JPS59211773A - Thermal-to-mechanical energy converter - Google Patents

Thermal-to-mechanical energy converter

Info

Publication number
JPS59211773A
JPS59211773A JP8502183A JP8502183A JPS59211773A JP S59211773 A JPS59211773 A JP S59211773A JP 8502183 A JP8502183 A JP 8502183A JP 8502183 A JP8502183 A JP 8502183A JP S59211773 A JPS59211773 A JP S59211773A
Authority
JP
Japan
Prior art keywords
shape memory
memory alloy
members
memorizing alloy
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8502183A
Other languages
Japanese (ja)
Other versions
JPH0375758B2 (en
Inventor
Masaru Honma
大 本間
Wataru Nonaka
渉 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WASEDA DAIGAKU
Original Assignee
WASEDA DAIGAKU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WASEDA DAIGAKU filed Critical WASEDA DAIGAKU
Priority to JP8502183A priority Critical patent/JPS59211773A/en
Publication of JPS59211773A publication Critical patent/JPS59211773A/en
Publication of JPH0375758B2 publication Critical patent/JPH0375758B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element

Abstract

PURPOSE:To enlarge the stroke of a mobile part and to allow the form recovering force to reduce an angle two members, by utilizing the tendency of form recovery from the state of elongated deformation of a form-memorizing alloy, in a thermal-to-mechanical energy converter using said form-memorizing alloy. CONSTITUTION:The pivotal axis 3 of two members 1 and 2 which are joined with each other in a relatively rotatable manner is adjusted to coincide with the axis of a form memorizing alloy wound part 4. A string-like form memorizing alloy 5 is wound around the part 4 and its both ends are fixed to the members 1 and 2. A means of heating the form memorizing alloy 5 is provided, while said means being consisting of an electrifying or light radiating means. The members 1 and 2 are energized with a spring so that they are separated widely in the angular positions, while the form memorizing alloy 5, shows its maximum length, under the cooled state. When heated, the form memorizing alloy 5 shrinks from its full length due to the tendency of recovering its memory form (straight form), whereby reducing the angle between the members 1 and 2 and making the member 1 swing at a high speed.

Description

【発明の詳細な説明】 (技術分野) 本発明は、形状記憶合金を用いて熱エネルギを力学的エ
ネルギに変換する熱−力学的エネルギ変換装置に関する
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a thermo-mechanical energy conversion device that converts thermal energy into mechanical energy using a shape memory alloy.

(従来技術) 。(Prior art).

この種の装置は、形状記憶合金が変形状態から記憶形状
に回復する過程において発生する回複ノJ(以下、形状
回復力と言う)を利用ターるものであるが、前記形状回
復力は、形状記憶合金に曲げ変形やねじり変形を与えた
場合より、伸び変形をigえた場合Φ方が、著しく大き
くなることは、よく知られている。
This type of device utilizes the recursive force J (hereinafter referred to as shape recovery force) that occurs during the process in which a shape memory alloy recovers from a deformed state to a memorized shape. It is well known that when a memory alloy is subjected to elongation deformation, Φ becomes significantly larger than when it is subjected to bending deformation or torsional deformation.

また、これに関連することであるが、形状記憶合金が変
形状態から記憶形状に回復する速度も、曲げ変形やねじ
り変形を与えIC場合より、伸び変形を与えた場合の方
が、速くなることも、よく知られている。
Also, related to this, the speed at which a shape memory alloy recovers from a deformed state to its memorized shape is faster when subjected to elongation deformation than when subjected to bending or torsional deformation. is also well known.

したがって、この種の装置に63いては、形状記憶合金
、に伸び変形を与え、その伸び変形からの形状回5復力
を利用することが望ましい。
Therefore, in this type of device 63, it is desirable to apply elongation deformation to the shape memory alloy and utilize the shape recovery force from the elongation deformation.

