JPS59211518A - Controlling method of cnverter waste gas - Google Patents

Controlling method of cnverter waste gas

Info

Publication number
JPS59211518A
JPS59211518A JP8559183A JP8559183A JPS59211518A JP S59211518 A JPS59211518 A JP S59211518A JP 8559183 A JP8559183 A JP 8559183A JP 8559183 A JP8559183 A JP 8559183A JP S59211518 A JPS59211518 A JP S59211518A
Authority
JP
Japan
Prior art keywords
gas
damper
generated
raw material
auxiliary raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8559183A
Other languages
Japanese (ja)
Inventor
Shunji Nakamura
俊二 中村
Shinya Sato
信也 佐藤
Michiaki Takahashi
高橋 道明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8559183A priority Critical patent/JPS59211518A/en
Publication of JPS59211518A publication Critical patent/JPS59211518A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust
    • C21C5/40Offtakes or separating apparatus for converter waste gases or dust

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To prevent blowing out of gas from a converter port owing to a sharp increase in the amt. of the gas generated during charging of an auxiliary raw material by controlling an R damper in accordance with the increased amt. of said gas and the predicted value of a delay in reaction time in the treatment of converter waste gas. CONSTITUTION:An increased amt. DELTAF of generated gas and a delay in reaction time T1 are actually measured for each charging degree V(T/H) of the auxiliary raw material to be charged during refining, and the respective relations are obtd. as shown in the figure. Prescribed equations are obtd. with DELTAF, T1 and reaction time T2 from said relations and it is predicted by using these equations that the sharp increase in the generated gas begins after T1 time since the auxiliary raw material is charged and that the gas of DELTAF increases after T2 time. The DELTAF is converted to the opening of the R damper to be increased and the R damper is controlled according to the flow rate of the waste gas-the opening of the R damper characteristic. The automatic control of the R damper with good follow-up is thus made possible with a sharp increase in the amt. of the gas produced when the auxiliary raw material is charged.

Description

【発明の詳細な説明】 本発明は、転炉排ガス処理において精錬中に任意のタイ
ミングで転炉々内に投入される副原料の投入開始から反
応開始までの時間と、炉内反応による発生ガス量及び発
生ガスの増加率の予測を行ない、これに基づいて排ガス
制御を行なう転炉排ガスの制御に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the time from the start of the introduction of auxiliary raw materials to the start of reaction, which are introduced into the converters at arbitrary timing during refining, and the gas generated by the reaction in the furnace in converter exhaust gas treatment. This invention relates to converter exhaust gas control in which the amount and rate of increase in generated gas are predicted and exhaust gas control is performed based on the prediction.

はじめに第1図を参照して、従来から行なわれている転
炉排ガス処理の基本的な構成について説明する。第1図
において1は転炉、2は上下振動が可能なスカート、3
はフード、4はRダンパ、5はサクションダンパ、6は
ガス誘引送風機(IDF)、7は溶鋼、8は炉内吹込酸
素、9は炉。
First, with reference to FIG. 1, the basic configuration of conventional converter exhaust gas treatment will be explained. In Figure 1, 1 is a converter, 2 is a skirt that can vibrate up and down, and 3
is a hood, 4 is an R damper, 5 is a suction damper, 6 is a gas induced fan (IDF), 7 is molten steel, 8 is oxygen blown into the furnace, and 9 is a furnace.

内発生ガス、lOは炉口圧力計、11はスカート位置検
出器、12はガス分析計、13は誘引ガス流量計、14
は空気、15は計算機、16はPID調節計、17はR
ダンパ駆動装置、18は予測制御部、19は加算器、お
よび20は副原料投入信号検出器である。
Internally generated gas, IO is a furnace mouth pressure gauge, 11 is a skirt position detector, 12 is a gas analyzer, 13 is an induced gas flow meter, 14
is air, 15 is computer, 16 is PID controller, 17 is R
A damper driving device, 18 a predictive control unit, 19 an adder, and 20 an auxiliary raw material input signal detector.

転炉1内の溶鋼7は、この中に酸素8が吹き込まれて精
錬されるが、その際、多量の排ガス(主にCoガス)9
が発生する。この排ガス9を非燃焼状態で処理するため
、吹錬中はスカー1〜2を下げ、さらに炉口圧力計10
.スカート位置検出器11゜ガス分析計12.誘引ガス
流量側13等の情報をもとに以下に述べる種々の方法で
Rダンパ4の開度を制御することで炉口部吹込み空気1
4によるCoガスの燃焼を極力押さえている。以下に従
来の排ガス制御方法を説明する。
The molten steel 7 in the converter 1 is refined by blowing oxygen 8 into it, but at that time, a large amount of exhaust gas (mainly Co gas) 9 is generated.
occurs. In order to process this exhaust gas 9 in a non-combustible state, the scars 1 and 2 are lowered during blowing, and the pressure gauge 10
.. Skirt position detector 11° gas analyzer 12. By controlling the opening degree of the R damper 4 using the various methods described below based on the information on the induced gas flow rate side 13, etc., the air 1
4 suppresses the combustion of Co gas as much as possible. A conventional exhaust gas control method will be explained below.

