JPH01100385A - Actuator - Google Patents

Actuator

Info

Publication number
JPH01100385A
JPH01100385A JP25694387A JP25694387A JPH01100385A JP H01100385 A JPH01100385 A JP H01100385A JP 25694387 A JP25694387 A JP 25694387A JP 25694387 A JP25694387 A JP 25694387A JP H01100385 A JPH01100385 A JP H01100385A
Authority
JP
Japan
Prior art keywords
spring
shape memory
memory alloy
actuating
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25694387A
Other languages
Japanese (ja)
Other versions
JPH0768941B2 (en
Inventor
Tomonori Katano
智紀 片野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP25694387A priority Critical patent/JPH0768941B2/en
Publication of JPH01100385A publication Critical patent/JPH01100385A/en
Publication of JPH0768941B2 publication Critical patent/JPH0768941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To obtain a varying actuating force in accordance with the amount of current supply in an actuator, which controls actions through electrical heating of an actuating spring consisting of shape memory alloy, by varying the electric resistance distribution of the shape memory alloy over the whole length of the actuating spring. CONSTITUTION:In an actuator a coil-shaped actuating spring 10 formed by winding a wire consisting of shape memory alloy and a coil-shaped bias spring 2 are fitted at the left and right sides of a flange 31 of an actuating rod 3. A current supply device 6 supplies current to this actuating spring 10 through an electrode plate 5, and thereby the spring 10 drives the actuating rod 3 to the right against the action of the bias spring 2. In this arrangement the section area of the actuating spring 10 is not uniform over the whole length, but a wire with thicker left end decreasing its dia. toward the right end is wound into a coil. Thereby an actuating force varying with the amount of current supply is obtained, which enhances the control accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、形状記憶合金を操作ばねとして用い、該操
作ばねへの直接通電加熱による形状記憶合金の形状回復
力を操作力として位置制御、荷重制御等を行うアクチュ
エータに関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention uses a shape memory alloy as an operation spring, and uses the shape recovery force of the shape memory alloy as an operation force by directly applying electric current to the operation spring to control the position. This invention relates to an actuator that performs load control, etc.

〔従来の技術〕[Conventional technology]

周知のように形状記憶合金は、その変態点温度を境にそ
の上下の温度で結晶構造が変わり、かつその変態点温度
以下の状態で与えた変形が変態点温度以上に加熱すると
元の形状に回復する形状記憶効果をもった合金であり、
この形状記憶効果の特性を活用して最近では各種の分野
で応用されるようになっている。
As is well known, the crystal structure of shape memory alloys changes at temperatures above and below the transformation point temperature, and when deformed below the transformation point temperature, it returns to its original shape when heated above the transformation point temperature. It is an alloy with a shape memory effect that recovers.
Utilizing the characteristics of this shape memory effect, it has recently come to be applied in various fields.

またその応用の一端として形状記憶合金を用いたアクチ
エエータの開発が進められている。かかる形状記憶合金
を用いたアクチュエータは機構が簡単で小形、軽量化が
図れる他、温度以外の耐環境性に優れた特長があり、従
来の電磁ソレノイドに代わるアクチュエータとして、最
近では各種分野で応用例が報告されている。
Furthermore, as part of its application, the development of actuators using shape memory alloys is progressing. Actuators using such shape memory alloys have simple mechanisms, are compact, lightweight, and have excellent environmental resistance other than temperature, and have recently been used in various fields as actuators to replace conventional electromagnetic solenoids. has been reported.

次に形状記憶合金を用いたアクチュエータの従来におけ
る代表的な構造例を第10図に示す。図において、1は
NiTi合金にチノール合金)等の太さ一定な形状記憶
合金の線材を巻回したコイル状の操作ばね、2はコイル
状のバイアスばね、3は操作ロッドであり、該操作ロッ
ド3に対しロッドフランジ31の左右両側に前記操作ば
ね1.バイアスばね2を装着した上で、これら部品の組
立体をフレーム4内に組み込んでアクチュエータを構成
している。また形状記憶合金製の操作ばね1はその両端
に配した電極板5を介して電流供給装置6より直接通電
されるようになっている。
Next, FIG. 10 shows a typical structural example of a conventional actuator using a shape memory alloy. In the figure, 1 is a coiled operating spring wound with a wire of a shape memory alloy of constant thickness such as NiTi alloy or tinol alloy, 2 is a coiled bias spring, and 3 is an operating rod. The operating springs 1.3 are located on both left and right sides of the rod flange 31. After the bias spring 2 is attached, the assembly of these parts is assembled into the frame 4 to constitute the actuator. Further, the operation spring 1 made of a shape memory alloy is directly energized by a current supply device 6 via electrode plates 5 arranged at both ends thereof.