しかし、、従来にqいては、上述のように形状記憶合金
に伸び変形を与え、その伸び変形からの形状回復力を、
利用しようとすると、装置の可動部のストロークを大き
くすることが困難であったので、もっばら、形状記憶合
金に曲げ変形(およびねじり変形)を与え、その曲げ変
形(およびねじり変形)からの形状回復力を利用してい
た。したがって、比較的に小さな力しか発生させること
ができないとともに、動作速度も比較的に遅いという欠
点があった。
However, in the past, as described above, elongation deformation is applied to the shape memory alloy, and the shape recovery force from the elongation deformation is
When trying to use it, it was difficult to increase the stroke of the movable part of the device, so we mainly applied bending deformation (and torsional deformation) to the shape memory alloy and created a shape from that bending deformation (and torsional deformation). He used his resilience. Therefore, there are disadvantages in that only a relatively small force can be generated and the operating speed is relatively slow.

そこで、本出願人は、先に、特願昭57−118457
号においで1形状記憶合金の伸び変形からの形状回復力
を利用し、なおかつ可動部のストロークを大きくするこ
とができ、マニピュレータのアーム等に用いるに好適な
熱−力学的エネルギ変換装置を提案した。
Therefore, the present applicant first applied for patent application No. 57-118457.
In this issue, we proposed a thermo-mechanical energy conversion device that utilizes the shape recovery force of a shape memory alloy from elongation deformation, can increase the stroke of the movable part, and is suitable for use in manipulator arms, etc. .

この装置は、互いに相対的に回動自在に結合された2つ
の部材のうちの一つに、線状の形状記憶合金の一端側を
取り付ける一方、前記2つの部材のうちの他方に前記形
状記憶合金の他端側を取り付け、かつ前記形状記憶合金
の中間部を形状記憶合金巻掛部に巻き掛けるものである
が、前記本出願人の出願において開示された実施例は、
いずれも形状記憶合金の形状回復力が、前記2つの部材
間の角度を増大する方向に作用するものぐあった。
In this device, one end side of a linear shape memory alloy is attached to one of two members rotatably connected to each other, and the shape memory alloy is attached to the other of the two members. The other end of the alloy is attached, and the middle part of the shape memory alloy is wrapped around the shape memory alloy wrapping part, but in the embodiment disclosed in the application of the present applicant,
In both cases, the shape recovery force of the shape memory alloy acted in a direction that increased the angle between the two members.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に鑑みてなされICもので、
形状記憶合金の伸び変形からの形状回復を利用し、なお
かつ可動部のストロークを大きくりることができ、しか
も前記形状回復力が2つの部材間の角度を減少させる方
向に作用する熱−力学的エネルギ変換装置を提供するこ
とを目的とづる7〔発明の概要〕 本発明による熱−力学的エネルギ変換装置は、互いに相
対的に回動自在に結合された2つの部材と、形状記憶合
金巻掛部と、一端側を前記2つの部材うちの一方に、他
端側を前記2つの部材のうちの他方にそれぞれ取り付け
られるとともに、中間部を前記形状記憶合金巻掛部に巻
ぎ掛けられた線状の形状記憶合金と、この形状記憶合金
に引っ張り力を作用させる手段とを有してなり、前記形
状記憶合金は、前記2つの部材間の角度が増大り゛ると
、該形状記憶合金の伸び変形が増大することとなる関係
で前記形状記憶合金巻掛部に巻き掛けられていることに
より、上述の目的を達成するものである。
The present invention was made in view of these circumstances, and is an IC.
A thermo-mechanical method that utilizes shape recovery from elongation deformation of shape memory alloys, can increase the stroke of the movable part, and that the shape recovery force acts in the direction of reducing the angle between two members. 7 [Summary of the Invention] A thermo-mechanical energy conversion device according to the present invention comprises two members rotatably connected to each other, and a shape memory alloy wrapped member. and a wire whose one end is attached to one of the two members and the other end is attached to the other of the two members, and whose middle part is wrapped around the shape memory alloy wrapping part. The shape memory alloy comprises a shape memory alloy having a shape and means for applying a tensile force to the shape memory alloy, and the shape memory alloy has a shape memory alloy whose shape increases as the angle between the two members increases. The above object is achieved by being wrapped around the shape memory alloy wrapping portion in a manner that increases elongation deformation.