(1)炉口圧カ一定値制御−m−この方法は、炉口圧力
計lOにより検出された炉口圧力が一定の値になるよう
にRダンパ4を制御するものである。
(1) Constant value control of furnace mouth pressure - m - In this method, the R damper 4 is controlled so that the furnace mouth pressure detected by the furnace mouth pressure gauge IO becomes a constant value.

(2)炉口部吹込み空気量制御−m−この方法は炉口圧
力計10.スカート位置検出器11および転炉ガス分析
計12により、転炉4口とスカート2の間から吸込まれ
る炉口吸込み空気量14を計算機15内のモデル式によ
り算定し、この炉口吸込み空気量14が一定の値になる
ようにRダンパ4を制御するものである。
(2) Control of the amount of air blown into the furnace mouth - m - This method uses the furnace mouth pressure gauge 10. The skirt position detector 11 and the converter gas analyzer 12 calculate the furnace intake air amount 14 sucked from between the converter 4 ports and the skirt 2 using a model formula in the calculator 15, and calculate the furnace entrance suction air amount. 14 is a constant value.

(3)炉内発生ガス制御−m−この方法は計算機15内
のモデル式により、ランス、副原料等より炉内に持ち込
まれた酸素8と転炉ガス分析装置12から求まる炉外に
持ち出された酸素量との差から炉内に残留している酸素
量を求め、その酸素量から炉内発生ガス量を推定し、そ
の炉内発生ガス量に対してRダンパ4を制御するもので
ある。
(3) Control of gas generated in the furnace - m - This method uses a model formula in the computer 15 to control the amount of oxygen 8 brought into the furnace from lances, auxiliary raw materials, etc. and the oxygen 8 taken out of the furnace determined by the converter gas analyzer 12. The amount of oxygen remaining in the furnace is calculated from the difference between the amount of oxygen generated in the furnace, the amount of gas generated in the furnace is estimated from the amount of oxygen, and the R damper 4 is controlled with respect to the amount of gas generated in the furnace. .

これらの従来技術はいずれも計装又は計算機によるPI
D調節計16を用いて、各測定値(炉口圧力、炉口部吸
込空気量および炉内発生ガス量)が、各設定値に等しく
なるように同調節計内でPID演算を行ない、その演算
結果は制御信号として操作部であるRダンパ駆動装置1
7に送られる。
All of these conventional technologies use instrumentation or computer-based PI.
Using the D controller 16, PID calculation is performed within the controller so that each measured value (furnace mouth pressure, furnace mouth suction air amount, and furnace gas amount) becomes equal to each set value. The calculation result is sent as a control signal to the R damper drive device 1, which is the operating section.
Sent to 7.

このように従来の制御は、各測定値(実績値)と設定値
との比較演算を行なうフィードバック制御であり、副原
料投入時の発生ガス量急増に対して対処しきれず、炉口
からのガス吹出し現象が避けられなかった。
In this way, conventional control is a feedback control that performs comparison calculations between each measured value (actual value) and a set value, but it cannot cope with the sudden increase in the amount of gas generated when adding auxiliary materials, and the gas from the furnace mouth is The blowout phenomenon was unavoidable.

本発明の目的は、副原料投入時の発生ガス量の急増に対
するRダンパの追従性をよくし、炉口からのガス吹出し
を防ぐことである。
An object of the present invention is to improve the ability of the R damper to follow the sudden increase in the amount of gas generated when auxiliary materials are introduced, and to prevent gas from blowing out from the furnace mouth.

本発明では、転炉排ガス処理においてM線中に投入する
副原料の投入度合から発生ガス増加量と反応遅れ時間を
予測し、この予測値をもとにダンパーを制御する。又、
この時のダンパー開度制御については従来用いられてい
る計装または計算機によるPID調節計部16を介さず
に同PID調節計部の後段に設けた加算器19に直接制
御出力を行なうことにより副原料投入時の発生ガス急増
に対するRダンパ4の追従性をよくし、炉口からのガス
吹出しを防止する。
In the present invention, the amount of increased gas generated and the reaction delay time are predicted from the degree of input of auxiliary materials to the M line in converter exhaust gas treatment, and the damper is controlled based on these predicted values. or,
At this time, the damper opening degree control is performed by direct control output to the adder 19 provided at the rear stage of the PID controller section, without going through the conventionally used instrumentation or computer-based PID controller section 16. The ability of the R damper 4 to follow the rapid increase in gas generated when raw materials are charged is improved, and gas blowing out from the furnace mouth is prevented.