かかる構成で、形状記憶合金の変態点温度以下の常温で
は操作ばね1はバイアスばね2のばね力により左側に押
されて縮むように変形し、操作ロッド3は図示状、態に
待機している。ここで電流供給装置6より電極板5を介
して操作ばね1に直接通電し、形状記憶合金を変態点温
度以上に昇温加熱すると形状回復し、操作ばね1はバイ
アスばね2に抗して操作ロッド3を右方に駆動する。つ
まり通電、非通電の制御により操作ロッド3が矢印Aの
二方向で移動動作することになる。
With this configuration, at room temperature below the transformation point temperature of the shape memory alloy, the operating spring 1 is pushed to the left by the spring force of the bias spring 2 and deforms so as to contract, and the operating rod 3 is on standby in the state shown in the figure. Here, current is applied directly to the operating spring 1 via the electrode plate 5 from the current supply device 6, and when the shape memory alloy is heated to a temperature higher than the transformation point temperature, the shape is restored, and the operating spring 1 is operated against the bias spring 2. Drive rod 3 to the right. In other words, the operating rod 3 moves in two directions indicated by arrow A by controlling energization and de-energization.

なお、前記した形状記憶合金としてNiTi合金で作ら
れた操作ばね1の特性として、ばねを一定のたわみ状態
に拘束保持した際の温度Tと荷重Pとの関係、およびば
ねに一定の荷重を加えて保持した際の温度Tとたわみδ
との関係をそれぞれ第11図、第12図に示す。この特
性図から明らかなように形状記憶合金製の操作ばねは形
状記憶合金の変態点温度付近でその特性が急激に変化し
、それ以外の温度領域では殆ど変化がない。
In addition, the characteristics of the operation spring 1 made of NiTi alloy as the shape memory alloy mentioned above include the relationship between temperature T and load P when the spring is restrained and held in a constant deflection state, and the relationship between temperature T and load P when a constant load is applied to the spring. Temperature T and deflection δ when held at
The relationships between the two are shown in FIGS. 11 and 12, respectively. As is clear from this characteristic diagram, the characteristics of the operating spring made of a shape memory alloy change rapidly near the transformation point temperature of the shape memory alloy, and hardly change in other temperature ranges.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで前記した従来のアクチュエータでは、荷重、た
わみ等の動作特性が形状記憶合金の変態点温度を境にス
テップ的に急激変化するためにオン、オフ動作形のアク
チュエータとして使用する場合にはなんら差支えないが
、例えば位置制御等を行う比例動作形アクチュエータと
して使用するには形状記憶合金の変態点温度付近の狭い
温度領域で極めて精度の高い温度制御が必要となり、こ
のままでは比例動作形アクチュエータとして殆ど実用に
供し得ない。
By the way, in the conventional actuator mentioned above, since the operating characteristics such as load and deflection change rapidly in a stepwise manner after reaching the transformation point temperature of the shape memory alloy, there is no problem when used as an on-off operation type actuator. However, in order to use it as a proportional actuator for position control, for example, extremely accurate temperature control is required in a narrow temperature range near the transformation point temperature of the shape memory alloy, and as it is, it is almost impossible to put it into practical use as a proportional actuator. I can't offer it.

この発明は上記の点にかんがみ成されたものであり、そ
の目的は特に形状記憶合金で作られた操作ばねを改良す
ることにより比例動作形アクチュエータとして適用でき
る連続制御の可能なアクチュエータを提供することにあ
る。
The present invention has been made in view of the above points, and its purpose is to provide an actuator that can be continuously controlled and can be applied as a proportional action actuator by improving an operating spring made of a shape memory alloy. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために、この発明によれば、形状
記憶合金を操作ばねとして用い、該操作ばねへの直接通
電加熱による形状記憶合金の形状回復力を操作力として
所要動作の制御を行うアクチュエータにおいて、前記操
作ばねの全長域に亙り形状記憶合金の電気抵抗値分布を
連続ないし段階的に変化させ、通電量に対応して変化す
る操作力を得るように構成するものとする。
In order to solve the above-mentioned problems, according to the present invention, a shape memory alloy is used as an operation spring, and the required motion is controlled using the shape recovery force of the shape memory alloy as an operation force due to direct electrical heating to the operation spring. In the actuator, the electrical resistance value distribution of the shape memory alloy is changed continuously or stepwise over the entire length of the operating spring, so that an operating force that changes in accordance with the amount of energization is obtained.