〔実施例〕〔Example〕

以下、本発明を図面に承り実施例に基づいてさらに詳細
に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail below based on embodiments with reference to the drawings.

第1図および第2図において、構造部材1および構造部
材2の一端部同士は、軸3により、相対的に回動自在に
結合、されている。前記構造部材1には、本実施例にお
いて形状記憶合金巻掛部を構成するプーリー状の形状記
憶合金巻掛@4が、その中心を軸3に一致させた状態で
固定されている。
In FIGS. 1 and 2, one end of a structural member 1 and a structural member 2 are connected to each other by a shaft 3 so as to be relatively rotatable. A pulley-shaped shape memory alloy wrap @4, which constitutes a shape memory alloy wrap in this embodiment, is fixed to the structural member 1 with its center aligned with the shaft 3.

5は線状の、Ti−JJi合金等の形状記憶合金であり
、この形状記憶合金5は、その一端部を構造部材1に取
り付けられる一方、他端部を構造部材2に取り付けられ
、かつ中間部を形状記憶合金巻掛材4に巻き掛けられて
いる。ここで、前記形状記憶合金5は、所定の形状記憶
処理を施されることにより、第3図に示されるような真
直な形状を記憶しており、この記憶形状時における該合
金5の全長はLとなっている。
5 is a linear shape memory alloy such as a Ti-JJi alloy, and this shape memory alloy 5 has one end attached to the structural member 1, the other end attached to the structural member 2, and an intermediate portion. The shape memory alloy wrapping material 4 is wound around the shape memory alloy wrapping material 4. Here, the shape memory alloy 5 memorizes a straight shape as shown in FIG. 3 by being subjected to a predetermined shape memory treatment, and the total length of the alloy 5 in this memorized shape is It is L.

また、前記形状記憶合金5は、形状記憶合金巻掛材4に
クロス状態で巻き掛()られてJ3す、これにより該合
金5は、構造部材1.2間の角度θか増大すると、その
伸び変形ΔLが大きくなるにうにされている。
Further, the shape memory alloy 5 is wound around the shape memory alloy wrapping material 4 in a cross state, so that when the angle θ between the structural members 1 and 2 increases, the shape memory alloy 5 The elongation deformation ΔL is made to be large.

前記構造部材1.2間には、ばね6が介装されており(
第2図参照)、このばね6は、構造部材1.2を前記角
1友θが大きくなる方向に(1勢している。
A spring 6 is interposed between the structural members 1.2 (
(See FIG. 2), this spring 6 biases the structural member 1.2 in the direction in which the angle θ increases.

また、前記形状記憶合金5は、その両端を通電装置7に
接続されている。
Further, the shape memory alloy 5 is connected to the current supply device 7 at both ends thereof.

次に、本実施例の作動を説明する。Next, the operation of this embodiment will be explained.

過電装[7かう形状記憶合金5に電流が流されておらず
、該合金5が冷却している場合には、ばね6の力により
、構造部材1.2間の角度θおよび形状記憶合金5の伸
びΔLは最大どなっている。
If no current is applied to the shape memory alloy 5 and the alloy 5 is cooled, the force of the spring 6 will cause the angle θ between the structural members 1.2 and the shape memory alloy 5 to The elongation ΔL is at its maximum.

次に、通電装置7から形状記憶合金5に適当な大きさの
電流を流すと、該合金5はジュール熱により加熱され、
一定温度以上となり、相変態を開始し、形状記憶効果に
より、第3図の記憶形状(真直な状態)に戻ろうとする
Next, when an appropriate amount of current is passed through the shape memory alloy 5 from the current supply device 7, the alloy 5 is heated by Joule heat,
When the temperature reaches a certain level or higher, phase transformation begins, and due to the shape memory effect, it attempts to return to the memorized shape (straight state) shown in FIG. 3.

