JPS59211196A - Response abnormality diagnosing equipment for detector - Google Patents

Response abnormality diagnosing equipment for detector

Info

Publication number
JPS59211196A
JPS59211196A JP58085056A JP8505683A JPS59211196A JP S59211196 A JPS59211196 A JP S59211196A JP 58085056 A JP58085056 A JP 58085056A JP 8505683 A JP8505683 A JP 8505683A JP S59211196 A JPS59211196 A JP S59211196A
Authority
JP
Japan
Prior art keywords
sensor
noise
response
response time
normal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58085056A
Other languages
Japanese (ja)
Inventor
岡町 正雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58085056A priority Critical patent/JPS59211196A/en
Publication of JPS59211196A publication Critical patent/JPS59211196A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing And Monitoring For Control Systems (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は検出器応答異常診断装置に係り、特に原子力発
電プラントや火力発電プラント等にて用いられる検出器
に適用し得る検出器応答異常診断装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a detector response abnormality diagnosing device, and more particularly to a detector response abnormality diagnosing device that can be applied to detectors used in nuclear power plants, thermal power plants, and the like.

例えばプラントに据えつけられた才\の状態で、プラン
トプロセスを計測するセンサの応答性(応答時間)の異
常を診断する方法としてプロセスのもつゆらぎ(微小変
動)を利用することができる。すなわちプロセスのゆら
ぎがセンサを励起し、定常状態の値のまわりに微小な変
動がおこる(これをプロセスノイズのもつ特性即ちプロ
セス特性と称す)ので、センサ出力データから定常状態
の値を取り除き残りの微小変動を拡大して解析し、その
中に含まれるセンサ特性(センサ自防のもつ特性)を抽
出することによりセンサの応答性の異常診断が行なわれ
る。
For example, fluctuations (minor fluctuations) in the process can be used as a method for diagnosing abnormalities in the responsiveness (response time) of a sensor that measures the plant process when it is installed in a plant. In other words, process fluctuations excite the sensor, causing minute fluctuations around the steady state value (this is a characteristic of process noise, called a process characteristic), so the steady state value is removed from the sensor output data and the remaining Abnormalities in sensor responsiveness are diagnosed by enlarging and analyzing minute fluctuations and extracting sensor characteristics (characteristics possessed by sensor self-defense) contained therein.

この場合の具体的な解析方法を第1図tこついて説明す
る。第1図において1のデータ入力から2でノイズデー
タの自己共分散関数を計算する。
A specific analysis method in this case will be explained with reference to FIG. In FIG. 1, the autocovariance function of noise data is calculated from data input 1 in step 2.

次にこの値を用いてノイズ時系列データを3で回帰モデ
ルにあてはめるための重み係数を求める。この係数より
4でインパルス応答を計算し、さらに、5でインデイシ
ャル応答を計算し、その整定値の63.2%の点に達す
る時間からセンサ応答時間τを推定する。一方正常な状
態のセンサを用いて実験室でセンサが実プラントに設置
されているのと同−又はそれに近い環境を作り、センサ
の正常時応答時間τ。を得ておく。これより6でτ〉α
・τ。(ここでαは正の定数)の場合には応答が正常状
態より遅くなっていると判断し7により「センサ異常」
の警報を発生してプラント運転員に適切なる指示を与え
るものである。
Next, using this value, a weighting coefficient for fitting the noise time series data to a regression model with a value of 3 is determined. From this coefficient, the impulse response is calculated with 4, the initial response is calculated with 5, and the sensor response time τ is estimated from the time it takes to reach 63.2% of the set value. On the other hand, using a sensor in a normal state, we create an environment in the laboratory that is the same as or close to that in which the sensor is installed in an actual plant, and calculate the normal response time τ of the sensor. Get it. From this, 6 is τ〉α
・τ. (Here, α is a positive constant), it is determined that the response is slower than the normal state, and 7 indicates a "sensor abnormality".
This system generates alarms and provides appropriate instructions to plant operators.