〔作用〕[Effect]

上記の構成で、操作ばねは断面積をその長手方向に沿っ
て連続ないし段階的に変化させ、その断面積の変化に対
応した電気抵抗値の分布を得るようにしている。
With the above configuration, the cross-sectional area of the operating spring is changed continuously or stepwise along its longitudinal direction, so that a distribution of electrical resistance values corresponding to changes in the cross-sectional area is obtained.

かかる形状記憶合金の操作ばねに対し、電流供給装置よ
り電流をパルス幅変調方式でそのデユーティ比を変えな
がら供給すると、そのジュール熱による操作ばねの発熱
温度は長手方向に沿って−様でなく電気抵抗値分布に対
応した温度分布で変化して行く。これに伴い形状記憶合
金の変態点塩  “度を超える領域が連続ないし段階的
に変化し、操作ばね全体としての発生荷重は通電量に応
じてコントロールできるようになる。したがって上記の
操作ばねにバイアスばねを組合せたり、独立して互いに
逆方向に通電制御される2木の形状記憶合金製ばねを組
合せることにより、通電量に応じて高精度な位置制御、
荷重制御を行う比例動作形アクチュエータが実現できる
ことになる。
When a current is supplied from a current supply device to an operating spring made of a shape memory alloy while changing the duty ratio using a pulse width modulation method, the temperature at which the operating spring generates heat due to Joule heat is uniformly electrical along the longitudinal direction. It changes with the temperature distribution corresponding to the resistance value distribution. As a result, the region exceeding the transformation point of the shape memory alloy changes continuously or stepwise, and the load generated by the operating spring as a whole can be controlled according to the amount of current applied.Therefore, the above operating spring is biased. By combining springs or by combining two shape memory alloy springs that are independently energized in opposite directions, highly accurate position control can be achieved depending on the amount of energization.
A proportional actuator that performs load control can be realized.

〔実施例〕 第1図、第2図はそれぞれ本発明による往復移動型1回
転アーム型アクチュエータの実施例を示すものである。
[Embodiment] FIGS. 1 and 2 each show an embodiment of a reciprocating single-rotation arm type actuator according to the present invention.

なお第1図において第10図に対応する同一部材には同
じ符号が付しである。
In FIG. 1, the same members corresponding to FIG. 10 are given the same reference numerals.

まず第1図において、アクチエエータの基本構造は第1
0図と同様であり、ここで形状記憶合金で作られた操作
ばね10はその全長域に亙って断面積が−様な太さでな
く、左端が太くて右端側へ行くにしたがって漸次細くな
る線材をコイル状に巻回して作られている。またフレー
ム4の中間部にはストッパとなる段差41が形成されて
おり、常温状態でバイアスばね2のばね力により形状記
憶合金の操作ばね10の各ターン間が接触して電気的に
短絡したり5異常な熱伝導を引き起こすことを防止する
ようにしている。
First of all, in Figure 1, the basic structure of the actuator is shown in Figure 1.
This is similar to Figure 0, in which the operating spring 10 made of a shape memory alloy has a cross-sectional area that is not as thick over its entire length, but is thicker at the left end and gradually becomes thinner toward the right end. It is made by winding wire into a coil. In addition, a step 41 is formed in the middle of the frame 4 to serve as a stopper, and the spring force of the bias spring 2 at room temperature causes each turn of the shape memory alloy operating spring 10 to come into contact and cause an electrical short circuit. 5. Efforts are made to prevent abnormal heat conduction.

次に上記構成における操作ばね10についての各種動作
特性を第10図に示した一様な太さの操作ばね1と対比
して説明する。まず第3図、第4図。
Next, various operating characteristics of the operating spring 10 having the above configuration will be explained in comparison with the operating spring 1 having a uniform thickness shown in FIG. 10. First, Figures 3 and 4.