このため、伸縮方向に関してみると、形状記憶合金5は
、その全長がLどなるように(言い換えれば、ΔLが0
どなるように)縮もうとする。
Therefore, in terms of the expansion and contraction direction, the shape memory alloy 5 has a shape memory alloy 5 whose total length is L (in other words, ΔL is 0).
try to shrink)

したがって、いま、構造部材2が固定されているとする
と、構造部材1は第1図の一点鎖線で示されるように、
ばね6に抗して図上時計方向に回動され、構造部材1.
2間の角度θは小さくなる。
Therefore, if the structural member 2 is now fixed, the structural member 1 will be as shown by the dashed line in FIG.
The structural member 1. is rotated clockwise in the figure against the spring 6.
The angle θ between the two becomes smaller.

なお、形状記憶合金5は線状であるため、曲げ変形から
の形状回復力は小さいので、曲げ変形に関しては、形状
記憶合金5は僅かしか形状回復を示さない。
Note that since the shape memory alloy 5 is linear, its shape recovery force from bending deformation is small, so the shape memory alloy 5 exhibits only slight shape recovery with respect to bending deformation.

この熱−力学的エネルギ変換装置では、上述のように形
状記憶合金5の伸び変形からの形状回復力を利用するの
で、構造部材1を非常に大きな力で高速に駆動すること
ができる。
Since this thermo-mechanical energy conversion device utilizes the shape recovery force of the shape memory alloy 5 from elongation deformation as described above, the structural member 1 can be driven at high speed with a very large force.

また、形状記憶合金5の伸びΔLをあまり大きくすると
、塑性変形を生じてしまい、完全な形状回復が行われな
くなるので、前記ΔLは、一定以上大ぎくすることはで
きないが、この熱−り学的エネルギ変換装置では、前記
ΔLの微小な変化が大きく拡大されて構造部材1の変位
どなるので・、構造部材1のストロークを大きくするこ
とができる。
Furthermore, if the elongation ΔL of the shape memory alloy 5 is too large, plastic deformation will occur and complete shape recovery will not occur, so the ΔL cannot be increased beyond a certain level. In the target energy conversion device, the minute change in ΔL is greatly magnified and the displacement of the structural member 1 becomes large, so that the stroke of the structural member 1 can be increased.

なお、通電装置7による通電が停止され、形状記憶合金
5が冷却すると、ばね6のソノにより、414造部材1
は図上反時計方向に回動され、前記角度θは再び大きく
なる。
Note that when the energization by the energizing device 7 is stopped and the shape memory alloy 5 is cooled, the 414-shaped member 1 is
is rotated counterclockwise in the figure, and the angle θ becomes large again.

また、加熱時の形状記憶合金5の伸びΔし、ひいては構
造部材1,2間の角度θは、形状記憶合金5の相変態の
進行状態、ひいては形状記憶合金5に入力される熱エネ
ルギの大きさに対応する。
In addition, the elongation Δ of the shape memory alloy 5 during heating and the angle θ between the structural members 1 and 2 are determined by the progress state of phase transformation of the shape memory alloy 5, and by extension the magnitude of the thermal energy input to the shape memory alloy 5. correspond to the situation.

したがって、通電装置17から形状記憶合金5に流され
る電流の大きさを制御することにより、構造部材1.2
間の角度θを制tlNl−ることがぐきる。
Therefore, by controlling the magnitude of the current flowing from the energizing device 17 to the shape memory alloy 5, the structural member 1.2
It is possible to control the angle θ between tlNl-.