以下に本発明による副原料投入時の発生ガス増加量の予
Δ1り方法と予81!I結果に対する制御方法について
説明する。
The following is a method for predicting the amount of gas generated when adding auxiliary raw materials according to the present invention. A method of controlling I results will be explained.

まず、副原料投入時の発生ガス増加量の予測方法につい
て、第2図、第3図および第4図を用いて説明する。
First, a method for predicting an increase in the amount of generated gas when auxiliary raw materials are introduced will be explained with reference to FIGS. 2, 3, and 4.

第2図において縦軸は排ガス流量を、横軸は時間を表わ
す。tlは副原料投入タイミングを、t2は炉内反応に
より発生ガスが急増するタイミングを、t3は発生ガス
の急増が終了(90%終了)するタイミンクを、Foは
副原料投入前の排ガス流星を、Flは発生ガスの急増が
90%終了したときの排ガス流量を示す。
In FIG. 2, the vertical axis represents the exhaust gas flow rate, and the horizontal axis represents time. tl is the timing of auxiliary raw material input, t2 is the timing at which the generated gas rapidly increases due to the reaction in the furnace, t3 is the timing at which the rapid increase in generated gas ends (90% completion), Fo is the exhaust gas meteor before the auxiliary raw material input, Fl indicates the exhaust gas flow rate when 90% of the rapid increase in generated gas is completed.

ここで(’12  tl)を反応遅れI+@間T15e
c、(t3 t2)を反応時間T2sec、(Ft  
Fo)を発生ガス増加量ΔF Nm3/Hとして、制御
量に直結している副原料投入度合vT/H別に実測する
と、第3図および第4図が得られる。第3図で横軸は副
原料投入度合V T/H1縦軸は発生ガス増加量ΔF 
Nm’ /Hである。
Here, ('12 tl) is the reaction delay I + @T15e
c, (t3 t2) is the reaction time T2sec, (Ft
3 and 4 are obtained by actually measuring the auxiliary raw material input degree vT/H, which is directly linked to the control amount, with Fo) as the generated gas increase amount ΔF Nm3/H. In Figure 3, the horizontal axis is the amount of auxiliary material input V T/H1, and the vertical axis is the amount of increase in generated gas ΔF
Nm'/H.

第4図では、横軸は副原料投入度合V T/H1縦軸は
反応遅れ時間及び反応時間である。
In FIG. 4, the horizontal axis is the auxiliary material input degree VT/H1, and the vertical axis is the reaction delay time and reaction time.

上記第3図および第4図から、発生ガスの増加量ΔF、
反応遅れ時間T1、反応時間T2について以下のような
回帰式が得られる。
From FIGS. 3 and 4 above, the amount of increase in generated gas ΔF,
The following regression equation is obtained for the reaction delay time T1 and the reaction time T2.

ΔF =a ・V+a   (α>O,a>ONm’ 
/lt・・・(1)T1=β−V+b   (β<O,
b>O)  5Qc−・(2)T2=γ・V+c   
(y<0. c)0)  5ee−=(3)■=副原料
投入度合 T/H α、β、γ:係数 a、b、c:定数 副原料投入開始及び投入度合信号を信号検出器20でリ
アルタイムに検出し、予測制御部】8へ入力し、上記(
1)〜(3)式を用いてt1時点から11秒後のt2時
点で発生ガスの急増が始まり、それから12秒間にΔF
のガスが増加するということを予測する。
ΔF = a ・V + a (α>O, a>ONm'
/lt...(1) T1=β-V+b (β<O,
b>O) 5Qc-・(2)T2=γ・V+c
(y<0.c)0) 5ee-=(3)■=Auxiliary raw material input degree T/H α, β, γ: Coefficients a, b, c: Constant auxiliary raw material input start and input degree signals are detected by a signal detector 20 in real time, input it to the predictive control section ]8, and perform the above (
Using equations 1) to (3), the amount of generated gas starts to increase rapidly at time t2, 11 seconds after time t1, and then ΔF increases for 12 seconds.
It is predicted that the amount of gas will increase.