および第5図に示すようにそれぞれコイル径をrとした
線径diが−、定な形状記憶合金製のコイル状操作ばね
1.および線径d2が長手方向で連続的に変化する形状
記憶合金製のコイル状操作ばね10に対し一定のたわみ
δ0を与えた状態で、電流供給装置6より電極板5を介
して操作ばねに直接通電して加熱した際に発生する荷重
PL、 P2について検討する。なお操作ばね1.10
の線径di、 d2は操作ばね全体として形状記憶合金
の変態点前後で同じ荷重を発生するように選定するもの
とする。
As shown in FIG. 5, coiled operation springs 1. and 1. are made of a shape memory alloy, each having a wire diameter di of -, where the coil diameter is r. Then, with a constant deflection δ0 applied to the coiled operation spring 10 made of a shape memory alloy whose wire diameter d2 changes continuously in the longitudinal direction, the current supply device 6 directly applies it to the operation spring via the electrode plate 5. Let us consider the loads PL and P2 that occur when electricity is applied and heated. In addition, operation spring 1.10
The wire diameters di and d2 shall be selected so that the operating spring as a whole generates the same load before and after the transformation point of the shape memory alloy.

ここで第5図において、操作ばねのコイル線長手方向の
途中箇所に斜線で示したΔφの微少部分の抵抗R(φ)
は、核部のコイル線径をd、コイル径をr、形状記憶合
金の比抵抗をρとすれば、R(φ)=ρ・rΔφ/ r
t (d / 2 ) ”−・・−・−(11となる。
Here, in FIG. 5, the resistance R (φ) of the minute portion of Δφ shown with diagonal lines in the middle of the coil wire of the operating spring in the longitudinal direction
If the core coil wire diameter is d, the coil diameter is r, and the specific resistance of the shape memory alloy is ρ, then R(φ)=ρ・rΔφ/r
t (d/2) ”-・・-・-(11.

ここで第3図の操作ばねIはその全長域でコイル線径d
が同じ線径d1であるので(1)式より電気抵抗値R(
φ)の分布は第6図における線(イ)のようにコイル線
全長域で一定となる。また電流供給装置6より操作ばね
1に通電した際に前記微少部分に発生する発熱量Q(φ
)は、電流をi9通電時間をtとすると、 Q(φン=i”Rφt−−−−・−・・−・・・−・−
−−−−−−・−−−・−〜・・−・−・−−−−−+
21であり、操作ばね1のコイル全長域における発熱分
布、つまり温度T(φ)の分布も第6図の(イ)線のよ
うになる。
Here, the operating spring I in Fig. 3 has a coil wire diameter d in its entire length region.
have the same wire diameter d1, so from equation (1) the electrical resistance value R(
The distribution of φ) is constant over the entire length of the coil wire, as shown by line (A) in FIG. Further, when the operating spring 1 is energized from the current supply device 6, the amount of heat generated in the minute portion Q (φ
), where the current is i9 and the energization time is t, Q(φn=i”Rφt−−−・−・・−・・・−・−
−−−−−−・−−−・−〜・・−・−・−−−−−+
21, and the distribution of heat generation over the entire length of the coil of the operating spring 1, that is, the distribution of temperature T(φ), is also as shown in line (A) in FIG.

これに対して第4図に示した操作ばね10では、コイル
線径d2が一定でなく長手方向に沿って連続的に変化し
ているために、第5図でφに沿ってコイル線径dが次第
に大きくなるとすれば(1)式よりその電気抵抗値の分
布、並びに通電に伴う発熱。
On the other hand, in the operating spring 10 shown in FIG. 4, the coil wire diameter d2 is not constant but changes continuously along the longitudinal direction. If , gradually increases, then equation (1) shows the distribution of electrical resistance and the heat generated by energization.

温度分布は第6図における(口)線として表されること
になる。
The temperature distribution will be represented by the (opening) line in FIG.

次に通電に伴う形状記憶合金の形状回復力で操作コイル
1,10に発生する荷重Pに付いて考察する。コイル状
操作ばねのたわみδは、コイル線の角歪をω(φ)、コ
イル径をrとして、となる、なお操作ばねのコイル巻数
をnとすればφ0は2πnである。またここでコイル線
径をd。
Next, the load P generated on the operating coils 1 and 10 due to the shape recovery force of the shape memory alloy due to energization will be considered. The deflection δ of the coiled operating spring is expressed as follows, where ω(φ) is the angular strain of the coil wire and r is the coil diameter. If n is the number of turns of the coil of the operating spring, φ0 is 2πn. Also, here the coil wire diameter is d.