以上の解析ではプロセスのノイズ特性(センサに入力す
るプロセスのゆらぎ)はホワイトと仮定している。実際
のプロセスノイズがホワイト特性(パワースペクトル@
度が一定値を意味する。即ち全ての周波数を均一に含む
ノイズである)であれば問題はないが、現実にはホワイ
ト特性を持つプロセスはむしろ少なく、殆んどのプロセ
ス(流量、圧力、温度他)は何らかのカラーノイズ特性
(ホワイト特性でないもの全てを意味する)を持ってい
る。従って上記解析による応答時間推定にはセンサ特性
のみならずプロセス特性も含まれているため応答時間推
定精度は老るしく低下する吉いう欠点がある。
In the above analysis, it is assumed that the process noise characteristics (process fluctuations input to the sensor) are white. Actual process noise has white characteristics (power spectrum @
Degree means a constant value. In other words, there is no problem if the noise includes all frequencies uniformly), but in reality, there are actually very few processes with white characteristics, and most processes (flow rate, pressure, temperature, etc.) have some kind of color noise characteristic ( (meaning anything that is not a white trait). Therefore, since the response time estimation based on the above analysis includes not only sensor characteristics but also process characteristics, there is a drawback that the response time estimation accuracy deteriorates over time.

本発明は上記の事情に鑑みて提案されたもので、その目
的とするところは検出器の応答時間推定精度を高めて原
子力発′はプラント等の信頼性および安全性を向上し得
る検出9等応答異常診断装置を提供するζこある。
The present invention has been proposed in view of the above circumstances, and its purpose is to improve the accuracy of estimating response times of detectors and improve the reliability and safety of nuclear power plants. This company provides a response abnormality diagnosis device.

本発明による検出器応答異常診断装置はセンサ正常時の
センサ伝達特性およびブランHこ据付けられたセンサの
正常応答時のセンサ出力ノイズデータをそれぞれ保持す
る手P¥七、センサ応答異常診断時のセンサ出力ノイズ
データと上記2つのデータとの演算からプロセス特性を
除いたセンサ特性のみを得る手段と、この手段により得
られた上記センサ特性より応答時間を推定し、これと上
記保持手段により保持されていた正常時応答時間に重み
をかけた値とを比較する手段とを具備し、上記推定応答
時間が大きいときに異常信号を出力するようにしてなる
ことを特徴とし、プロセスの持つカラーノイズ特性を検
出器出力信号より取り除く処理をデータ収年毎に行なう
ことにより、センサ特性のみを得るようにしてセンサの
応答時間推定精度を高めるようにしたものである。
The detector response abnormality diagnosing device according to the present invention has a sensor transmission characteristic when the sensor is normal and a sensor output noise data when the sensor installed in the blank has a normal response. A means for obtaining only the sensor characteristics excluding the process characteristics from the calculation of the output noise data and the above two data, and a means for estimating the response time from the above sensor characteristics obtained by this means, and a means for estimating the response time and the above-mentioned holding means. and a means for comparing the normal response time with a weighted value, and outputs an abnormal signal when the estimated response time is large, and the color noise characteristic of the process is By performing a process of removing data from the detector output signal for each year of data yield, only the sensor characteristics are obtained, thereby increasing the accuracy of estimating the response time of the sensor.

本発明の一実施例を添付図面tこ基いて詳細に説明する
An embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第2図は本発明の一実施例の構成を示すブロック線図、
第3図は第2図の演算器の詳細作動を示すフローチャー
ト図である。
FIG. 2 is a block diagram showing the configuration of an embodiment of the present invention;
FIG. 3 is a flowchart showing the detailed operation of the arithmetic unit shown in FIG. 2.

第2図において11はセンサ出力電気信号1゜を入力し
その微小値を拡大するノイズ拡大器、12はノイズ拡大
器11の出力をA/D変換して電気的に格納するA/D
変換器、13は必要な計算処理および判断を行う演算器
、14は演算器13の演算結果を表示する出力装置であ
る。
In FIG. 2, 11 is a noise magnifier that inputs a sensor output electric signal of 1° and magnifies its minute value, and 12 is an A/D that converts the output of the noise magnifier 11 into A/D and stores it electrically.
The converter 13 is an arithmetic unit that performs necessary calculation processing and judgment, and 14 is an output device that displays the calculation results of the arithmetic unit 13.

