L and the groove side wall surface 1a adjacent thereto
Arrange each city 4・j≦ so that the distance TV from the bale r'”flε to the pole T is smaller than w. By doing this, it is possible to obtain a good welded part by reducing the undercut etc. by 1\ and IJ. 1 and 4. If the TV is made larger than Lw, welding defects such as 7' leakage and slag entrainment may occur. It is preferable to have a groove of 1 fi!
It becomes possible to sufficiently verify the I wall structure 1a and prevent the occurrence of common jd defects.

次に、本発明の一実施例を示す〇 実施例 板厚75 am (1) ASTM A 516  G
r70 (0,19%G、0.29 % Si、1.1
6%Mn、  0.012%P10.008%S)の鋼
板をθ−2°、W−14m+x、H−10關の開先形状
(第8図参照)に加工した後、表−1に示T焼成型フラ
ックスと表−2に示TAAの浴J’&ワイヤを組合わせ
で表−4に示す溶接条件の下で1層2バス多層盛の2屯
極潜弧溶接を行′−)た。X#;!透過試験により溶接
欠陥の有無を調べたが、ヤの結果は表−4に併記したと
おりである。
Next, an example of the present invention will be shown.〇Example plate thickness 75 am (1) ASTM A 516 G
r70 (0.19%G, 0.29%Si, 1.1
After processing a steel plate (6%Mn, 0.012%P, 10.008%S) into a groove shape of θ-2°, W-14m+x, H-10 (see Figure 8), the groove shape shown in Table 1 was prepared. Using a combination of the T-firing type flux and the TAA bath J' and wire shown in Table 2, 2-ton polar submerged arc welding of 1-layer, 2-bus multilayer welding was performed under the welding conditions shown in Table 4. . X#;! The presence or absence of welding defects was investigated by a transmission test, and the results are shown in Table 4.

本発明の各実施例(A 1〜5)はいずれも溶接欠陥か
皆無であった。これに対し、本発明の各条件のうちいず
れかが本発明外の値を有する比較例(扁6〜8)では、
スラグ巻込み、融合不良などの欠陥が多く発生した。
Each of the Examples (A1 to A5) of the present invention had no or no welding defects. On the other hand, in comparative examples (Ban 6 to 8) in which any of the conditions of the present invention has a value outside the present invention,
Many defects such as slag entrainment and poor fusion occurred.

表部 (江) 表中、アンダーラインは本発明外の条件KIα
であることを表わす。
Omote (E) In the table, the underline is the condition KIα outside the present invention.
It means that.

以上説明1−たまうに、本発明によれは、従来の+4′
L屯極イ&弧浴接法はもとより、2奄極漕弧浴接法によ
る多層盛浴接に比べて、何らの溶接欠陥を伴うことなく
溶接iB串を著しく向上することができ、しかも、浴接
作業者が1人で十分行えるため、浴接コストの低υに化
の’E Rfjに元金に応えることができる”g+ m
着な効果を期待し得るものである。
Explanation 1--According to the present invention, the conventional +4'
Compared with not only the L-ton pole and arc bath welding method but also the multi-layer welding method using the two-ton pole arc bath welding method, the welded iB skewer can be significantly improved without any welding defects. Because only one person can perform the bath cleaning, it is possible to lower the bath cleaning cost and pay for the cost.
This is something that can be expected to have a significant effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来法における開先形状及び積層法
を説明する図、 第8図は本発明における開先形状及び積層法を説明する
図、 第4図は本発明における先行m極及び後行7a極の配I
I′2位fi”(関1ホを説明する図であって、(イ)
は正面IA、(ロ)は平面1図、 ・逍5図は先Ti tじイ萌及び後行電極の配置位置と
浴接欠陥の発生状況との関17)−、を示す図である。 ■、1′・・・鋼&     2・・・浴接ビード3・
ン谷1&スラグ    L・・・先行型イ萌T・・・後
行’fly、憾。 第5図 接行電才伽9西Clイ’LJtTw(、、ジーよq−
Figures 1 and 2 are diagrams explaining the groove shape and lamination method in the conventional method. Figure 8 is a diagram explaining the groove shape and lamination method in the present invention. Figure 4 is the leading m pole in the present invention. and arrangement I of the trailing pole 7a
I' 2nd place fi" (This is a diagram explaining Seki 1 Ho,
1A is a front view, (B) is a plan view, and FIG. ■, 1'... Steel & 2... Bath welding bead 3.
Ntani 1 & Slag L... Leading type I Moe T... Trailing 'fly, I'm sorry. Figure 5 Tangent Electric Power 9 West Cl I'LJtTw

Claims (1)