形状記憶合金の剛性率をG(φ)とすれば、ω(φl=
 (32rP/π) ・(1/Δφ’・(dφ))・・
・・−・・・・・・・−・・−・−・−・・・・−・−
・−・(4)となる。したがって第3図、第4図のよう
に操作ばね1,10のたわみを60に保持した際に発生
する荷重Pは(31,(41弐より、次式のようになる
If the rigidity of the shape memory alloy is G(φ), then ω(φl=
(32rP/π) ・(1/Δφ'・(dφ))・・
・・−・・・・・−・・−・−・−・・−・−
...(4). Therefore, the load P generated when the deflection of the operating springs 1 and 10 is maintained at 60 as shown in FIGS. 3 and 4 is as follows from (31, (412).

−・・・−−一−−−−−−・・−・−・−・・−・−
・−一−・−・−(5)次に形状記憶合金の形状回復に
NiTi合金のR相(ロンボヘドラル相)変態を利用す
るとして、前式における形状記憶合金の剛性率G(φ)
が第7図のように変態点温度Tmを境にGLからG、L
に急激変化するものと仮定して操作ばねの発生荷重Pを
考える。第3図、第4図において操作ばね1.10の温
度が形状記憶合金の変態点温度よりも十分低い状態から
、パルス幅変調方式によるパルス幅/周期、つまりデユ
ーティ比を上げるように電流供給装置6で通電制御する
と、まずコイル線径が一定である第3図の操作ばね1で
は、その温度分布が第6図の(イ)線のように操作ばね
のコイル全長域で一様になることから発生荷重Pとデユ
ーティ比との関係は(5)式より第8図のようになる。
−・・・−−1−−−−−−・・−・−・−・・−・−
・-1-・-・-(5) Next, assuming that the R phase (rombohedral phase) transformation of the NiTi alloy is used to recover the shape of the shape memory alloy, the rigidity G (φ) of the shape memory alloy in the previous equation is
As shown in Figure 7, the transition temperature changes from GL to G to L at the transformation point temperature Tm.
Let us consider the generated load P of the operating spring assuming that it changes rapidly. In FIGS. 3 and 4, the current supply device increases the pulse width/period using the pulse width modulation method, that is, the duty ratio, from a state where the temperature of the operating spring 1.10 is sufficiently lower than the transformation point temperature of the shape memory alloy. When controlling the energization in step 6, first of all, in operating spring 1 in Fig. 3 where the coil wire diameter is constant, the temperature distribution becomes uniform over the entire length of the coil of the operating spring as shown in line (A) in Fig. 6. From equation (5), the relationship between the generated load P and the duty ratio is as shown in FIG. 8.

すなわち第7図のように変態点温度Tm以下ではG(φ
)−G、であったのが、変態点温度Tllまで加熱昇温
されると同時に操作ばね1のコイル全長域に亙りG(φ
1=Gnとなることから、第8図においてデユーティ比
がある値に上昇すると発生荷重PはPLからPHへステ
ップ的に上昇変化することになる。
In other words, as shown in FIG. 7, below the transformation temperature Tm, G(φ
)-G, is heated to the transformation point temperature Tll and at the same time becomes G(φ
Since 1=Gn, when the duty ratio increases to a certain value in FIG. 8, the generated load P increases stepwise from PL to PH.

つまり第3図の操作ばね1を用いた従来のアクチュエー
タでは先記したようにオン、オフ動作は可能であるが発
生荷重を連続的に制御する比例動作形アクチュエータへ
の適用には不向きであることが判る。
In other words, although the conventional actuator using the operating spring 1 shown in Fig. 3 can perform on/off operations as described above, it is not suitable for application to a proportional action type actuator that continuously controls the generated load. I understand.

これに対して第4図に示した操作ばね10では、第6図
の(ロ)線のようにコイル全長域での温度分布が一様で
なく連続的に変化することになるので、その時の発生荷
重Pとデユーティ比との関係は(5)式より第9図で表
すようになる。すなわち通電量のデユーティ比を徐々に
上げていくと、操作ばね10のコイル線全長域に亙って
剛性率G(φl”GL。
On the other hand, in the operating spring 10 shown in Fig. 4, the temperature distribution over the entire length of the coil is not uniform and changes continuously, as shown by line (b) in Fig. 6. The relationship between the generated load P and the duty ratio is shown in FIG. 9 from equation (5). That is, as the duty ratio of the amount of current is gradually increased, the rigidity G (φl''GL) increases over the entire length of the coil wire of the operating spring 10.