第3図において15は12の値を電気的に受は炊り処理
を行い、16では15の結果と1′7及び18を用い演
算を行う。19では16の結果を、20では更にその結
果を電気的に処理する。2ノでは2oの結果と22を電
気的に比較し、これを出力装置14に入力するようにな
されている。
In FIG. 3, 15 electrically receives and processes the value of 12, and 16 performs calculations using the result of 15 and 1'7 and 18. At 19, the result of 16 is processed electrically, and at 20, the result is further electrically processed. In No. 2, the result of No. 2o is electrically compared with No. 22, and this is input to the output device 14.

本発明の上記一実施例の作用について説明する。センサ
出力電気信号1oをノイズ拡大器111こ入力する。ノ
イズ拡大器11ではその定常値を除き、変動分のみを拡
大する。これがん1変換器12でディジタル値に変換さ
れノイズデータきして格納される。15では上記データ
y(t)をフーリエ変換しY(jw)を得る。更にY(
Jw)→Y(!I)に変換する。171こは正常時セン
サ特性Ho(s)を格納している。また18はセンサの
正常状態におけるノイズデータY。(s)を持つ。この
値をH(s)とおく。19ではH(s)をH(jw)と
おきなおして逆フーリエ変換しインパルス応答h(t)
をうろ。20ではh(t)を積分しインデイシャル応答
5(t)を得、その整定値の63.2%よりセンサの応
答時間τをうる。22は正常時のセンサ応答時間τ。と
重み係数αを持ち、21でτとα・τ。を比較する。τ
〉α・τ0の時はτの値と警告を出力装置14で出力し
、τ〉α・τ。
The operation of the above embodiment of the present invention will be explained. The sensor output electrical signal 1o is input to the noise magnifier 111. The noise magnifier 11 removes the steady value and magnifies only the variation. This is converted into a digital value by a converter 12 and stored as noise data. In step 15, the data y(t) is Fourier transformed to obtain Y(jw). Furthermore, Y(
Convert Jw) → Y(!I). 171 stores the normal sensor characteristic Ho(s). 18 is noise data Y in the normal state of the sensor. (s). Let this value be H(s). In 19, H(s) is replaced with H(jw) and inverse Fourier transform is performed to obtain the impulse response h(t).
Walk around. In step 20, h(t) is integrated to obtain the initial response 5(t), and the response time τ of the sensor is obtained from 63.2% of the set value. 22 is the sensor response time τ during normal operation. and weighting coefficient α, and τ and α·τ at 21. Compare. τ
When 〉α・τ0, the value of τ and a warning are outputted from the output device 14, and τ〉α・τ.

でない場合にはτの値のみを出力して、次のノイズデー
タを入力し以上をくりかえすようになされている。
If not, only the value of τ is output, the next noise data is input, and the above process is repeated.

こ\でH8(s)をセンサ正常時の伝達特性、τをセン
サ正常時の応答時間、yo (t )をセンサ正常時の
ノイズデータ、Yo(s)をセンサ正常時のノイズデー
タフーリエ変換(jw−+s)、G(s)をプロセス伝
達特性とすると、センサ正常時の出力ノイズは次式で表
わされろ。
Here, H8(s) is the transfer characteristic when the sensor is normal, τ is the response time when the sensor is normal, yo (t) is the noise data when the sensor is normal, and Yo(s) is the Fourier transform of the noise data when the sensor is normal ( jw-+s) and G(s) are process transfer characteristics, the output noise when the sensor is normal is expressed by the following equation.

Yo(s) = Ho(s)・Xo′(S)=Ho(s
)・G(s)・Xo(s)・・・・・・(1)ここで 
X。’(s):センサに入力するプロセスノイズX。′
(t) のフーリエ変換 (jw−+5) Xo (s)  ’ホワイトノイズ入力のフーリエ変換 つtリカラープロセスノイズはG(s)なる特性にホワ
イトノイズが入力したものとみなす。一方プラントセン
サ診り時のノイズデータx(t)に対しそのフーリエ変
換よりX(s)をうる。その出力y(t)のフーリエ変
換より次式で示すY(s)をうる。
Yo(s) = Ho(s)・Xo'(S)=Ho(s
)・G(s)・Xo(s)・・・・・・(1) Here
X. '(s): Process noise X input to the sensor. ′
(t) Fourier transform (jw-+5) On the other hand, X(s) is obtained from noise data x(t) at the time of diagnosis of the plant sensor by Fourier transformation thereof. From the Fourier transform of the output y(t), Y(s) expressed by the following equation is obtained.