次に、予測結果に対する制御方法について、第1図〜第
5図及び(1)〜(3)式を用いて説明する。
Next, a control method for the prediction results will be explained using FIGS. 1 to 5 and equations (1) to (3).

まず、第2図に示す発生ガスの増加量ΔFを(1)式で
求め、次にΔFを第1図のRダンパ4の開度増加分に換
算する。この際、第5図のように、流量−ダンパ特性は
非線形であり、かつiDF入側のサクションダンパ5の
開度によっても変化するが、これらの変化に自動的に追
従する下記に示す(4)式によってダンパ開度増加分へ
〇を計算する。
First, the increase amount ΔF of the generated gas shown in FIG. 2 is determined by equation (1), and then ΔF is converted into the increase in the opening degree of the R damper 4 shown in FIG. At this time, as shown in Fig. 5, the flow rate-damper characteristic is non-linear and also changes depending on the opening degree of the suction damper 5 on the iDF inlet side. ) Calculate the increase in damper opening using the formula.

八〇=ΔF(θ。/FO)  ・・・・・(4)Δθ:
ダンパ開度増分       度θ0:t2時点のダン
パ開度    度Fo : 12時点の排ガス流量  
  Nm3/HΔF=副原料投入による発生ガス増加量
Nm3/H(4)式のθo / F oは12時点の流
量−ダンパ特性を表わしており、これにより流量−ダン
パ開度の近似的な変換係数が自動的に可変となる。従っ
て、流量−ダンパ特性が非線形であり、かつIDF入側
のサクションダンパ5の開度によっても変化することに
対して自動的に追従する。
80 = ΔF (θ./FO) (4) Δθ:
Incremental damper opening degree θ0: Damper opening degree at time t2 Fo: Exhaust gas flow rate at time 12
Nm3/HΔF=Increase in generated gas due to input of auxiliary material Nm3/H θo/Fo in equation (4) represents the flow rate-damper characteristic at time 12, and this gives an approximate conversion coefficient between flow rate and damper opening. automatically becomes variable. Therefore, the flow rate-damper characteristic is non-linear and changes automatically depending on the opening degree of the suction damper 5 on the IDF inlet side.

次に、(4)式で求めたダンパ開度増分Δθを第2図の
破線で示すように、反応時間12秒内でN分割して出力
する。このときの第1図のPID調節計部16の後段に
設けた加算器19に直接制御出力を行ない、ダンパ駆動
装置17を介してRダンパ4を制御する。
Next, the damper opening degree increment Δθ determined by equation (4) is divided into N parts and output within a reaction time of 12 seconds, as shown by the broken line in FIG. At this time, a direct control output is provided to the adder 19 provided at the subsequent stage of the PID controller section 16 in FIG. 1, and the R damper 4 is controlled via the damper drive device 17.

以上のように、本発明による転炉排ガスの制御を行なう
ことにより、従来は副原料投入時の発生ガス量急増時に
転炉4口からガスが吹出す現象が表われていたところ、
これが防止され、ガス回収量の増大を計ることができる
As described above, by controlling the converter exhaust gas according to the present invention, a phenomenon that conventionally occurred where gas was blown out from the four ports of the converter when the amount of gas generated when auxiliary materials were inputted suddenly increased.
This can be prevented and the amount of gas recovered can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は転炉排ガス処理装置の一例を示す概略図、第2
図は投入副原料による発生ガス量の特性を示すグラフ、
第3図および第4図は、実測デー。 りより得られた副原料投入速度、発生ガス量、反応遅れ
時間および反応時間の関係を表わしたグラフであり、第
5図は流量−ダンパ特性を示すグラフである。 ■=転炉   2ニスカー1−3:フード4:Rダンパ
 5:サクションダンパ 6:ガス誘引送風機   7:溶鋼 8:炉内吸込酸素    9:炉内発生ガス10:炉口
圧力計   11ニスカー1−位置検出器12:転炉ガ
ス分析計 13=誘引ガス流量計14:空気     
 15:計算機 16 : PID調整計    17:Rダンパ駆動装
置18:予測制御部   19:加算器 20:副原料投入信号 兇2■ 陥4ワ ハ3V 箔5フ f沖力゛ス濃1
Figure 1 is a schematic diagram showing an example of converter exhaust gas treatment equipment, Figure 2
The figure is a graph showing the characteristics of the amount of gas generated depending on the input auxiliary raw materials.
Figures 3 and 4 are actual measurement days. FIG. 5 is a graph showing the relationship among the auxiliary raw material input rate, the amount of gas generated, the reaction delay time, and the reaction time obtained from the above, and FIG. 5 is a graph showing the flow rate-damper characteristic. ■ = Converter 2 Nisker 1-3: Hood 4: R damper 5: Suction damper 6: Gas induced blower 7: Molten steel 8: Oxygen sucked into the furnace 9: Gas generated in the furnace 10: Furnace mouth pressure gauge 11 Nisker 1-position Detector 12: Converter gas analyzer 13 = Induced gas flow meter 14: Air
15: Computer 16: PID adjuster 17: R damper drive device 18: Predictive control unit 19: Adder 20: Sub-material input signal 2■ Fall 4 Waha 3V Foil 5F Oki force ゛ Sono 1