なお、前記実施例では、形状記憶合金巻掛材4のうちの
、形状記憶合金5を巻き掛りられる部分を円形とし、か
つその中心を軸3と一致させているが、形状記憶合金巻
掛材4の前記部分は、必ずしも円形とり−る必要はない
し、その中心を軸3と一致させる必要もない。
In the above embodiment, the part of the shape memory alloy wrapping material 4 on which the shape memory alloy 5 is wrapped is circular, and its center is aligned with the shaft 3; The said part of 4 does not necessarily have to be circular, nor does it need to have its center coincide with the axis 3.

そして、形状記憶合金巻掛@4の前記部分の形状および
該部分と軸3との位置関係によって、前記角度θと伸び
ΔLとの関係、ひいては形状記憶合金5に通電した際の
、前記角度θと装置の発生トルクとの関係を示ず特性曲
線を変化することができる。
Then, depending on the shape of the portion of the shape memory alloy wrapped @ 4 and the positional relationship between the portion and the shaft 3, the relationship between the angle θ and the elongation ΔL, and the angle θ when the shape memory alloy 5 is energized. The characteristic curve can be changed without showing the relationship between the torque and the torque generated by the device.

まIc、前記実施例・では、形状記憶合金巻掛材4を構
造部材1と別の部材としているが、形状記憶合金巻掛材
4を構造部材1に一体的に設けてもよい。
In the above embodiments, the shape memory alloy wrapping material 4 is a separate member from the structural member 1, but the shape memory alloy wrapping material 4 may be provided integrally with the structural member 1.

また、形状記憶合金巻掛材4を構造部材1と別の部材と
し、かつこの形状記憶合金巻掛材4を構造部uiに固定
しないで、該巻掛材4を構造部材1.2の何れに対して
も回動自在としてもよい。
Alternatively, the shape memory alloy wrapping material 4 is made a separate member from the structural member 1, and the shape memory alloy wrapping material 4 is not fixed to the structural part ui, and the wrapping material 4 is attached to any of the structural members 1.2. It may also be rotatable.

また、前記実施例では、通電加熱により、形状記憶合金
を加熱しているが、本発明においては、レーザー光線や
通常光線を照射する等の他の方法より、形状記憶合金を
加熱してもよい。
Further, in the above embodiments, the shape memory alloy is heated by electrical heating, but in the present invention, the shape memory alloy may be heated by other methods such as irradiation with a laser beam or ordinary light.

さらに、前記実施例では、形状記憶合金を伸び変形させ
るために、ばねを用いCいるが、■カイの伯の、ばね力
以外の力により、形状記憶合金に伸び変形を与える構成
としても良いことはaうまでもない。
Furthermore, in the above embodiment, a spring is used to stretch and deform the shape memory alloy, but it is also possible to use a structure in which the shape memory alloy is stretched and deformed by a force other than the spring force. It goes without saying.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明による熱−ソノ学的1ネルギ変換装
置は、形状記憶合金の伸び変形からの形状回復を利用し
、なおかつ可動部のストロークを大きくすることができ
、しかも前記形状回復力が2つの部祠闇の角度を減少さ
せる方向に作用りるという優れた効果を得られるもので
ある。
As described above, the thermal-sonological one-energy conversion device according to the present invention utilizes the shape recovery from elongation deformation of the shape memory alloy, can increase the stroke of the movable part, and furthermore, the shape recovery force can be increased. This has the excellent effect of reducing the angle between the two parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による熱−力学的エネルギ変換装置の一
実施例を示す正面図、第2図は同実施例を示す平面図、
第3図は同実施例にお1プる形状記憶合金の記憶形状を
示す正面図である。 1.2・・・構造部材、3・・・軸、4・・・形状記憶
合金巻掛材、5・・・形状記憶合金、6・・・ばね。 第1図 4 第2図
FIG. 1 is a front view showing an embodiment of a thermo-mechanical energy conversion device according to the present invention, and FIG. 2 is a plan view showing the same embodiment.
FIG. 3 is a front view showing the memory shape of the shape memory alloy included in the same example. 1.2... Structural member, 3... Shaft, 4... Shape memory alloy wrapping material, 5... Shape memory alloy, 6... Spring. Figure 1 4 Figure 2