Y(s)= H(s) ・ X’ (s)= H(a)
 ・G(s) ・X(s)      −−<2)ここ
で H(s) :診断時センサ伝達特性X’(s):プ
ロセスノイズのフーリ エ変換(jw−+5) (1)式および(2)式より ここでX。(s) 、 X(s)はホワイトノイズと仮
定したからX。/X=C(9較)とおける。
Y(s) = H(s) ・X'(s) = H(a)
・G(s) ・X(s) --<2) where H(s): Sensor transfer characteristic during diagnosis X'(s): Fourier transform of process noise (jw-+5) Equation (1) and (2) ) From the formula, X here. (s), X because we assumed that X(s) is white noise. /X=C (9 comparisons).

従って この(4)式より正常時センサ特性■(。(s) 、!
:正帛時ノイズデータY。(s)を用い診断時ノイズデ
ータよりプロセスのカラーノイズを除いた診断時のセン
サ特性を得るものである。従ってH(s)より推?され
る応答時間はプロセスの特性を含まず純粋にセンサ特性
のみ々なっているので推′F!精度を向上させることが
できる。
Therefore, from this equation (4), the normal sensor characteristic ■(.(s),!
: Noise data Y during normal printing. (s) is used to obtain the sensor characteristics at the time of diagnosis by removing process color noise from the noise data at the time of diagnosis. Therefore, is it better than H(s)? The expected response time does not include process characteristics and depends purely on sensor characteristics, so it is recommended! Accuracy can be improved.

以上ζこより本発明lこよれば検出器の応答時間推定精
度を高めることができるので、原子力発電プラント等の
信頼性および安全性を向上し得る検出器応答異常診断装
置が得られる優れた効果を奏するものである。
From the above, the present invention can improve the accuracy of estimating the response time of a detector, thereby providing an excellent effect of providing a detector response abnormality diagnosis device that can improve the reliability and safety of nuclear power plants, etc. It is something to play.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従ゴロのセンサら答時F′l准定去を説明する
ためのフローチャート図、第2図は本発明の一実施例の
構成を示すブロック線区I%第3図は第2図の演算器の
詳細作動を示すフロー千ヤード図である。 10・・・センサ出力還気信号、1 、f・・・ノイズ
拡大器、12・・・A/D変換器、1.9・・・演算器
、Z4・・・出力装置。 出願人復代理人 弁理士 鈴 江 武 彦第1図 第2図 10   it    12 −               ( 第3図 11戸
FIG. 1 is a flowchart for explaining F'l quasi-determination when the sensor responds to a grounder, and FIG. 2 is a block line section I% showing the configuration of an embodiment of the present invention. FIG. 2 is a flow diagram showing detailed operation of the computing unit of FIG. DESCRIPTION OF SYMBOLS 10... Sensor output return air signal, 1, f... Noise expander, 12... A/D converter, 1.9... Arithmetic unit, Z4... Output device. Applicant's sub-agent Patent attorney Takehiko Suzue Figure 1 Figure 2 10 it 12 - (Figure 3 11)

Claims (1)

【特許請求の範囲】[Claims] センサ正常時のセンサ伝達特性およびプラントに据付け
られたセンサの正常応答時のセンサ出力ノイズデータを
それぞれ保持する手段と、センサ応答異常診断時のセン
サ出力ノイズデータと上記2つのデータとの演算からプ
ロセス特性を除いたセンサ特性のみを得る手段と、この
手段により得られた上記センサ特性より応答時間を推足
し、これと上記保持手段により保持されていた正常時応
答時間に重みをかけた値とを比較する手段とを具備し、
上記推定応答時間が太きいときに異常信号を出力するよ
うにしてなることを特徴とする検出器応答異常診断装置
Means for holding sensor transfer characteristics when the sensor is normal and sensor output noise data when the sensor installed in the plant responds normally, and a process from calculating the sensor output noise data and the above two data when diagnosing sensor response abnormality. A means for obtaining only the sensor characteristics excluding the characteristics, and a value obtained by adding the response time from the sensor characteristics obtained by this means and multiplying this by weighting the normal response time held by the holding means. and means for comparing;
A detector response abnormality diagnosing device characterized in that an abnormality signal is output when the estimated response time is long.
JP58085056A 1983-05-17 1983-05-17 Response abnormality diagnosing equipment for detector Pending JPS59211196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58085056A JPS59211196A (en) 1983-05-17 1983-05-17 Response abnormality diagnosing equipment for detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58085056A JPS59211196A (en) 1983-05-17 1983-05-17 Response abnormality diagnosing equipment for detector