Claims (1)

【特許請求の範囲】[Claims] 転炉排ガス処理において、精錬中に投入する副原料の投
入度合V (T/H)から、発生ガス増加量と投入時点
からの反応遅れ時間を予測し、この予測値をもとにダン
パーを制御することを特徴とする転炉排ガスの制御方法
In converter exhaust gas treatment, the increase in generated gas and the reaction delay time from the time of input are predicted from the input degree V (T/H) of auxiliary materials input during refining, and the damper is controlled based on this predicted value. A method for controlling converter exhaust gas, characterized by:
JP8559183A 1983-05-16 1983-05-16 Controlling method of cnverter waste gas Pending JPS59211518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8559183A JPS59211518A (en) 1983-05-16 1983-05-16 Controlling method of cnverter waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8559183A JPS59211518A (en) 1983-05-16 1983-05-16 Controlling method of cnverter waste gas

Publications (1)

Publication Number Publication Date
JPS59211518A true JPS59211518A (en) 1984-11-30

Family

ID=13863057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8559183A Pending JPS59211518A (en) 1983-05-16 1983-05-16 Controlling method of cnverter waste gas

Country Status (1)

Country Link
JP (1) JPS59211518A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016150858A (en) * 2015-02-16 2016-08-22 新日鐵住金株式会社 Slag treatment method and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5289503A (en) * 1975-12-20 1977-07-27 Nippon Steel Corp Recovery of uncombustive exhaust gas from converter
JPS531110A (en) * 1976-06-25 1978-01-07 Nippon Steel Corp Control of exhaust gas of converter
JPS5451907A (en) * 1977-10-03 1979-04-24 Nippon Steel Corp Method of controlling flow rate of exhaust gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5289503A (en) * 1975-12-20 1977-07-27 Nippon Steel Corp Recovery of uncombustive exhaust gas from converter
JPS531110A (en) * 1976-06-25 1978-01-07 Nippon Steel Corp Control of exhaust gas of converter
JPS5451907A (en) * 1977-10-03 1979-04-24 Nippon Steel Corp Method of controlling flow rate of exhaust gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016150858A (en) * 2015-02-16 2016-08-22 新日鐵住金株式会社 Slag treatment method and apparatus

Similar Documents

Publication Publication Date Title
JP2724063B2 (en) Raw material charging control method at the blast furnace top
JPS59211518A (en) Controlling method of cnverter waste gas
US4314694A (en) Method for controlling exhaust gases in oxygen blown converter
US4192486A (en) Method for controlling exhaust gases in oxygen blown converter
JPS6324044B2 (en)
JPS5822325A (en) Optimum control means for heating oven for bloom
EP0190644B2 (en) Convertor pressure control device in convertor waste gas disposing device
JPS5839204B2 (en) Furnace pressure control device in converter waste gas treatment equipment
JPH01142015A (en) Method for controlling inert gas generation in converter exhaust gas treatment
JPS6043886B2 (en) Waste gas recovery method in converter waste gas treatment equipment
JPH09187625A (en) Device and method for controlling injection of ammonia into stack gas denitrating equipment
JPH0192322A (en) Method for controlling sheet temperature in continuous annealing furnace
JP3874696B2 (en) Converter pressure control method and apparatus for converter
SU1604858A1 (en) Method of controlling distribution and use of gas in blast furnace
SU1742338A1 (en) Method for determining moment for pouring molten metal from converter
JPS5846527B2 (en) Furnace mouth pressure control method in converter waste gas treatment equipment
JPH05339617A (en) Converter blowing method
JPH093518A (en) Method for controlling end point of blowing in converter
JPS5946283B2 (en) How to operate a blast furnace
JPS54119316A (en) Slopping control method in converter
GB1568406A (en) Method for controlling exhaust gases in oxygen blown converter
SU711108A1 (en) Method of oxygen convertor process control
JPH0219416A (en) Converter blow-refining method
JPH02250911A (en) Method for operating blast furnace
JPS5928515A (en) Method and apparatus for refining steel