したがって発生荷重P=PLである状態から、まず操作
ばね10における抵抗の大きい線径d2の細い領域が抵
抗の小さな線径の太い領域よりも先に変態点温度を超え
てG(φl=Gイとなり、操作ばね10の発生荷重Pは
局部的に上昇する。続いて通電電流のデユーティ比をさ
らに高めてゆくと変態点温度を超える領域が次第に増大
し、これに伴って操作ばね10全体での発生荷重Pは次
第に上昇するようになる。そして操作ばね10のコイル
線全長域が変態点温度まで上昇すると全体の剛性率がG
(φ)=Gllに高まり、発生荷重はP−Pイとなる。
Therefore, from the state where the generated load P=PL, first, the narrow region of the wire diameter d2 with high resistance in the operation spring 10 exceeds the transformation point temperature G (φl=G As a result, the generated load P of the operating spring 10 increases locally.Subsequently, as the duty ratio of the current is further increased, the area exceeding the transformation point temperature gradually increases, and along with this, the load P of the operating spring 10 as a whole increases. The generated load P gradually increases.Then, when the entire length of the coil wire of the operating spring 10 rises to the transformation point temperature, the overall rigidity increases to G.
(φ)=Gll, and the generated load becomes P-Pi.

つまり発生荷重は操作ばねlのようにステップ的に変化
せず、通電電流のデユーティ比に対応して連続的に変化
するようになる。
In other words, the generated load does not change stepwise like the operation spring 1, but changes continuously in response to the duty ratio of the applied current.

これにより第4図の操作ばね10を用いた第1図のアク
チュエータでは、操作ばね10に流す電流をパルス幅変
調方式で適宜に制御することにより、その通電量に対応
して形状記憶合金製操作ばね10の形状回復領域が部分
的に変化し、操作ばね全体としての発生荷重を精度よく
連続的にコントロールすることができるようになる。つ
まり第1図のようにバイアスばね2と組合せることによ
り、位置制御、荷重制御に対して連続的に精度よ(比例
動作制御が行えることが判る。
As a result, in the actuator shown in FIG. 1 using the operation spring 10 shown in FIG. The shape recovery region of the spring 10 partially changes, and the load generated by the entire operating spring can be controlled continuously and accurately. In other words, by combining it with the bias spring 2 as shown in FIG. 1, it can be seen that continuous precision (proportional operation control) can be performed for position control and load control.

なお前記実施例では操作ばね10をコイル線径が連続的
変化するものを示したが、コイル線径をその長手方向に
沿って段階的に変化させるようにしてもほぼ同等な効果
を奏することができる。また第1図の実施例において、
バイアスばね2を通常のばね材から形状記憶合金製のば
ねに置き換えてその通電を操作ばね1と逆向きに制御す
ることにより、矢印Aの二方向での比例動作制御を行わ
せることが可能となる。
In the above embodiment, the operating spring 10 has a coil wire diameter that changes continuously, but substantially the same effect can be obtained even if the coil wire diameter is changed stepwise along its longitudinal direction. can. Furthermore, in the embodiment shown in FIG.
By replacing the bias spring 2 with a shape memory alloy spring instead of a normal spring material and controlling its energization in the opposite direction to the operation spring 1, it is possible to perform proportional operation control in the two directions of arrow A. Become.

次に第2図に本発明の異なる実施例のアクチュエータを
示す。この実施例は固定アーム71の先端に枢軸部72
を介して可動アーム73を連結したアーム機構7におい
て、その可動アーム73を矢印B方向に回動操作させる
回転アーム型アクチエエータである。ここで固定アーム
71から枢軸部72に設けたプーリ74を経て可動アー
ム73に至る全長域の背面側にはその線径が漸次増大す
る形状記憶合金製のワイヤ状操作ばね8が張架されおり
、前記操作ばね8と反対側には固定アーム71と可動ア
ーム73との間にまたがって先記実施例と同様にそのコ
イル線径が連続ないし段階的に変化する形状記憶合金製
のコイル状操作ばね9が斜めに架設されている。また各
操作ばね8,9は個々に電流供給装置6より直接通電を
受けて加熱制御される。
Next, FIG. 2 shows an actuator according to a different embodiment of the present invention. In this embodiment, a pivot portion 72 is provided at the tip of the fixed arm 71.
This is a rotary arm type actuator that rotates the movable arm 73 in the direction of arrow B in the arm mechanism 7 that connects the movable arm 73 via the arm mechanism 7. Here, a wire-shaped operation spring 8 made of a shape memory alloy whose wire diameter gradually increases is stretched on the back side of the entire length region from the fixed arm 71 to the movable arm 73 via a pulley 74 provided on the pivot portion 72. On the opposite side of the operating spring 8, there is a coiled operating coil made of a shape memory alloy, which extends between the fixed arm 71 and the movable arm 73 and whose coil wire diameter changes continuously or stepwise as in the previous embodiment. A spring 9 is installed diagonally. Further, each of the operating springs 8 and 9 is heated and controlled by being individually energized directly by the current supply device 6.