【特許請求の範囲】[Claims] 1、ll帝2バスの積層方・法で行う多層盛2電極澹弧
浴接法において、先行電極及び後行電極については、い
ずれもi′α極ワイヤ径を1.2〜3.2ノ網、溶接7
g流を200〜600A、溶接M度を40〜7 Q c
m/Dinにすると共に電極間距離を5〜30朋とし、
かつ、前記先行電極とこれに近接した開先側壁面との間
隔よりもr′Jij記r父行Iに極と前記開先側壁面と
の間隔の方が小ざくなるような′電極装置にして、溶接
を行うこと?特徴とする狭開先2蹴極潜弧溶接力法。
1. In the multi-layer stacked two-electrode drilling method performed using the two-layer stacking method, the i'α pole wire diameter for both the leading and trailing electrodes is set to 1.2 to 3.2 mm. Net, welding 7
g current 200~600A, welding M degree 40~7 Q c
m/Din and the distance between the electrodes is 5 to 30 mm,
and an electrode device in which the distance between the leading electrode and the groove side wall surface is smaller than the distance between the leading electrode and the groove side wall surface adjacent thereto. So, do welding? Characteristic of the narrow gap 2-kick submerged arc welding force method.
JP8403483A 1983-05-16 1983-05-16 Submerged arc welding method Granted JPS59212176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8403483A JPS59212176A (en) 1983-05-16 1983-05-16 Submerged arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8403483A JPS59212176A (en) 1983-05-16 1983-05-16 Submerged arc welding method

Publications (2)

Publication Number Publication Date
JPS59212176A true JPS59212176A (en) 1984-12-01
JPS6340633B2 JPS6340633B2 (en) 1988-08-11

Family

ID=13819242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8403483A Granted JPS59212176A (en) 1983-05-16 1983-05-16 Submerged arc welding method

Country Status (1)

Country Link
JP (1) JPS59212176A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645573B2 (en) 1998-03-03 2003-11-11 Canon Kabushiki Kaisha Process for forming a microcrystalline silicon series thin film and apparatus suitable for practicing said process
WO2014088110A1 (en) * 2012-12-04 2014-06-12 Jfeスチール株式会社 Method for narrow-gap, gas-shielded arc welding
WO2014088111A1 (en) * 2012-12-04 2014-06-12 Jfeスチール株式会社 Narrow-gap, gas-shielded arc welded joint

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645573B2 (en) 1998-03-03 2003-11-11 Canon Kabushiki Kaisha Process for forming a microcrystalline silicon series thin film and apparatus suitable for practicing said process
WO2014088110A1 (en) * 2012-12-04 2014-06-12 Jfeスチール株式会社 Method for narrow-gap, gas-shielded arc welding
WO2014088111A1 (en) * 2012-12-04 2014-06-12 Jfeスチール株式会社 Narrow-gap, gas-shielded arc welded joint

Also Published As

Publication number Publication date
JPS6340633B2 (en) 1988-08-11

Similar Documents

Publication Publication Date Title
CN105014207B (en) Vanadium/copper solid solution transition connection-based welding process for titanium-containing metal layer/pipeline steel layer composite board
KR20080081797A (en) One side welding method of butt-welded joints
KR102367510B1 (en) Gas shielded arc welding method of steel sheet
JP2021126696A (en) Narrow groove submerged arc welding method
JPS59212176A (en) Submerged arc welding method
JPH08243754A (en) Inner face welding method of clad steel tube
JP7126080B1 (en) Gas-shielded arc welding method, welded joint, and method for manufacturing the welded joint
JPS61115682A (en) Two-electrode submerged arc welding
KR20230021579A (en) One-side submerged arc welding method for multielectrode
JPH0428472B2 (en)
JPH08276273A (en) Butt welding method for clad steel
JP3180257B2 (en) Inner surface seam welding method for clad steel pipe
JP7323781B2 (en) Multi-electrode submerged arc welding method
WO2023189026A1 (en) Narrow gap gas-shielded arc welding method and welding apparatus for narrow gap gas-shielded arc welding
JPH11129067A (en) Circumferential welding for fixed pipe
JPH11239879A (en) Multi-layer submerged arc welding method for super-thick steel plate, and super-thick welded member
JP2000288735A (en) Two-electrode vertically facing electro-gas arc welding method excellent in welding workability and penetration bead appearance
WO2022196540A1 (en) Gas shield arc welding method, welding joint, and method for producing welding joint
JPH081338A (en) High heat input multi-layer submerged arc welding method for thick steel plate
WO2018168896A1 (en) Welding method and welded joint
JP3113119B2 (en) Titanium or titanium alloy plate joining method
JP6949745B2 (en) Single-sided submerged arc welding method and single-sided submerged arc welding equipment
JPS61266185A (en) Double electrode mig welding method
JPH0484676A (en) One-side submerged arc welding method at high speed
JP5548545B2 (en) Backing metal for arc welding