Claims (1)

【特許請求の範囲】 互いに相対的に回動自在に結幸された2つの部材と、形
状記憶合金巻掛部と、一端側を前記2つの部材うちの一
方に、他端側を前記2つの部材のうらの他方にそれぞれ
取り付けられるとともに、中間部を前記形状記憶合金巻
掛部に巻き、掛けられた線状の形状記憶合金と、この形
状記憶合金に引っ張り力を作用させる手段とを有してな
り、前記形状記憶合金は、前記2つの部材間の角度が増
大すると、該形状記憶合金の伸び変形が増大する。こと
となる関係で前記形状記憶合金巻掛部に、巻空掛けられ
ていることを特徴とする熱−力学的エネルギ変換装置。         、。
[Scope of Claims] Two members rotatably connected to each other, a shape memory alloy wrapping portion, one end of which is attached to one of the two members, and the other end of which is attached to one of the two members. A linear shape memory alloy is attached to the other back of the member, and the intermediate portion is wound around the shape memory alloy wrapping portion, and a means for applying a tensile force to the shape memory alloy is provided. Therefore, when the angle between the two members increases, the elongation deformation of the shape memory alloy increases. A thermo-mechanical energy conversion device characterized in that the shape memory alloy is unwound on the shape memory alloy winding part in a different relationship. ,.
JP8502183A 1983-05-17 1983-05-17 Thermal-to-mechanical energy converter Granted JPS59211773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8502183A JPS59211773A (en) 1983-05-17 1983-05-17 Thermal-to-mechanical energy converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8502183A JPS59211773A (en) 1983-05-17 1983-05-17 Thermal-to-mechanical energy converter

Publications (2)

Publication Number Publication Date
JPS59211773A true JPS59211773A (en) 1984-11-30
JPH0375758B2 JPH0375758B2 (en) 1991-12-03

Family

ID=13847072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8502183A Granted JPS59211773A (en) 1983-05-17 1983-05-17 Thermal-to-mechanical energy converter

Country Status (1)

Country Link
JP (1) JPS59211773A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2554360A (en) * 2016-09-21 2018-04-04 The Science And Tech Facilities Council A moveable joint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2554360A (en) * 2016-09-21 2018-04-04 The Science And Tech Facilities Council A moveable joint
US10830219B2 (en) 2016-09-21 2020-11-10 The Science And Technology Facilities Council Moveable joint

Also Published As

Publication number Publication date
JPH0375758B2 (en) 1991-12-03

Similar Documents

Publication Publication Date Title
KR101967214B1 (en) Apparatus for manufacturing shape memory alloy spring continuously, method of manufacturing shape memory alloy spring continuoulsy and shape memory alloy spring manufactured thereby
JP4040794B2 (en) Shape memory alloy actuator
JP6911209B2 (en) Artificial muscle tentacles
JPS59211773A (en) Thermal-to-mechanical energy converter
JPS6326279B2 (en)
JPH07328127A (en) Method and apparatus for manufacturing actuator and structural body having the same
JPS61171885A (en) Actuator
JP4067282B2 (en) Shape memory alloy actuator
JPS6321367A (en) Shape memory alloy device
JP2804263B2 (en) Shape memory alloy actuator
JPH0660628B2 (en) Thermo-mechanical energy converter
WO2021045707A2 (en) An actuator mechanism
JPH09109320A (en) Shape recovery device
JP2801310B2 (en) Manufacturing method of two-way shape memory coil spring
JPH0580590B2 (en)
KR102529095B1 (en) Hair curler or hair straighteners
JPS5862445A (en) Louver device
JPH01100385A (en) Actuator
JPS59118863A (en) Production of shape memory alloy
JPH0313551A (en) Production of bidirectional shape memory coil spring
JPS60186779A (en) Rocking device for crank
JPH01169393A (en) Shape varying product
JPS60172489A (en) Actuator
JP2020191721A (en) Actuator device
JPH0360909B2 (en)