かかる構成で図示状態から操作ばね8を通電加熱して形
状回復させることにより、そ゛の通電量に対応して可動
アーム73は反時計方向に回転動作する。逆に操作ばね
9を通電加熱すれば可動アーム73は時計方向に回転動
作する。しかもこの動作の際に操作ばね8.9に流す電
流量を適宜制御することによりその回転角を連続的に精
度よく制御することができる。
With this configuration, by heating the operating spring 8 from the illustrated state to restore its shape, the movable arm 73 rotates counterclockwise in response to the amount of current applied. Conversely, if the operation spring 9 is energized and heated, the movable arm 73 rotates clockwise. Furthermore, by appropriately controlling the amount of current flowing through the operating spring 8.9 during this operation, the rotation angle can be continuously and accurately controlled.

〔発明の効果〕〔Effect of the invention〕

以上述べたようにこの発明によれば、形状記憶合金を操
作ばねとして用い、該操作ばねへの直接通電加熱による
形状記憶合金の形状回復力を操作力として所要動作の制
御を行うアクチュエータにおいて、前記操作ばねの全長
域に亙り形状記憶合金の電気抵抗値分布を連続ないし段
階的に変化させ、通電量に対応して変化する操作力を得
るよう構成したことにより、従来のアクチュエータで成
し得なかった比例動作型アクチュエータとして精度よく
位置制御、荷重制御を行わせることができ、その用途拡
大化を図ることができる。
As described above, according to the present invention, in an actuator that uses a shape memory alloy as an operation spring and controls a required operation using the shape recovery force of the shape memory alloy as an operation force by direct electric heating to the operation spring, By changing the electrical resistance value distribution of the shape memory alloy continuously or stepwise over the entire length of the operating spring, the structure is configured to obtain an operating force that changes in response to the amount of current, which cannot be achieved with conventional actuators. As a proportional operation type actuator, position control and load control can be performed with high precision, and its uses can be expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ本発明の異なる実施例を示す
往復動型、アーム回転型アクチュエータの構成図、第3
図、第4図、第5図は動作説明用として表したコイル線
径一定、およびコイル線径が連続的に変化する形状記憶
合金製の操作ばねの側面図、および部分正面図、第6図
は第3図、第4図に対応する操作ばねのコイル線全長に
亙る電気抵抗、温度の分布図、第7図は形状記憶合金の
剛性率と温度との関係図、第8図、第9図はそれぞれ第
3図、第4図に対応する操作ばねの発生荷重と通電電流
デユーティ比との関係図、第10図は従来における代表
的なアクチュエータの構成図、第11図、第12図はそ
れぞれ第10図における形状記憶合金製操作ばねの荷重
、たわみと温度との関係図である。各図において、 1.8.9.io:形状記憶合金製の操作ばね、2:バ
イアスばね、3:葆イトロンド、5:電極板、第1図 第2図 第5図 第6図       第7図 第8図       第9図
1 and 2 are configuration diagrams of a reciprocating type actuator and an arm rotation type actuator showing different embodiments of the present invention, respectively.
Figures 4 and 5 are a side view, a partial front view, and a partial front view of an operation spring made of a shape memory alloy in which the coil wire diameter is constant and the coil wire diameter changes continuously, for the purpose of explaining the operation. 3 and 4 are electrical resistance and temperature distribution diagrams over the entire length of the coil wire of the operating spring, Figure 7 is a diagram of the relationship between the rigidity of the shape memory alloy and temperature, and Figures 8 and 9 The diagrams show the relationship between the load generated by the operating spring and the current duty ratio corresponding to Figures 3 and 4, Figure 10 is a configuration diagram of a typical conventional actuator, and Figures 11 and 12 are FIG. 10 is a relationship diagram of the load, deflection, and temperature of the shape memory alloy operating spring in FIG. 10, respectively. In each figure, 1.8.9. io: Operation spring made of shape memory alloy, 2: Bias spring, 3: Stainless steel, 5: Electrode plate, Fig. 1 Fig. 2 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9

Claims (1)