Publications (1)

Publication Number Publication Date
JPS59211196A true JPS59211196A (en) 1984-11-29

Family

ID=13847982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58085056A Pending JPS59211196A (en) 1983-05-17 1983-05-17 Response abnormality diagnosing equipment for detector

Country Status (1)

Country Link
JP (1) JPS59211196A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6859755B2 (en) 2001-05-14 2005-02-22 Rosemount Inc. Diagnostics for industrial process control and measurement systems
US8898036B2 (en) 2007-08-06 2014-11-25 Rosemount Inc. Process variable transmitter with acceleration sensor
US9052240B2 (en) 2012-06-29 2015-06-09 Rosemount Inc. Industrial process temperature transmitter with sensor stress diagnostics
US9207670B2 (en) 2011-03-21 2015-12-08 Rosemount Inc. Degrading sensor detection implemented within a transmitter
US9207129B2 (en) 2012-09-27 2015-12-08 Rosemount Inc. Process variable transmitter with EMF detection and correction
US9602122B2 (en) 2012-09-28 2017-03-21 Rosemount Inc. Process variable measurement noise diagnostic

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6859755B2 (en) 2001-05-14 2005-02-22 Rosemount Inc. Diagnostics for industrial process control and measurement systems
US8898036B2 (en) 2007-08-06 2014-11-25 Rosemount Inc. Process variable transmitter with acceleration sensor
US9207670B2 (en) 2011-03-21 2015-12-08 Rosemount Inc. Degrading sensor detection implemented within a transmitter
US9052240B2 (en) 2012-06-29 2015-06-09 Rosemount Inc. Industrial process temperature transmitter with sensor stress diagnostics
US9207129B2 (en) 2012-09-27 2015-12-08 Rosemount Inc. Process variable transmitter with EMF detection and correction
US9602122B2 (en) 2012-09-28 2017-03-21 Rosemount Inc. Process variable measurement noise diagnostic

Similar Documents

Publication Publication Date Title
JP4422412B2 (en) Flow diagnostic system
EP0030459B2 (en) System for monitoring steam condenser performance
Yao et al. Fault diagnosis of planetary gearbox based on acoustic signals
KR102067344B1 (en) Apparatus and Method for Detecting Abnormal Vibration Data
JPS59211196A (en) Response abnormality diagnosing equipment for detector
US5623579A (en) Automated method for the systematic interpretation of resonance peaks in spectrum data
JPH01311242A (en) Valve leak monitoring device
Upadhyaya et al. Integration of time series modeling and wavelet transform for monitoring nuclear plant sensors
EP4163587A1 (en) Estimation device, estimation method, and estimation computer program for estimating a precipitate thickness
JP3390087B2 (en) Bearing diagnosis system
Pan et al. Nonstationary time-frequency analysis for machine condition monitoring
Montalvo et al. Improving the in situ measurement of RTD response times through discrete wavelet transform in NPP
JP2000046893A (en) Abnormality diagnostic system and method
JPS6230915A (en) Abnormal response diagnosing apparatus
JP2895101B2 (en) Method and apparatus for measuring moderator temperature coefficient of nuclear reactor
JPS63100514A (en) Abnormality diagnosing device
JP2002334120A (en) Method and device for calculating heat response
CN117404853B (en) External circulating water cooling system and method for tunnel boring machine
JPS61267102A (en) Plant modeling device
JPS6076619A (en) Apparatus for diagnosing response abnormality of detector
Billings et al. Rational model data smoothers and identification algorithms
JPH06309580A (en) Monitor and diagnosis device for plant
MeiYing et al. Fault diagnosis method of rolling bearings based on VMD and MDSVM
He et al. Delay Estimation of Dynamic System Based on Correlation Coefficient
JP3583399B2 (en) Method and apparatus for measuring void reactivity coefficient