【特許請求の範囲】 1)形状記憶合金を操作ばねとして用い、該操作ばねへ
の直接通電加熱による形状記憶合金の形状回復力を操作
力として所要動作の制御を行うアクチュエータにおいて
、前記操作ばねの全長域に亙り形状記憶合金の電気抵抗
値分布を連続ないし段階的に変化させ、通電量に対応し
て変化する操作力を得るようにしたことを特徴とするア
クチュエータ。 2)特許請求の範囲第1項記載のアクチュエータにおい
て、操作ばねの断面積がその長手方向に沿って連続ない
し段階的に変化していることを特徴とするアクチュエー
タ。
[Scope of Claims] 1) In an actuator that uses a shape memory alloy as an operation spring and controls a required operation using the shape recovery force of the shape memory alloy by direct electric heating to the operation spring as an operation force, the operation spring is An actuator characterized in that the electric resistance value distribution of a shape memory alloy is changed continuously or stepwise over the entire length region to obtain an operating force that changes in response to the amount of current applied. 2) The actuator according to claim 1, wherein the cross-sectional area of the operating spring changes continuously or stepwise along its longitudinal direction.
JP25694387A 1987-10-12 1987-10-12 Actuator Expired - Lifetime JPH0768941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25694387A JPH0768941B2 (en) 1987-10-12 1987-10-12 Actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25694387A JPH0768941B2 (en) 1987-10-12 1987-10-12 Actuator

Publications (2)

Publication Number Publication Date
JPH01100385A true JPH01100385A (en) 1989-04-18
JPH0768941B2 JPH0768941B2 (en) 1995-07-26

Family

ID=17299512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25694387A Expired - Lifetime JPH0768941B2 (en) 1987-10-12 1987-10-12 Actuator

Country Status (1)

Country Link
JP (1) JPH0768941B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183564A (en) * 2004-12-27 2006-07-13 Toki Corporation Kk Actuator
CZ297963B6 (en) * 2004-11-25 2007-05-09 Vysoké ucení technické v Brne Servo unit drive employing temperature deformations of metal alloys with retentivity
JP2022048307A (en) * 2020-02-27 2022-03-25 ニューポート コーポレーション Component shift instrument provided with shape memory alloy actuator
CN114312565A (en) * 2021-12-30 2022-04-12 西安电子科技大学芜湖研究院 Overheating alarm type new energy automobile battery pack

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ297963B6 (en) * 2004-11-25 2007-05-09 Vysoké ucení technické v Brne Servo unit drive employing temperature deformations of metal alloys with retentivity
JP2006183564A (en) * 2004-12-27 2006-07-13 Toki Corporation Kk Actuator
JP4553725B2 (en) * 2004-12-27 2010-09-29 トキコーポレーション株式会社 Actuator
JP2022048307A (en) * 2020-02-27 2022-03-25 ニューポート コーポレーション Component shift instrument provided with shape memory alloy actuator
CN114312565A (en) * 2021-12-30 2022-04-12 西安电子科技大学芜湖研究院 Overheating alarm type new energy automobile battery pack
CN114312565B (en) * 2021-12-30 2023-09-05 西安电子科技大学芜湖研究院 Overheat alarm type new energy automobile battery pack

Also Published As

Publication number Publication date
JPH0768941B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
US4716731A (en) Actuator of shape memory effect material
Ikuta Micro/miniature shape memory alloy actuator
JPS61229977A (en) Linear motion type actuator
US4979672A (en) Shape memory actuator
US5685148A (en) Drive apparatus
US6633095B1 (en) Motion device using shape memory material and method therefor
JPH01100385A (en) Actuator
JPS61103081A (en) Shape memory alloy utilizing valve
JPS61142980A (en) Thermosensitive actuator
JP2817647B2 (en) Variable inductance element
JPH06339887A (en) Actuator, articulated hand thereby, temperature switch, overcurrent switch and circuit changeover switch
JPS60166766A (en) Heat-sensitive actuator
JPH09268969A (en) Shape memory alloy actuator
Hodgson Using shape memory for proportional control
JP2736694B2 (en) Linear motion actuator
JPH089713Y2 (en) Sector switchgear
JP2549356B2 (en) Shape memory alloy spring
JP2000158375A (en) Manipulator head
JPH0755333Y2 (en) Shape memory actuator element
JPH0660628B2 (en) Thermo-mechanical energy converter
JP2000346228A (en) Solenoid operating valve
JPS6146475A (en) Shape memory alloy device
JP3106357B2 (en) Camera sector switchgear
JPS59110979A (en) Control valve
JPH02241990A (en) Shape memory alloy actuator